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Renormalization of the P- and T-odd nuclear potentials by the strong interaction
and enhancement of P-odd effective Beld
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Approximate analytical formulas for the self-consistent renormalization of P, T-odd and P-odd
wreak nuclear potentials by the residual nucleon-nucleon strong interaction are derived. The contact
spin-Sip nucleon-nucleon interaction reduces the constant of the P, T-odd potential 1.5 times for
the proton and 1.8 times for the neutron. Renormalization of the P-odd potential is caused by the
velocity dependent spin-Sip component of the strong interaction. In the standard variant of x+ p
exchange, the conventional strength values lead to anomalous enhancement of the P-odd potential.
Moreover, the x-meson exchange contribution seems to be large enough to generate an instability
(pole) in the nuclear response to a weak potential.

PACS number(s): 21.30.+y, 13.75.Cs, 24.80.Dc

Recent measurements of the effects of parity noncon-
servation (PNC) in nuclear reactions produced several
results which still have not been explained: permanent
sign PNC efFects in neutron capture by 2Th [1]and very
large PNC effects in Mossbauer transitions [2]. One can
consider these observations as a hint that there could be
some new mechanisms to enhance the weak interaction
in the nucleus. Therefore, it is time to consider pos-
sible corrections which can inQuence the magnitude of
PNC effects. In our work [3] it was pointed out that the
residual strong interaction can enhance the two-nucleon
PNC interaction Ai)s times (A is a nucleon number).
We called the residual interaction which combines the
action of the weak potential with the residual strong in-
teraction the induced parity nonconserving interaction
(IPNCI). However, the dominating part of the two-
nucleon IPNCI, which was produced by the velocity-
independent contact strong interaction, does not con-
tribute to the single-particle weak potential. In the
present work we consider the part of the strong inter-
action which renormalizes the single-particle weak po-
tential. Renormalization of the P- and T-odd nuclear
potentials which contribute to P- and T-odd nuclear mo-
ments and to P- and T-odd effects in neutron scattering
is also considered.

Let us start from the consideration of P and T-odd-
nuclear potentials (see, e.g., Ref. [4]):

G
HT p = g(OV)p 8Or(6'U,

2 2m

8=rl = —2x10 )7fm,p(o)
2 2mU0

where o is the doubled nucleon spin, p is the nuclear
density, m is the proton mass, G is the Fermi constant,
g is a dimensionless constant characterizing the strength
of T and P odd intera-ction-s [the limits on these con-
stants for protons (rl„) and neutrons (rl ) were obtained
from atomic [5] and molecular [6] electric dipole moment
measurements], and U is the strong nuclear potential, 1
fm=10 cm. The shape of the potential U and the

nuclear density p is known to be approximately similar.
We used this fact in Eq. (1). Correspondingly, the whole
potential afFecting the nuclear motion is equal to

Q = Q(r+8o) = (1+8oV)g(r) = /+i)g, (3)

where Q(r) is the nonperturbed wave function. The di-
rect correction to the strong potential induced by a small
perturbation can be written as follows:

6V(1) = ) f d2[6d1(2)V(1, 2)$,(2)

+Q (2)V(1,2)bg (2)]. (4)

Here the notation 1(2) = [ril2)1o'yl2)1ry(2)] stands for the
full set of the nucleon variables (coordinate, spin, and
isospin) and the summation is carried out over the occu-
pied nucleon states a.

We use the Landau-Migdal parametrization of the
strong interaction,

V(r, r') = Cb'(r —r')[fo+ forr'+ goo'+ g'rr'(ro'], (5)

where C = 300 MeV fm, g = 0.575, g' = 0.725, and only
the direct terms are considered (see, e.g. , Refs. [7,8]).
Using Eq. (3) for @+ bQ and integration by parts in Eq.
(4), we obtain the correction to the T, P-odd potential:

Hrr = —
& dr f d @ (rr)[r'rVr, V(rr, rr)]16 (rr)
a

= ) 82(g+ g'rir-)(~i&) 14-I' = ~«p . (

p = &[8„&(g +g') + 8„&(g ~ g')] for protons (neutrons) .
Hereafter, [, ] means commutator, and p = P IQ I2. We
put the proton density p„= &p, neutron density p

& p, and (oq) = 0 (we consider the potential created by

U = U+ KT p = U(r) + 8o 7'U U(r+ 8(r).

Hence, it is obvious that the nucleon wave function with
the HT p taken into account has the form
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paired nucleons). Now we should solve the self-consistent
~q~~tion HT~ ——HT ~ + HTy for T, P-odd potential:

o p(o)
ocr VU = 0 0 VU + p o.V'U.

U 0

Here HY& contains the "initial" values of the T, P-odd
interaction constants rI and rl„(or H„and 8 ), while HTp
and HT~ contain "final" values of the constants. The
solutions for the pair of simple linear algebraic equations
for the constants are the following:

0

gr = —(rip[1 + C(g + g')N/A] —g„C(g —g')N/A) =
0

ri„= —(ll„[1+C(g+ g')Z/A] —g C(g —g')Z/A)

D = [1+C(g+ g')N/A][1+ C(g+ g')Z/A] —C'(g g'—)'ZN/

7c 2PFP=, E'F =
PFm 3'

PF
IUI = &~+ I&l

Here, C = Cp/IUI =
s~~'&~

——s(1+ '
) 1 and q„

and g„are the initial values of the constants. We used
the well known relations:

of order of unity (the notation e 1.0 x 10 sg is also
adopted in the current literature). In a simple model of
a constant nuclear density it is easy to find the result of
the action of the perturbation W (see Ref. [11] and the
first paper of Ref. [12]):

Q = exp( —i(o r) Q (r) (1 —i(crr) Q(r),

cr„(r) = 8~Vpp(r), 0.„(r) = H„V'p„(r) . (9)

The interaction HT I in Eq. (6) is, in fact, a strong inter-
action of the nucleon with the spin hedgehog [Cgcrcr(r)].

Now we turn to considering corrections to the weak
P-odd and T-even potentials,

(~pp+ p~p).w
2 2m

(10)

Here p is the nucleon momentum; the dimensionless con-
stants g„ for the proton and g„(for the neutron) are

where p~ is a Fermi momentum and Isl is a nucleon sep-
aration energy. We also have taken into account in the
numerical estimate that Ig

—g'I is small.
Thus, the strong residual interaction reduces the values

of the T, P-odd potential constants 1.5—1.8 times. Note
that the response of the nucleus to the T and P od-d-
potentials (1) as a function of the interaction constants

haspoles(D=O) atg=C 1 —1andg' C 1 —1

(for N Z). The positions of the poles differ from the
instability points in an infinite Fermi system g = g
—1.5 (see, e.g. , Refs. [9,10]) since the interactions (1) do
not exist in the infinite system (K~2 = 0 at p = const).

It is interesting that the T- and P-odd interactions
induce a spin hedgehog (0 r) in the nucleon spin dis-
tribution within a spherical nucleus. A simple calculation
with the wave function (3) gives the following proton and
neutron spin distributions:

w
g p=sm.

2

In the general case (real density shape and spin-orbit
interaction taken into account) the correction to the wave
function contains an extra spherically symmetric function

p (r) (see, e.g. , Ref. [13]):

'(Or)p (")~ (r). (12)

The P-odd weak interaction (10) also changes the spin
distribution. It rotates the spin around the vector r
[see Eq. (11)] by the angle (r and creates a spin spi-
ral [13]. However, after summation over paired nucleons
this spin structure disappears. As a result, the contact
spin-dependent strong interaction (5) does not contribute
to the renormalization of the weak potential [because of
the factor i in Eqs. (11)and (12) the contribution of (bgt)
compensates the contribution from (bg) in Eq. (4) for
the correction to the potential]. This result looks natu-
ral since the only possible orientation of the spin in the
spherical nucleus cr r violates both P and T invariances
and cannot be produced by a T-even weak interaction
(10).

The correlation which is actually produced by the weak
interaction is cTp. To reveal such structures the strong in-
teraction must be spin and momentum dependent as well
(another possibility is related to a finite range exchange
interaction; it will be considered below). Within Landau-
Migdal theory, the momentum dependence is usually de-
scribed [9] by the following extra term in (5):

+1 Cpp' (gl + glrlr2)(crlcT2) [Plp2~(rl r2) + Plb(rl r2)P2 + P2~(rl r2)P1 + ~(rl r2)Plp2].

The constants of this interaction are found to be gl ———0.5, gl = —0.26 [9]. Using Eqs. (4), (11), and (13) we can
calculate the corresponding correction to the weak potential:
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W=) f d rqg (rq)[ig rrqrg, Vg)l/l (r~)

= —).(-(gl+»~1~-), (o»1 I&-I') = &[(op)p+ p(op)l (14)

where Q = —,[&(gl 6 gl)(z + & (gl p gl)$ ] for protons (neutrons) correspondingly. A self-consistent solution of
~F

the equation for the total P-odd nuclear potential W = W + W gives the following values of the potential constants:

g = —g 1+ (gl+g)w 1two

1 +
3A (gl + gl)
2Z

2N

Wo
3Ag„ (gl —gl)

2N I 2Z I 4NZ
+

A (gl + gl) 1 +
3A (gl + gl) A2 (gl gl) (15)

gp ——1.3g„+0.18g, g„= 1.4g„+ 0.12g„. (16)

Therefore, the Landau-Migdal interaction V + Vl [Eqs.
(5) and (13)] does not produce crucial changes in the val-

ues of interaction constants for P, T-odd and P-odd po-
tentials. The corrections are of the saxne size as, say, cor-
rections to the Schmidt values of the magnetic moments.
In fact, the Landau-Migdal interaction originates &om
the underlying (z + p)-exchange interaction [14] which
generates also tensor components. To account for the
latter destroys this "idyllic" picture at least for the P-

We have taken into account here that Cpmp+ ——2/3. It
is interesting that the poles (D = 0) in the response of
a nucleus to the weak potential W ap coincide with
the boundary of stability for a Fermi liquid with the in-
teraction (13): gl ——gl

———1.5 at N = Z (see, e.g. ,
Refs. [9,10]). This is not too surprising since we used
the approximation p = const to obtain the wave function
(11).'

The interaction Vj with the constants g$ — 0.5
—0.26 does not cause instability. However, it acts in the
direction of the poles and increases the P-odd potential:

odd potential. The rest of the paper is devoted to the
calculation of the vr + p contribution.

In the present random-phase-approximation-like cal-
culations, the correction to the nucleon P-odd poten-
tial W = P„„b'to„„ytv due to the strong interaction

V =
2 P &,&

atctV s,gdb is given by the expression

bu)„„=) (A sV~„„—Vs„„A( )n
ab

—) (A sVg„„—V„„sAs )n,
ab

where the first sum is the direct contribution and the sec-
ond is exchange one ()(Jt, p, , at, a, ... are creators and de-
structors of nucleons in the corresponding single-particle
states), n are the occupation numbers, n:—(ata), and
A s = (Q Ii((or) Igs) are single-particle matrix elements
of the P-odd mixing operator [see Eq. (11)]. For the
m+ p interaction [14] V s,~ is given by

V~~g —— dld2 1 t 2V + 1, 2 g1 g2, 18

where V +~(1,2), in p representation, is

f2 ((rlq)((rzq) fp [(rl x q][oz x q]V + 1, 2 = 4' ~17'- +m2 q2+ m2 m2 q2+ m2
7r P P

where q is the momentum transfer, m
(~& is the pion (rho meson) mass, f2 = 0.08 is a pion coupling constant, and f2

is corresponding p-meson coupling ranging from 1.86 to 4.86 ("weak" and "strong" couplings correspondingly [14]).
In the coordinate representation, the last expression becomes a potential depending on Irl —r2I. Thus its commutator
with A = i((o.r) in (17) (direct terms) is zero, while the exchange terms contain (due to nonlocality of the potential)
an e8ective velocity dependence and yield a nonzero contribution to R'. To calculate the latter, we should reduce

We had known from a private communication with V.G. Zelevinsky that he independently obtained a similar result: The
correction to the efFective field

harp

diverges at the same point where the first harmonic of the Landau interaction gl (trio 2)(plp2)
leads to the instability of the Fermi liquid.
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the exchange terms in (17) to a direct form which requires the change q ~ pq —p2 (the nucleons are on the Fermi
surface) and Fierz transformation of the spin and isospin tensor structures [8]. After performing that, we obtain, for
Vbvpa ~

Vg„„—— dld2 ~ 2 „1V'1, 2 1 2,
with V'(l, 2) being equal to

(3
V'(1, 2) = —2vr

~

———
(Ty Tz) ~ ) [20&~0 2p + (1 —(0 z o z) )h~p]

2 2

f~ (Px —Pz)n(pi —Pz)p fp ~~p(pl Pz)' —(Pl Pz)n(pl PQ)p
m& (p, —p, )'+ m2 m& (pg —pz) 2 + m2 (20)

By use of that, the second sum in Eq. (17) is reduced to the expectation value of the commutator [i(2(o2r2), V'(1, 2)]
and we obtain the meson exchange correction W to the P-odd potential acting on the Grst nucleon:

Here notation ( . .) stands for the expectation value taken in the subspace of the wave functions of the core nucleons
(label 2), and the summation is assumed over the states a occupied by the nucleon 2. Calculating the commutator in
(21) using (20) and the relations [rz, p2p] =ib p, (02 o2p) = h p, we obtain

1 1
W

(pq —p2) + m pq —p2 + m

1 1
(22)

where the right hand side remains to be an operator acting on the wave functions of nucleon 1, and the constants are
K = 6z'(f /m )[3—(rq7z)](2, K~ = 8z(f /m )[3—(wqrz)](2. To evaluate the expression (22), one can employ, e.g. ,

the Fermi-gas approximation to parametrize the density of core nucleons g g (2)g (2) as has been widely used in
such calculations (e.g. , in obtaining the "bare" nucleon P-odd potential [15]). We obtain from Eq. (22)

W +~ = 2Q +~pe(ogpu),

where the constant Q +~ for the proton and neutron has the following form:

3m', '
(mp)

(24)

1 ——k +2—g„kN N
A A

1 ——k +2—g kWO

A A" (25)

and the nonlocality factors W (W ~ -+ 1 for m ~ ~ oo)
are W ("~ ) = 0.11, W~(~~) = 0.69 for the pion and p
meson correspondingly. The nonlocality effect is greater
for the pion due to its smaller mass (m = 0.7fm com-
pared to p~ 1.3 fm, while m~ = 3.7 fm ). The
above value W is quite close to the result W = 0.16
for the nonlocality factor for the "bare" weak potential
obtained in a-cluster calculations [12].

To obtain the renormalization of the P-odd weak po-
tential with account for a + p exchange, one should use
W +~ instead of W in Eq. (15) in the self-consistent
determination of W. With account for that, the renor-
malization equations of the potential constants g~ (15)
take the form

z~ ~zD= 1 ——k 1 ——k I

— 24k
A ) ( A) A2 (26)

It is seen from the last term in Eq. (24) that the con-
tribution &om p-meson exchange tends to compensate
the effect of the 7t. meson, whereas the latter strongly
pushes the solution [Eq. (28)) in the direction of the pole
(D = 0). The equation D = 0 determines a curve (func-
tion of N/A) corresponding to the border of stability of
the nuclear response to the P-odd 6eld. For real nuclei
(N/A 0.5—0.6) the position of the pole corresponds to
the critical value of k = k = 0.67. The m meson alone
(with no p exchange) gives k = k 1 and produces in-
stability in the "shell-model" nucleus. The p-meson ex-
change reduces the value of k: "strong" p-meson coupling

(f2 = 4.86) gives k = 0.4 which corresponds to enhance-
ment factors g /g~o = 1.6, g~/g~o = 0.7 (for g~o = 4

I

where k = 2qpm and, in that case, the determinant D is
equal to
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and g~o 0, see, e.g. , [12]). Thus g„g even for

very small initial values ofg„. "Weak" coupling (0.4f~)
gives h 0.7 k, ("infinite" enhancement). Of course,
the accuracy of the present consideration is not sufficient
to give a definite answer in this situation (note that we
have considered the linear response only and neglected
Gne eKects like smoothing of the pion in nuclear matter
[7,16]), besides the uncertainty in rr and p coupling con-
stants in a nucleus. At least one can say that D 0
means a possibility of strongly enhanced P odd -efFects.

Interpretation of this fact, resulting mostly &om the
strong x-meson exchange contribution, is not straight-
forward: Definitely, it is related to the question of the
stability of a nucleus under the tensor vr-exchange inter-
action which has been already widely discussed in the
literature [8], in particular, in relation to the problem of
rr condensation in nuclei (see, e.g. , [7,16]). Also, a large
enhancement factor is naturally associated with the low-

lying 0 excitation (a pole in D for nonzero frequency of
the PNC field). The infiuence of the 0 resonance on the
PNC effects was discussed in Refs. [17,18]. On the other
hand, some efFects decreasing the role of the rr-exchange
interaction in a real nucleus may exist and the stability
of the nucleus may be restored (e.g. , due to a particular

shell structure). At least, our consideration proves that
a possible mechanism exists leading to the enhancement
of the nuclear P-odd weak potential which is caused by
the velocity-dependent spin-Hip component of the con-
ventional residual strong interaction with the standard
values of its constants. Thus, new reliable experimental
information on the P-odd nuclear efFects would be desir-
able. In view of the present considerations, it might be
important not only for the weak interaction theory, but
also for the study of strong interaction efFects and nuclear
structure.

To conclude, we have considered the renormalization
of the nuclear T, P-odd and P-odd potentials due to
the residual strong interaction in the Landau-Migdal
parametrization and with account for the tensor com-
ponent of the one x, p-meson exchange. The T, P-odd
potential is found to be renormalized moderately, while
the renormalization of the P-odd potential proves to be
greater and the tensor velocity-dependent interaction,
with standard values of the parameters, turns out to be
able to produce a substantial enhancement, "driving" the
solution for the self-consistent P-odd field towards the re-
gion of instability.
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