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New effective internucleon forces in microscopic n-cluster model
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We present new effective internucleon forces responsible for the microscopic a.-cluster model.
We introduce the two- and three-body operators with finite ranges, which play an essential role in
accounting for the bulk properties of nuclei in a broad range of masses including nuclear matter.
The proposed forces are suitable for analyzing the elastic a-o. scattering.

PACS number(s): 21.60.Gx, 21.30.+y, 21.65.+f, 25.55.Ci

The microscopic cluster model has played an impor-
tant role in understanding the property of light nuclei
from both bound and scattering states [1,2]. Its &ame-
work is based simultaneously on the full account of the
Pauli principle among all of the nucleons and the effec-
tive internucleon force (EINF). It is well known that the
interaction between clusters obtained &om a microscopic
point of view strongly depends upon what kind of EINF
is used. However, until now there has been no appropri-
ate EINF which can reproduce nuclear saturation prop-
erties over the wide mass number region. On the other
hand, the realistic internucleon forces based on the me-
son theory have successfully explained the properties of
(Os)-shell nuclei. We can enumerate the Reid potential
[3], the Paris potential [4], and the Bonn potential [5].
Nevertheless, we need still more steps to apply them to
multicluster structures or scattering phenomena between
nuclei, since these problems are closely concerned with
the model wave functions considered.

We have known only two kinds of EINF's which can
guarantee the saturation properties for nuclear matter,
namely the Brink-Boeker force [6] and the Skyrme-type
force [7]. The other EINF's such as the Volkov force [8],
the Hasegawa-Nagata force [9], and the Minesota force
[10] usually adopted by cluster-model study for light nu-

clei could not prevent nuclear matter from collapsing.
However, the Brink-Boeker force and the Skyrme-type
force behave totally difFerent &om each other in satisfying
the saturation property for nuclear matter. The former
has the strong Majorana mixture in the short-range force,
which does not act on the binding energy of 0, particle
but leads to normal density of nucleons in nuclear matter.
Therefore, it can reproduce the bulk properties of o. par-
ticle and nuclear matter at the same time. Nevertheless,
since this force behaves very badly for heavy nuclei be-
yond the (Os)-shell region, most nuclear physicists have
avoided using it in studying the cluster model. On the
other hand, the latter normally includes the zero-range
three-body operator to conserve the density of nucleons.
Unfortunately, this point makes it impossible to guaran-
tee an appropriate size of a particle given by electron
scattering. Besides, we have hesitated to use this force
for scattering phenomena between light nuclei because

it also includes the zero-range two-body operator, which
leads to too many hard peripheral eKects.

The EINF with two-body operators alone, which can
fulfill the saturation properties of n particles and 0 nu-
clei simultaneously, generally gives an excess of repulsion
between two a particles [ll]. In other words, no usual
EINF allows us to explain the bulk properties for both
two separated nuclei and two fused nuclei in the micro-
scopic cluster model. Therefore, we have no reasonable
EINF even for light two-nucleus system. We are a&aid
that the cluster model approaches for light nuclei up to
now have included some incorrect conclusions by using
the traditional EINF's such as Volkov force and so on.

The main aim of this paper is to propose new kinds of
EINF's responsible for the microscopic 0-cluster model
by satisfying overall saturation properties for nuclei in a
broad range of masses from a particle to nuclear matter.
In order to do this, we examine new kinds of EINF cov-
ering double closed shell nuclei up to Ca and nuclear
matter. Next we shed light on elastic n nscattering f-rom
a microscopic point of view using new EINF s to be pro-
posed. In our previous paper [12], we investigated the
properties of the EINF by focusing on the 0- 0 inter-
action. In this case, we introduced not only two-body
operators with finite ranges which can give a softness
to nucleus-nucleus interaction but also zero-range three-
body operator like the Skyrme force in order to guaran-
tee the saturation property for nuclear matter. However,
such kinds of EINF shows serious defects, namely, lack of
accordance with both the experimental size of o. particle
and the empirical incompressibility of nuclear matter. In
short, using it, we cannot remove such weak points as
the Skyrme-type force has. Therefore, it may be very
important to investigate how well the EINF including
three-body operators with finite ranges would behave in
nucleus-nucleus interaction.

We begin with the microscopic Hamiltonian as follows:
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where the first term stands for the kinetic energy oper-
ator, the second is c.m. energy one to be removed, and
the third means the Coulomb energy one. The last two
terms just corresopnd to the EINF which is divided into
the two-body and three-body operators. Here, we as-
s»me the superposition of the Gaussian functions with
the EINF, whose operators have finite ranges such as

2

written by Px(r) = NLx(ga/2r) exp( —ar ), where Lx is
the Laguerre polynomial and N the normalization factor.
The binding energy per nucleon in the nuclear matter is
estimated in terms of the Fermi momentum as well. The
calculated results are listed in Table III, where the gi-
ant monopole excitations for the double closed shell nu-
clei and the incompressibility for the nuclear matter are
also estimated. In this table, for comparison we add the
properties obtained from the Brink-Boeker (BB) and the
Skyrme 2 forces xnodified by Vautherin and Brink (SII)
[13]. Here, the giant monopole state energy is defined by

and
h~ K
M (r2) (4)

x(W(') + M(')P;, )(W(') + M(s)P; &),

where e„and r„are the strength and the range pa-(le) (k)

rameters in the k-body operators, respectively. The
P;~ means the Majorana exchange operator defined by
—P, P; . The parameters W„and M„are also the(k) (k)

strengtIxs for the Wigner and Majorana forces. Here,
since we concentrate our interest on the 4N nuclei,
the Bartrett and Heisenberg parts are omitted, having
no contribution. It is well known that the relation of
W( ) + M( should satisfy the unity. These forxnulas
can be easily understood as a natural extension from
zero-range two- and three-body operators.

As a preliminary attempt, we present two kinds of pa-
rameter sets arranged in Tables I and II. For simplicity,
the range parameters are assumed to be common for two-
and three-body operators. The longest range is set to ad-
just the one-pion exchange eKects between two nucleons.
For the efFective two-body operator, the short-range part
acts as the repulsion in the innermost region and the
middle range part bears the attractive eKect in nucleon-
nucleon force. At present, we have no criterion for the
character of the three-body operator except that it can-
not show attractive eEects, in order to guarantee the sat-
uration property for nuclear matter. Following the con-
dition mentioned above, the other parameters concerned
with the strengths and the exchange characters are cho-
sen so as to reproduce the bulk properties for double
closed shell nuclei up to Ca and nuclear matter simul-
taneously. The wave functions for double closed shell
nuclei and nuclear matter are represented by the har-
monic oscillator and the plane wave, respectively. The
total binding energies for the double closed shell nuclei
are calculated as the function with the size parameter a

with

4a2 dzE(a)
)

a= &min(E(a) )

where (r2) means the rms radius of nucleus and A is the
mass number of nucleus. We can see from this table that
the proposed EINF's nicely overcome the disadvantages
in the traditional EINF's. For instance, the size of a par-
ticle is fitted to the empirical value which has never been
achieved by the SII force. The bulk properties for 0
and Ca also behave well under the proposed EINF's,
but are hardly fitted under the BB force. The empirical
incompressibility [14] of nuclear matter is wonderfully re-
produced by the proposed EINF's as well; these are the
first appropriate EINF's which can explain the empiri-
cal incompressibility of nuclear matter. The finite-range
three-body operator not only plays an important role in
moderating the hardness of the nuclear matter, but also
gives a particle of the correct size in contrast with those
for the zero-range force.

Next, it is very important to apply the proposed
EINF's to the elastic a-a scattering. This is because
the EINF responsible for the microscopic a-cluster model
should inevitably reproduce the experimental phase
shifts for n-n scattering [15]. However, when we use the
EINF's with two-body operators alone which can satisfy
the binding energies for (Gp)-shell nuclei, the n-n inter-
action will be absolutely repulsive in contrast with the
experimental data. In Fig. 1, we show the calculated
phase shifts for the elastic a-a. scattering together with
those for the BBand SII forces. Here, we use the resonat-
ing group method when obtaining the phase shifts. The
results are compared with the experimental data up to
t = 6 for the proposed EINF's and up to I, = 4 for the BB

TABLE I. Parameter set for the EINF I proposed (Fl
force).

TABLE II. Parameter set for the EINF 2 proposed (F2
force).

(k)~n

(fm)
2.5
1.8
0.7

(&)
Vn

(MeV)
—5.00

—43.51
60.38

M'"

0.750
0.462
0.522

(3)
Vn

(MeV)
—0.31

7.73
219.00

M„"'

0.0
0.0
1.909

(k)
&n

(fm)
2.5
1.4
0.7

(2)
Vn

(MeV)
—5.00

—102.49
237.66

M"'

0.750
0.420
0.508

(3)
Vn

(MeV)
0.05

16.10
219.00

0.0
0.0

—1.167
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TABLE III. Physical quantities for double closed shell nuclei together with nuclear matter.

Eb;„(MeV)
a (fm )

F1
27.5
0.50

F2
27.0
0.50

BB
27.4
0.50

SII
26.0
0.41

Expt.
28.3
0.51

16O Eb;„(MeV)
a (fm 2)

E p (MeV)

123.0
0.35

23.3

124.0
0.35

27.7

93.0
0.31

23.2

121.4
0.32

32.7

127.6
0.34

26.4

Ca Eb)„(MeV)
a (fm ')

E ~ (MeV)

334.0
0.26

20.8

340.2
0.27

24.1

250.8
0.25

19.0

325.5
0.26

27.0

342.1
0.27

23.5

NM E/A (MeV)
ky (fm ')
K (MeV)

17.0
1.27

309

16.7
1.29

332

15.7
1.45

193

16.0
1.30

342

16.0
1.30

300

bi(rad)w
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Ec ~ (MeV) FIG. 1. The calculated phase shift of the

elastic o,-o; scattering. The upper part corre-
sponds to the results for the proposed forces,
and the lower part is those for the BB and
SII forces.
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TABLE IV. Total binding energies for C and Ne.

12C Eb;~ (MeV)
a (fm )

75.2
0.36

F2
74.6
0.36

BB
55.5
0.31

SII
87.5
0.33

Expt.
92.6
0.38

Ne Ebi~ (MeV) 153.0 153.8 119.5 143.8 158.7

and SII forces. The proposed EINF's tend to be a little
repulsive in accordance with the experimental data, and
greatly improve the description of the n-n interaction by
removing the disadvantages in the BB and SII forces.
The behavior of the relative motion strongly depends on
the property of two-body interaction. The defects in the
BB force mainly come &om the poor reproduction of the
binding energy of (OP)-shell nuclei. Although the bind-
ing energy for n particle and 60 are fairly well repro-
duced by the SII force, the extremely strong repulsion
originates in the zero-range two-body operator. There-
fore, the finite-range two-body operator plays an essential
role in explaining the behavior of the phase shifts for n-a
scattering.

We also show whether the proposed EINF's are appli-
cable to C and Ne nuclei or not. The wave function
for izC is assumed to be the SU3-(04) state correspond-
ing to the zero-distance limitation from the 3n-cluster
configuration. In fact, we should treat dynamically the
3a-cluster state, but this subject is too heavy to be car-
ried out in this preliminary work. On the other hand, the
ground state of Ne is described by a+ 0 states with
different size parameters which can agree with the exper-
imental data. We solve this problem by the resonating
group method using the same computational program as

we do in analyzing the elastic Q.-e scattering. In Table
IV, we list the total binding energies as a preliminary
result. We can see the following features: (i) The total
binding energy for Ne can be very well reproduced by
the proposed EINF's. (ii) In contrast, the bulk property
for izC can never be explained from the SU3-(04) state.
The Sa configuration may not be expected to overcome
this defect as well, because it does not make the SU3-(04)
configuration change drastically. This problem remains
unsolved for the present.

We conclude that the proposed EINF's definitely re-
move the disadvantages of the BB and SII force. In par-
ticular, the three-body operator with finite ranges plays
an essential role in accounting for the bulk properties for
nuclei in a broad range of masses as well as for nuclear
matter. If we introduce the Bartrett and the Heisenberg
terms in the proposed EINF's, the experimental data for
the deuteron, sH, and sHe will be fitted as well.

The author thanks not only T. Matsuse and A. Arima
for useful discussions on the early stage of this work but
also D. Baye, M. Kruglanski, P. Hodgson, and R. Tama-
gaki for their fruitful comments on both light nuclei and
nuclear matter.
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