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+CD Fokker-Planck equations with color difFusion
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Pokker-Planck equations are derived for +CD Wigner distributions taking into account quantum
color dynamics. These equations show that the anomalously large color difFusion coefBcient in a
high T quark-gluon plasma leads to strong damping of collective color modes.

PACS number(s): 25.75.+r, 12.38.Mh, 24.85.+p

The development of @CD transport theory [1—8] is re-
quired to link predicted properties of quark-gluon plas-
mas (QGP) [9] with experimental observables [10] &om
collisions of ultrarelativistic (~s ) 0.1 ATeV) nuclei.
Due to copious minijet production [11], the QGP pro-
duced in such collisions is initially out of local equilib-
rium, and the evolution must be calculated with an ap-
proach that takes into account the finite relaxation times.
One approach, based on chromoviscous-hydrodynamics
[2,12], describes the bulk dynamics in terms of the equa-
tion of state and transport coefEcients such as the color
and thermal conductivity and shear and bulk viscosity.
However, a microscopic kinetic theory is required to es-
timate those coefBcients. In this report, we derive a new
set of Fokker-Planck type equations for /CD which de-
scribe the diffusion in both color and momentum space.
Our approach is based on the kinetic theory formulation
developed in [7] taking into account the full non-Abelian
structure of the collision terms. We calculate not only the
momentum relaxation time [13] that controls the friction
and diffusion coefBcients in momentum space but also
the color relaxation time that controls the color diffusion
coefficient introduced in [8]. We show that the same (di-
vergent) color difFusion coefficient arises in both quantum
and classical treatments of color dynamics. That diver-
gence is caused by unscreened long range color magnetic
Buctuations and is regulated by introducing a nonpertur-
bative magnetic mass [14]. The kinetic equations derived
here imply that long wavelength collective color modes in
a QGP are more strongly damped by collisions (by a fac-
tor 1/o.,) than their Abelian counterparts. Non-Abelian
plasmas are therefore also poor (color) conductors. The
@CD Fokker-Planck equations derived here show that,
unlike in electromagnetic plasmas, the divergent damp-
ing rates of hard partons computed diagrammatically (as
in [14]) have considerable physical impact on the collec-
tive properties of QGP.

In kinetic theory, nonequilibrium physical systems are
described by means of one-particle phase space distribu-
tion functions, which are statistical averages of appro-
priate Wigner operators. The gauge covariant quark,
Q+(p, x), and antiquark, Q(p, x) = Q (—p, x), Wigner
operators for SU(N) are N x N matrices in color
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space. They are related to the gauge covariant quark
Wigner operator [1,3] in the Heisenberg representation
via Q+ (p, z) =8(kpo) b(p )W(p, x), where

4

W(p, z) = e '"'"g(z)e ~ 3 e s it(z), (1)
(2m) 4

where Q(z) is the N component quark field operator,
and D„= f9„+xgA„, where A„= A„t is the gluon
field. Note that t are the (N2 —1) x (N2 —1) hermitian
generators of SU(N) in fundamental representation, and
the field tensor is F„„=[D„,D„]/(ig). The covariant

gluon Wigner operator G(p, z) is an (N —1) x (N —1)
matrix in color space and is defined similarly [4,7].

Near equilibrium at high temperature T &) 200 MeV,
the typical momentum transfers, k gT, in the plasma
are perturbatively small compared to the average mo-
menta, p 3T. In that case, spin efFects can be ne-
glected in the first approximation, and the evolution can
be treated in the eikonal approximation assuming ap-
proximate straight line trajectories. This physical picture
forms the physical basis behind the hard thermal loop ap-
proximation [15] in high temperature pQCD. With spin
effects neglected, the Wigner operator obeys the follow-

ing dynamical equations in the semiclassical limit [3]:

p"D„Q+ (p, x) + gp" 8„" jF„„,Q+ (p, z—)}= 0,

where (, ) denotes the anticomxnutator. A sixnilar equa-
tion holds for the gluon Wigner operator with generators
t replaced by those in the adjoint representation [3,4,7].
The quark and gluon phase space densities are defined
as quantum-statistical averages of the corresponding op-
erators: Q+(p, z) = (Q+(p, z)), G(p, x) = (G(p, z)). In
equilibrium,

where u~(z) is the local four velocity of the plasma at
local temperature T(x). For small deviations &om these
color neutral equilibrium distributions, we write

Q,+, =Q+b;. +bQ,+, , G t, =Gqh i, +&G b . (4)
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The nonequilibri»m deviations obey the linearized ki-
netic equations derived in Ref. [7]:

p"B„b,Q+ + gp"BI"bF„„Q,+q ——ACI+(p, z) + EC2+(p, z),
(5)

I

where the linearized collision term on the right-hand side
has been decomposed into two parts. The first, which as
we show below describes diffusion in momentum space,
is given by

al
bCI+{p z) = — dp dk(kBp)

~
p~D~ p ~

h(pk)h(p k)(s{po)kBp —e(p'0)kBp ) ~

JV q(p)h (t, (t, bQ+(p z)}}

+-»'"'(p', z)(t, (t', Q.,(p) }}l
(6)

The second, which has no Abelian counterpart and, as shown below, describes difFusion in color space, is given by

+-»'"(p' z)s(po)[t (t' Q.', (p)}l I
~ (7)

In these linearized collision terms quantum statistics are
neglected but dynamical polarization efFects are included.
In our notation s(po) = 8(pp) —8(—pp), and the effective
equilibriu~ density is JV,~(p) = 2(Q, + Q, ) + NG, ~.
This density controls the high temperature polarization
tensor [2,5,6)

jlk cIBP vBEI
&" (&) = —g'f 4 ' ' ' &~(n)pk+ iso

= IIL,Q„„+IIT P„„, (8)

b,CI+(p, z) = (t, (t, ( 8„"[a„b,—Q+(p, z)]
+ Bp [b„„s(p(j)8„"hQ+(p,z)])}}+ hci, (10)

where (, (,}}denotes a double anticommutator, and the
momentum diffusion tensor and &iction force vector are
given by

dp'B~ p p' .q p'

Gg — dp B~v py p po p~ eq p

where the longitudinal and transverse projectors are

Q~ —upu /u aIid Pggp = gag~
—Qp~) and gp

-2

g„„—k„k„/k2 with u„= g„„u". The longitudinal
and transverse polarization functions are related to the
gluon self-energy II""(k) through IIL, = II""Q„„and
IIT = II""P„„/2 As noted. in Ref. [2], the polariza-
tion tensor derived from kinetic theory coincides exactly
with the gauge invariant high temperature one-loop re-
sult obtained diagrammatically in Ref. [15,16]. The po-
larization tensor in turn determines the medium modified
(retarded) gluon propagator that appears in the kernel of
the above collision integrals:

Q„„P„„k„k„
k2 —II k2 —II ~ k4

The kernel is given by

B„„=—' dkk„k„
i p Dap(k)p'~

i h(pk)b(p'k) . (12)

The tensorial structure of b„„ is in general complicated,
but the dominant term which leads to a (Rayleigh) Fic-
tion coefficient proportional to velocity, has the structure

b„„=b[p"u" + p"u" —g""(p u)] .

a„= b„„u"/T = bp—„/T— (14)

Neglecting quantum statistics, the friction force and dif-
fusion tensor are related by the analog of the Einstein
relation

where ( is a gauge paraxneter. It is ixnportant to note that
the collision terms are gauge independent because the
eikonal mass shell conservation factors, h(pk) and h(p'k),
insures that the convolution of eikonal vertex factors, p"
and p'", with the gauge fixing term vanishes.

The nonequilibrium color deviations in the collision
term are defined as»& & = »ab +»~ and»~ b~ = » b —»~ with» b = Sp[t tb(AQ+ +
b,Q )] + Tr(T Tbb, G). The trace over color indices in
the fundamental representation is denoted by Sp and the
one in adjoint representation by Tr. [Sp(t tb) = h /2,
Tr{TaTb) Nabab {Ta)ba &yaba]

We now rewrite the first collision term in Fokker-
Planck form as

We now relate b = —T(au)/(pu) to the energy loss per
xxnit length derived in [17]. Note first that in the high T
limit, s(po)8"JV,q(p) = —(u"/T)JV, ~(p), and thus from
Eq. (8) it follows that

7l tC
11„„(k)= g "

dp'p'„p'„h{p'k)nr„{p') .

Noting next the identity

f dk h(pk) Im[pD(k)p]

dkbpk pD k ImIIk D' kp, 16
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we find that

4b 1 dE
T C2 dx

n—,T log (k*/ma ) (17)

where the color electric screening mass is m~
= gTQ(1+ Ny/6) and k' « 3T is a cutoff parameter
separating the soft and hard momentum transfer scales.
As discussed in [18], the above formula for energy loss
is accurate only for low momentum transfers. Physically,
this is also clear from our kinetic theory derivation which
utilized the eikonal approximation. In practice, however,
setting k* = 3T is adequate to logarithmic accuracy. The
effects of hard collisions require of course an extension be-
yond the Fokker-Planck approximation. The consistency
of the relation between b and dE/dx can be verified by
multiplying Eqs. (5,10) in the plasma rest frame by po,
taking the trace, and integrating over d z. We can also
relate b to the gluon momentum relaxation time defined
via

dk ku= —g 2~ —Im [p"D„(k)p ] b(pk)(2')4 pu

1/t = (1/E) dE/dx = (0.7/T) C~ (4b/T)
= 4n, T log(1/n, ) (18)

The double commutator corresponds to the second-order
term in the rotation of b, Q in color space by random
angles, 0, with (8 ) = 0 but (0 0 ) oc b b Hence, the.

which is close to the numerical result obtained in Ref.

The first term in Eq. (10) reduces in the Abelian case to
the familiar Fokker-Planck term for @EDplasmas [19,20].
The correction to the Fokker-Planck terms is given by

b i = ~" dp'B (» p') [s(po)~" s(po)~"']1 2 P

&A'"'(p' )(t (t'Q.', (p))) (»)
As in Abelian plasmas [20], the correction term can be
generally neglected because it involves an integral over
the small nonequilibrium deviations instead of the equi-
librium density. The smallness of the correction term is
caused [20] by constraints on the nonequilibrium devia-
tions imposed by conservation laws of particle number,
color current, and energy-momentum that make the first
several moments of NI sl(p') vanish.

The new non-Abelian collision term, Eq. (7), can also
be expressed in an analogous Fokker-Planck form

( *)=—"[t [ Q ( )]]( )+b ( )

first term in (20) corresponds to diffusion in color space.
The color diffusion tensor is a measure of the mean square
fluctuations of the rotation angles in color space and is
diagonal, d = d b b, with the color diffusion coefFicient,
d, given by

, = 2n, dp'dk
~

p"D„p'"
i

b(pk)b(p'k)/V, q(p')

—2' g T dk b(pk

(2vr) 4 ku
Im [p"D„(k)p"

]

= (pu)n, T log(mE/mM) .

bc~ = —o., dp'dk p"D„„p' b pk p'k.»!'j(p', -)s(p. ) lt. , (t', Q.,(.))] (22)

This correction term can be neglected in the first approx-
imation for reasons similar to the neglect of bc+ in Eq.1
(19). The color trace of bc2 vanishes, and the first color
moment is small because of the constraint of color charge
conservation.

Proceeding analogously with the kinetic equation for
gluons [7], we obtain finally the @CD Fokker-Planck
equations

Note that we used Eqs. (15,16) again to express d, in a
form that is equivalent to the one derived in Ref. [8] start-
ing &om classical color dynamics [2,21]. As emphasized
in [8] perturbative dynamic screening in a QGP is not
enough to make the color diffusion coeKcient converge.
The momentum diffusion coefFicient converges because
of an extra two powers of ~ = ku appearing in the in-
tegral. The divergence is due to long range unscreened
color magnetic interactions.

In order to regulate that in&ared divergence, we fol-
low Ref. [14] and introduce formally a nonperturba-
tive color magnetic screening mass, mM (g T), via

Im(k —Ilz) = —@ma/[(k + mM) + (@ma) ] where

p = ~/~ k ~. Note that d, has dimensions of energy squared
unlike that defined in Ref. [8] because we treat mass-
less partons here. The color diffusion time, defined in
this case by t, = (pu)/(Nd, ) is, however, identical! The
coincidence of the quantum and classical color diffusion
coefFicient is one of the surprising results of the present
derivation. We emphasize that the derivation here is also
more general than in [8] because we treat both momen-
tum space and quantum color dynamics simultaneously.
The correction to the color diffusion term is given by

p"O„AQ+ gp"8„"AF„„tQ, = —d, [t, [t, b,Q]]+ 8„"(( a„+b„„O")(t,(t, AQ—)))

p~B„bQ —gp~8 AF t Q q
= —d [t, [t AQ]]+8"(( a~+ b~ 8 )(t, (t—, AQ)))

p+c9~ AG + gp+0" AF„T G,q
—— d~ [T, [T,b,G]] + 0—~ ((—az + b~ 8„)(T, (T, b.G) ))

8"AF„=Aj = g dpp„(Sp(t (EQ —AQ)) + Tr(T AG)) (23)
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This system describes the transport of small devia-
tions in a color neutral quark-gluon plasma in terms of
the transport coefficients, d„a", and b"", which are con-
trolled by the two time scales, t„and t computed above.

One of the interesting consequences of these equations
is that they show that the damping of collective modes
in a non-Abelian plasma is controlled by the (perturba-
tively divergent) parton damping rates. This can be seen
by taking the color octet moments of the above equa-
tions. In that case the color diffusion terms transform
into relaxation terms for the color octet deviations, e.g. ,
p8 q = —(pu)Q /t, + . Long wavelength collective
color modes are therefore perturbatively over-damped.
A finite damping rate requires going beyond the hard
thermal loop approximation and introducing nonpertur-
bative (quantal) effects such as the color magnetic mass
or a self-consistent approach as discussed in [14]. The
nonperturbative damping rate, p O(g2 log(1/g)T), of
color plasmons is only O(g log(1/g)) times smaller than

their natural frequencies, uzi O(gT). This is a remark-
able difference with respect to Abelian plasmas, where
the divergent damping rates never enter at the level of
semiclassical kinetic equations and collisional damping
is controlled instead by the perturbatively smaller mo-
mentum relaxation rate, I/t~ O(g log(1/g)). Fi-
nally we note that observable consequences of the non-
Abelian Fokker-Planck transport in nuclear collisions are
expected through the color conductive coupling between
minijets and beam jets [12] and the spectrum of soft in-
duced gluon radiation associated with jet quenching [22].
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