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Nucleon solution of the Faddeev equation in the Nambu —Jona-Lasinio model

Suzhou Huang
Department of Physics, FM 15,-University of Washington, Seattle, Washington 98195

John Tjon
Institute for Theoretical Physics, University of Utrecht, 8508 TA Utrecht, The Netherlands

(Received 25 August 1993)

Given the phenomenological success of the Nambu —Jona-Lasinio model in describing the meson
physics in the low-energy limit, it is tempting to 6nd the fully relativistically structured nucleon
solution in the saxne model under the similar approximation employed in the mesonic sector. To
achieve this goal we need to solve a relativistic Faddeev equation. The factorizability of the two-
body T matrix reduces the three-body Faddeev equation to a tractable two-body Bethe-Salpeter
equation. The reduced equation is then solved numerically. Our result indicates that the nucleon
consists of three loosely bound constituent quarks.

PACS number(s): 12.39.Fe, 24.85.+p, 11.30.Rd

I. INTRODUCTION

One of the most important feature of /CD is the chiral
symmetry and its dynamical breaking, which is expected
to dictate the low-energy hadronic physics. There ex-
ists work, such as the /CD sum rule [1], the instanton
liquid model [2], and an explicit lattice /CD simulation
via cooling technique [3], directly or indirectly confirming
this expectation. The Lagrangian introduced by Nambu
and Jona-Lasinio (NJL) [4] a long time ago conveniently
mimics such an essential aspect of /CD in the low-energy
limit. Models based on the NJL type of Lagrangians have
been demonstrated to be very successful in describing the
low-energy mesonic physics [5]. On the other hand, due
to technical reasons, these models are much less effective
in describing low-energy physics involving baryons. It is
very often that extra assumptions beyond these models
have to be used in order to make concrete predictions in
the baryonic sector.

While there is very little doubt that the NJL type of
models could support bound baryonic states, the direct
approach in solving a three-body problem has only been
attempted recently [6] with approximations apparently
quite different from that of employed in the mesonic sec-
tor. An important point is that approximations in the
baryonic sector have to be consistent with chiral sym-
metry, for example, the nucleon solution should approxi-
mately satisfy the Goldberger- Treiman relation [7]. Oth-
erwise the very essence of the NJL model, the chiral sym-
metry, is ruined by the ad hoc approximations. Other
indirect attempts in finding the nucleon solution in the
NJL-like models, such as the nontopological soliton ap-
proach [8], the bosonization approach [9], and undoubt-
edly others can be found in the literature.

In this paper we undertake the task of finding a nu-
cleonlike solution in the NJL type of models. First we
derive the three-body Faddeev equation in the valence
constituent quark approximation by ignoring the three-
body irreducible graphs. Due to the heaviness of the

constituent quark, this approximation is expected to be
good at low energies, as shown in the mesonic sector. By
observing that the two-body diquark T matrix has a sep-
arable form, the Faddeev equation can be reduced to an
effective two-body Bethe-Salpeter equation with an en-

ergy dependent interaction. Then the reduced problem is
solved numerically, without any further approximations.
Although we cannot explicitly show that our solution re-
spects the exact chiral symmetry, in contrast with the
meson solutions in the Hartree-Fock approximation, we
believe that our work is a step forward in the right direc-
tion. As long as we can. find a weakly bound nucleonlike
state of three constituent quarks, the chiral symmetry
should be well protected, since the chiral symmetry is
exact at the constituent quark level [5].

Due to the lack of confinement in the NJL type of mod-
els certain caution has to be observed when one tries to
use these models to approximate hadronic states, espe-
cially those that are relatively close to the constituent
quark threshold. On the other hand, it is also important
to realize that the constituent quark singularities (in the
sense of dispersion relations) in color singlet channels in
the NJL type of models should not always be dismissed
lightly. When one only wants to address the static prop-
erties of hadrons such as masses and charge radii and so
on, not those related to decays, the relevance of the con-
stituent quark singularity should be judged by dynamical
calculations. A good example is the heavy quarkonium
structure such as the bb system. As shown explicitly by
Jaffe [10], although the existence of confinement indeed
turns all quark singularities into hadron singularities, the
structure of heavy quarkonium systems is essentially de-
termined by the nonconfining Coulomb potential, as one
would intuitively expect. It is in this spirit that we try to
approximate the nucleon state in terms of nonconfining
quarks under the assumption that the chiral symmetry
breaking is the dominating force.

This paper is organized as follows. In Sec. II we

first introduce the model we explicitly consider and then
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brieQy review the two-body sector to Gx parameters in
the model. In Sec. III the derivation of the three-body
Faddeev equation and its reduction to the e8'ective two-
body equation are presented. The numerical technique
involved in solving the reduced fully relativistic Bethe-
Salpeter equation, based on the work of Rupp and Tjon
[11], is recapitulated and then applied to our case in
Sec. IV. A summary and some outlook follows in Sec. V.

FIG. 1. Feynman graphs for Tqq in pseudoscalar channel.

II. TWO-BODY SECTOR

The Lagrangian we consider is the two Bavored
Nambu —Jona-Lasinio model given by

~ = 4 ~.~"0+Gi[(A)'+ (0 ~. .@)']
—G2 [@&„(A~/2)vp]', (2.1)

A. Meson channel

where g is the quark field, 7 (a = 1, 2, 3) and Ag
(A = 1, 2, . . . , 8) are the generators of the fiavor SUy(2)
and color SU, (3) groups, respectively. Small current
quark masses are ignored for simplicity. Since the cou-
pling constants Gq and G2 have negative mass dimen-
sion, this model is not renormalizable. An appropriate
ultraviolet cutoK procedure has to be speci6ed in order
to make the model well defined. In this work we insert
a form factor g(k) = g( —k), whose functional form will
be eventually taken to be a four-momentum cutoK A in
Euclidean space for convenience, at every fermion vertex
in the loop integrals.

The justification of using Eq. (2.1) to model the low-

energy physics of the strong interaction and its phe-
nomenological success in mesonic channels were well
studied in the literature. A recent review can be found
in Ref. [5]. Although our primary goal is to find three-
body baryonic solutions in this model, it is adequate to
recapitulate the essential features of this model in the
meson sector, which is used to Gx all the parameters but
the one in the model. Then the two-body T matrix in
the scalar-isoscalar diquark channel, which consists of an
essential component of the three-body Faddeev equation,
will be derived.

a2G2)(gg)/(N, Ny). For N, = 3 and Ny = 2, ai ——13,
and a2 ——8/3.

As a consequence of the chiral symmetry breaking the
pion emerges as the massless Goldstone boson, which
manifests itself explicitly as the massless pole in the
quark-antiquark two-body Tqq matrix in pseudoscalar
channel. If again only the ferrnion bubble chain graphs
are retained or in the RPA approximation, Tqq given by
Fig. 1 can be readily calculated. The residue of Tqq ma-
trix at this pole, I', has the form

I" = g.,—,[a&8r giq, ],

where g~qq is the pion-quark-antiquark coupling con-
stant. The pion decay constant, f, is defined through
the axial-vector current matrix element,

if„p.6:-=(0 A. Ya
—.

Q x.(y)).2
(2 4)

Using the chiral Ward identity, or the Goldberger-
Treiman relation at the quark level, f g qq

——m, one
can easily 6nd

d k ig(k)
(2m)4 [k2 —m2]2' (2.5)

In arriving at the above result the on-shell condition p2 =
m = 0 has been used.

There are three parameters in the model, two couplings
Gi, and G2 and the cutoff A. By equating f and m or
(Qg) to the phenomenological values through Eqs. (2.2)
and (2.5) we can fix two of them, which we pick to be A
and G = aqGq + a2G2. This more or less 6xes the theory
in the mesonic sector. The last parameter il = Gi/G2 is
left free to vary.

d4k 4g(k)1 = i(aiGi + a2G2) 2' ~ k2 —m" (2.2)

The most important feature that makes the model re-
semble @CD at low-energy domain is that the NJL model
and /CD share the same chiral symmetry and its dynam-
ical breaking. The manifestation of this phenomenon in
the NJL model is that the massless quarks acquire dy-
namical masses through the following self-consistent gap
equation, when only the fermion bubble chain graphs are
included, or in the Hartree-Fock approximation,

B. Diquark channel

If we use the same fermion bubble chain approximation
in the quark-quark sector, we can easily calculate the
corresponding T matrix. In the color 3 scalar-isoscalar
channel the T matrix has the structure, when ignoring
the mixing with other channels (for example, the color 3
vector-isoscalar channel)

T;,'" (p) = iR(p) [A„'' C3 ~, g Cq, ]'[A„'' CI ~, g Cq, ]',
(2.6)

where m is the constituent quark mass, which is re-
lated to the fermion condensate (g@) by m = —(aiGi +

where A& = (A& —A&)/2, C—:ipop2 is the charge
conjugation matrix, and a and b label all the color, Ha-
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The phenomenological relevance of the diquark will not
be pursued here.

III. THREE-BODY SECTOR

FIG. 2. Feynman graphs for T~q in scalar-isoscalar diquark
channel.

vor, and Dirac indices (see Fig. 2). The scalar function
R(p) can be obtained straightforwardly by summing the
fermion bubble chain, yielding R(p) = G'/[1 —G'J(p)]
with G' = (bqGq + b2G2)/4 and

a4I
J(p) = 4i g (k) Tr[CpsS~(k + p/2)Cp5

x SF( k+ p/—2)],

Given the fundamental four-fermion vertex by the La-
grangian and the quark-quark two-body Tqq matrix, and
ignoring the three-body irreducible graphs, the three-
body T matrix can be solved from the Faddeev equa-
tion by iterating the fundamental vertex and the two-
body Tqq matrix. Throwing away the three-body irre-
ducible graphs is in some sense equivalent to ignoring
the nonvalence constituent quark loops in the iteration
process. Due to the heavyness of the constituent quark
mass (300—400 MeV) this approximation is justified in
the low-energy region. Of course, one should realize that
we do not invoke more approximations here. Essentially
the same kind of approximation was used in the mesonic
and diquark cases.

where Tr denotes the trace in Dirac space and SF(k)
and S&+(k) are the constituent quark propagator and its
transpose (in Dirac space), respectively. Furthermore we

have bq
——4 and b2 ——8/3.

Whether there exists diquark bound states in this
model depends on whether R(p) develops poles in the
timelike region. As shown in [12] it is possible by varying

g to And a bound diquark state in this channel. It should
be emphasized that the existence of such a diquark bound
state is not a necessary condition for the existence of a
three-quark bound state, though it might be useful to uti-
lize the diquark concept phenomenologically to explain
certain scaling violations in lepton-nucleon experiments.
In this paper the diquark state is merely an intermediate
device in setting up the three-body Faddeev equation.

A. Faddeev equation

Since we are only interested at the moment in the
three-body bound state, we only need to consider the
homogeneous Faddeev equation. If the full three-body
amplitude r~'" (with f and d being the external flavor
and Dirac indices) is decomposed as a sum of three par-
tial amplitudes r, (i = 1, 2, 3), with

r~" -=....,.,~P'(C&, )""b~ ~r„"„(p„p„p,), (3.1)

and similarly for I'2 and I'3 by cyclically permuting
(1,2, 3), then these partial amplitudes satisfy the follow-

ing integral equation,

4+,", {&', gp ,Hc&.s, Ip-, I'c&.s Ip ,)]r'~'II,„,„'„I)'' (3.2)

The notation of the above equation is depicted in Fig. 3.
The factor of 2 in Eq. (3.2) arises from the color sum

„,ep„„——28 p. Although formally similar to the non-
relativistic Faddeev equation, Eq. (3.2) is exact within
the approximation mentioned above. An analogous equa-
tion with scalar particles was considered by Rupp and
Tjon in a different context [11]. Since we explicitly in-
cluded the color, Bavor, and Dirac structures in the de6-
nition of the two-body Tqq matrix and three-body ampli-

I

tudes I ~'z 3, the recoupling-coeKcient matrix has already
7 )

been automatically taken into account in Eq. (3.2).

B. Reduction to an effective Bethe-Salpeter equation

If the two-body Tqq matrix involved has a general form,
it would be a formidable task to find the solution for

(3) ' — 2 FIG. 3. Faddeev equation for the nucleon.
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r,'„,(p„p„p,) = e..(p, )g(p, p-, )R(p, + p, ), (3.3)(z)

and similarly for I ( ' ), with 4' satisfying

4

@(ps) 4~ 4~(pl p2)R(p2 + ps)g(p2 ps)

x [C&sS~(p2)C&sS~(p', )]4(p', ), (3.4)

as a matrix equation in Dirac space. When deriving the
above equation the quarks are treated as identical parti-
cles.

Diagrammatically, Eq. (3.4) can be represented by
Fig. 4, which looks like a boson (with propagator R) cou-
pling to a third quark to form a three-body bound state.
However, this ought to be distinguished &om identify-
ing the "boson" as the diquark bound state. The reduc-
tion of the three-body Eq. (3.2) to the effective two-body
Eq. (3.4) does not depend on whether the diquark chan-
nel has a pole, but rather on the separatability of Tqq
matrix.

Introducing the equal-mass Jacobi momentum vari-
ables q and q', P, P

3 1 —
3

Eq. (3.2). The crucial observation is that the Tqq matrix
has a factorized form and hence we are only dealing with
the so-called separable situation. The separability of the
two-body interaction leads to a reduction of the three-
body problem to an effective Bethe-Salpeter equation. As
a matter of fact, this reduction has already been hinted
by the explicit form of Eq. (3.2). More concretely, the
three-body amplitudes can be written as

The Dirac structure of the kernel is contained in the op-
erator

K = [Cps(p p2+ m)Cps(pp', + m)]. (3.9)

Using well-known properties of the charge conjugation
operator C, this simplifies to

K = (pp2 + m) (pp', + m). (3.10)

In view of Eqs. (3.5) and (3.6) the various momenta
present in Eq. (3.7) can be expressed in terms of the
Jacobi variables q, q', and total momentum P.

C. Decomposition of the reduced amplitudes

To see the Dirac structure more clearly let us reduce
the operator K into the Pauli form. Using the p-spin
notation of Ref. [13] for the upper and lower components
of four-spinors, we get for the matrix elements K(p, p')
(with p, p' = +),

K(+ +) = (p2o ™)(pI.o ™)~ ' pe~ px
K(+ —) = —(p20 + )& pi —( —pro) & ' p 2~

(3.11)
K(- +) = (plo+m)~'pi (m- p'o)~ 6
K( , —) = ( p—'

o + m) (——p' + m) —cr P' cr . p' .

The simplest approximation which can be made is to ne-
glect the lower components, i.e., the kernel is replaced by
K(+, +). The resulting eigenvalue equation becomes in
this case

where the total momentum P is given by
d q'V(q, q'; P)R(sP + q')[(p2o + m)(pro + m)

P = Pl + I2 + I3 Py +I2 + J 3) (3.6)
p 2~ p 1]X(q') = &X(q) (3 12)

we find that the reduced Bethe-Salpeter equation can be
written as

4'(P, q) = d q'V (q, q'; P)R( s P + q') K4(P, q'),

where a physical bound-state solution corresponds to the
eigenvalue A = 1. Assuming we are in the overall three-
quark c.m. system P = (~s, o), we see that there are
two classes of solutions to Eq. (3.12):

(3.7)

where we have defined an energy dependent interaction

» = C'~(qo Iql)

x~ =~ q C'2(qo lql).

(3.13)

2—P+q3 3 P+q
2 3

P-q'l

V(, p) u()~i —p') q(p' —»)
(p',2 —m2) (p22 —m2)

(3.8)
These classes are not coupled to each other in the integral
equations. This is due to parity and angular momentum
conservation. g~ is an s-wave solution with (l = O, s =
1/2,j = 1/2) and y2 is a p-wave (I = 1, s = 1/2,j
1/2). In view of the simple form of the g's the angular
integration in Eq. (3.12) can be explicitly carried out. As
a result, we obtain a two-dimensional integral equation
of the form

3 P-q
'P(P/3-q) 3 P-q

2
3 P+q'

'P (P/3-q')
OO OO

y„(q) = dqo q' dq'V„(q, q', P)
2Ã —~ 0

FIG. 4. Reduced effective Bethe-Salpeter equation for the
nucleon. where q = lql and

xR(sP+ q')y„(q'), (3.14)
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~ (
. P)

'
d g(Pi —P2)S(P2 —»)

(p2 —m )(p', —m )

x Tr, [O„K(+,+)] (3.15)

~~ q 42(qo, q) )
(3.16)

with x = cos(0~~ ) and Tr2 is the trace to be taken in
Pauli space. Furthermore, the operator 0 is given by
1/2 and (a' q')/(2q ) for n = 1 and 2, respectively.

This analysis can be extended to the full equation.
From Eq. (3.12) we see that the Pauli spin dependence
in 4 can be either the unit operator or cr q. In view of
parity conservation there are also two classes of solutions,
which are given by four spinors of the form

Miv (' Miv ) q q'
qo+ 2

(, MNb—qo! qo
—m+ !

—q"
3 )

Miv &

!) q2

K2g ——q' —m—

K22 ——q +I2

( M~)» = —qoqo+ qo! m+
)

( Miv)+ m+
)

( MNl „r,K,2= —
! qo —2 !q' +!qo+m—

)
l(q q'),

(3.22)

and

(~.q 4s(qo, q) &

44(qo q)
(3.17)

The vertex functions 4q and 42 are again not coupled to
each other. With this form for 4' a partial wave decom-
posed set of coupled integral equations can be derived.
Inserting Eq. (3.16) in Eq. (3.7) we get

In a similar way the coupled set of equations can be de-
rived for @2. It should be noted that possible solutions of
this type correspond to p-wave-like states and as a result
are expected not to be the ground state of the three-quark
system due to the centrifugal term. Since we are inter-
ested in this paper in the nucleon, it is natural to confine
ourselves to the solutions of the 8-wave type, given by

OO OO

0-(q) =, ) de q"dq'&. (q, q';P)

xR(sP+ q')P (q') (3.18)

with n = 1, 2 and

' „~(pi -p')~(p' -»)

(3.19)

The explicit expression for the matrix K„can be de-
termined by noting that

(I + po 1+ Zo

2 2 )
(3.2O)

K, = —,'Tr[KK (q')],

Tr [p qKr (q')]
Tr [p qr 2 (q)]

(3.21)

where ri ——0, K2 ——p q 0 . Equation (3.21) can be
evaluated in a straightforward way. We find

where m is a four-spinor with every component equal to 1.
The operator (I+go)/2 is in the three-quark c m system. .
nothing else but the projection operator 0 = (MN +
pP)/(2M~) With this we . can now calculate K„by
projecting out the Dirac form on 0 and p g. In so doing
we get for the Dirac part of the kernel

IV. CALCULATIONS

Following Ref. [11]the resulting integral equations can
be studied by performing a Wick rotation of the qo and

qo variables to the complex plane. Assuming that the
diquark system supports a bound state at Mqq, we find
that at the threshold point of quark-diquark scattering a
pinching singularity can occur in the kernel of Eq. (3.18)
at qo ——qo ——s(2m —M~~). It can readily be verified
that in the triquark bound-state region, corresponding
to ~s ( mz + Mzz, the qo and qo variables can be ro-
tated to a path going through the point qo and parallel
to the imaginary axis without encountering any singu-
larities in the kernel. In so doing we implicitly assume
that eventual singularities in the form factors g(q) do not
cross the imaginary qo axis. Furthermore the arguments
of the form factors are approximated by neglecting the
qo dependence. The resulting Euclidean form of the in-

tegral equation is regular in the bound-state region and
as a result it can in principle be solved by standard dis-
cretization procedures. Because of the actual size of the
resulting matrix equations we have adopted the method
described in Ref. [11]. The perturbation series is deter-
mined by iterating the equations, while the occurring
two-dimensional integrals are evaluated using standard
Gaussian quadratures. From this series the energy of
the bound state is determined using the ratio method
of Mal8iet and Tjon [14]. It should noted that, as a
by-product, the corresponding wave function can also be
found in this way.

There are several parameters in the model: the cutoff
A and the coupling constants Gq and G2. The overall
mass scale can be set by the choice of the the cutoff mass
A. There are two constraints we would like to satisfy.
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TABLE I. Diquark masses needed to get a nucleon solution
at M~ ——939 Mev in various approximations.

m (MeV) A (MeV) Mzz (MeV) Mqq (MeV) Mqq (MeV)
375 750 579.0 570.9 576.8
400 739 572.8 554.7 564.7
450 728 577.0 531.5 547.8

Static limit.
One channel defined by Eq. (3.12).

'Two channel defined by Eq. (3.18).

TABLE II~ Comparison of predictions of the nucleon mass
in various approximations. The value o

~ ~ M is 6xed so that
M = 939 MeV in the full two-channel calculation.N =
m (MeV) A (MeV) M~~ (MeV) Miv (MeV) Miv (MeV)

375 750 576.8 936.4 945.3
400 739 564.7 928.2 950..0
450 728 547.3 892.7 957.9

Static limit.
One channel defined by Eq. (3.12).

From the pion decay constant f = 93 MeV, we can
determine accor ingd t '

ording to Eq. (2.5) the constituent quark
= 375mass m. a ing aT k'ng a value of A = 750 MeV we find m =

MeV. Decreasing A, for instance, to 739 Me, t e quar
mass increases to m = 400 MeV. Secondly, &om the self-
consistent mass gap equation, the value of G = 13Gi +
8/3G2 is fixed. As a consequence the only free parameter

h tio t
&
G which can be used as the parameter

to determine the diquark mass. In Fig. 5 t e iquar
mass edependence on this ratio is shown.

fixed weOnce the parameters of the model have been xe
a stud the three-quark bound state. In Table I we

1' the diquark masses needed to get a nucleon solsolution
at MN ——939 MeV in three approximations, nonrelativis-
tic or static imi jt 1 't~ K ~ 4m2 one channel defined by)

Eq. (3.12) and two-channel defined by Eq. (3.18). As
one can see, a stable nucleon solution always requires

threshold. The binding of the three-quark system clear y
depends on the choice of the diquark energy. In Fig. 6
are shown for two cases of A the results of the calculated
mass of the three-quark ground state as a function of
the diquark mass (solid line). Also plotted are t e re-
sults when we only keep the s-wave components of the
thr - k wave function (dot-dash line) and the statict ee-quar w
l' it of K + 4m2 (dash line). From this we see a
at lower diquark masses the static limit predic s a su-
stantially deeper binding than the full two-channel result
and hence it can be an unreliable approxiniation.

To have a feeling on the quality of the static and one
channel approximations we list in TabTable II the nucleon

900 . .

1000

800-

600 -.- rnq=375MeV-

Q 400
200

~ |000

I

300
I . I

400 500
I I

600 700 800

I& I

masses with diquark mass fixed at the value where the
two-channel calculation would yield MN ——939 MeV. t is
clear &om Table II that the relativistic forms give rise to
less attraction, leading to a slightly higher-lying ground
state, though there is no qualitative difference &om the
static approximation [6]. From these results we may con-

solution indeed exists in the considered NJL model. In-
creasing the diquark mass leads to a weakening of the
quark-quark interaction and as result the nucleon mass
increases.

the exis-In the range of diquark mass we considered, t e exis-
t f th nucleon solution near its experimental value
is required to be about 150 —300 MeV binding in e
scalar-isoscalar diquark. This kind of diquark clustering
is a so o serve in a recen1 b d

'
recent instanton model calculation

by Schafer et al. [15] in the nucleon channel and qualita-
tively confirmed by the lattice simulation through cool-
ing [16]. Since the NJL type of models are practically

800— 800—

700—

600—

500—

400—
375MeV .

450MeV

300 . . . .II. . . . i. . . . l. . . . i. . . . i. . . , i, . . . i. . . . l. . . . I. . . .
—0.2 0 0.2 0.4 0.6 0.8

G~ /G

FIG. 5. Scalar-isoscalar diquark mass as a function of
Gi/G2 for two values of constituent quark masses. The hori-
zontal lines indicate the quark-quark thresholds.

600— mq=450MeV-

400
200

I . I . I I

700 800300 400 500 800
Mqq (MeV)

FIG. 6. Nucleon mass as a function of the diquark mass,
with the dash line corresponding to static limit Kiq —+ 4m,
dot-dash line corresponding to one channel de6ned by
Eq. (3.12), solid line corresponding to full two-channel de-
fined by Eq. (3.18) solutions, respectively. The dotted ine
indicates the quark-diquark scattering threshold.
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effective theories for these instanton models, the similar
diquark clustering in our case may not be a mere coinci-
dence.

V. SUMMARY AND OUTLOOK

We have been able to demonstrate that the NJL type
of models can easily accommodate the nucleonlike state
under similar types of approximations employed in the
mesonic sector. Although we were not able to explicitly
show, &om the derived Faddeev equation, that the solu-
tion of the nucleon state satisfies the Goldberger- Treiman
relation, we indeed found that the nucleon be a loosely
bound state of the constituent quarks. In order to have
the nucleon solution as a true bound state a bound di-
quark in the scalar-isoscalar channel is necessary in our
model.

There are clearly some interesting questions which can
be addressed in such a model. Using the wave function
corresponding to the three-quark bound state, the prop-
erties of the various form factors for the nucleon can in
principle be studied. It is also of interest to examine
possible 6 isobar states in the same model we have con-
sidered. The mass splitting between the baryon decuplet
and octet constitutes a nontrivial test of the NJL type of
models, while the mass splittings within the same baryon
multiplets are less stringent due to the fact that the lat-
ter splittings mainly come &om quark masses. Since the
dominant diquark configuration in the 4 should be vector
isovector, the resulting three-body bound state could be
a resonance rather than a bound state. In principle, the
states lying beyond the constituent quark threshold in
the NJL model should have no connection with hadrons

due to the explicit confining nature of /CD. However,
when the resonance becomes strong enough it may again
indicate that the chiral symmetry breaking is still playing
the dominating role. The recent instanton model study
[15] and lattice simulation with cooling [16], where the
effect of confinement is explicitly or implicitly absent,
strongly suggest that the p meson and 6 baryon are likely
to be such resonating constituent quark states, as long
as we are only concerned with their masses and certain
matrix elements, but not their widths. The numerical
method we used in the nucleon case needs to be modified
if the 6 lies in the continuum. A more careful exami-
nation of the compatibility of the Faddeev equation and
the chiral symmetry could provide useful insight on how
the Goldberger-Treiman relation at the nucleon level is
realized. Finally, also pion-nucleon and nucleon-nucleon
low-energy scattering processes can in principle be stud-
ied. It is easy to anticipate that the meson-exchange po-
tential could merge between nucleons, if only the valence
quark lines are included at each instance in the Feynman
graphs. Furthermore, since the nucleon in this model
is a loosely bound state of three constituent quarks, it
is very likely that there are anomalous singularities in
the scattering processes, which could potentially modify
the one-meson exchange nuclear force picture in the low-

energy limit. The role of the anomalous singularity in the
form factor for loosely bound states in similar models was
studied recently [17].

After submitting this paper for publication, a related
work has appeared [18] very recently.
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