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We consider equilibration in relativistic nuclear dynamics starting from a nonequilibrium Green’s-
function approach. The widely used Boltzmann-Uehling-Uhlenbeck equation is obtained only as
the Markovian limit (i.e., negligible memory time). The actual memory time in energetic nuclear
collisions turns out to be ~ 2-3 fm/c, which interferes substantially with the time scale of the

relaxation process.

The memory kernels of the collision process will be presented. Because of

their more involved structure, depending sensitively on the kinematical regime, both less and more
stopping power is observed in the reaction compared to the Markovian description.

PACS number(s): 25.75.4r, 05.60.+w, 24.10.Jv

I. MOTIVATION

The present work is concerned with quantum trans-
port equations for central energetic heavy ion collisions.
Thereby we have in mind a regime of incident bombard-
ing energies about 200 MeV /nucleon-2 GeV/nucleon
where two-body collisions play an important role and
where relativistic kinematics is needed, but which is
(hopefully) below the regime where relativistic many-
body effects (e.g. particle production) or QCD interfere.
The treatment of the time-dependent relativistic mean
fields is well understood, but the proper incorporation
of the collision is still a much debated subject. Most
present microscopic simulations adopt a Markovian (i.e.,
kinetic) approach in that they assume as the basic mech-
anism instantanous binary collisions of two quasifree,
i.e., on-shell, nucleons. This is handled in practice by
a Boltzmann-Uehling-Uhlenbeck collision term; see, e.g.,
[1]. Conclusions on extracting for example the equation
of state or more direct observables like the collective flow
[1] depend sensitively on a delicate interplay between the
collision term and the mean field. Much has been done
to understand medium effects on the cross section in the
collision term, e.g., in a G-matrix approach (2] to equili-
brated or momentum deformed, yet still quasistatic nu-
clear matter. There remains, however, the question of
memory effects beyond the Markovian limit. If these turn
out to be significant, the Boltzmann-Uehling-Uhlenbeck
description may no longer be appropiate. This is the
topic which we will discuss in this paper.

Memory effects, as were originally studied at rather
low excitation energies [3-5], come into play if the colli-
sion time interferes with the typical time scale over which
the mean field changes [3-5], either due to coherent mo-
tion or due to relaxation of occupation numbers. A finite
collision or correlation time is generated by a destructive
interference of the various scattering channels (including
off shell) building up for times going more and more to-
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wards the past. Also the collision time is enhanced by
Pauli blocking which reduces the available phase space
(needed for the destructive interference). This goes as
far that one sees large memory effects at low energies,
e.g., for the damping of giant resonances, which oscillate
at a rate of about 60fm/c [4]. For heavy ion collisions
at much higher energies, a rather rough estimate of the
collision time in the “quasifree” regime is ~ 2fm/c, the
time which a nucleon moves through the collision dis-
tance. This looks fairly short. But the mean field poten-
tials may very well change at the same scale in energetic
heavy ion collisions [6] as well as relaxation processes can
be very fast there, as we will see.

II. SCHEMATIC VIEW OF MEMORY EFFECTS

Before proceeding to the full-scale calculation, we want
to discuss the presently adressed memory effects schemat-
ically. To this end we consider a pure relaxation process
which obeys the integral equation

;%p(:r) - /0 " MR 1 - (T - D)

- [ amre o -, M)

where M*/°ut define two memory kernels which should
vanish in the remote past £ — oo. The first term
on the right-hand side specifies a backscattering (“in”)
rate, the other one a direct-scattering (“out”) rate. The
only process here is a relaxation and memory effects
are caused by an interference of collision (i.e., mem-
ory) times with relaxation times. If one remembers that
the Boltzmann-Uehling-Uhlenbeck collision term con-
tains also three other distribution functions to be in-
tegrated over phase space, the memory kernels itselves
have to be merely complex functionals of the whole dis-
tribution function in phase space at earlier times ¢’ < T,
i.e., Min/°ut(p(t'); T,t). The Markovian (or Boltzmann-
Uehling-Uhlenbeck) limit of Eq. (1) is obtained by as-
suming that the distribution function p varies sufficiently
slow compared to the range in time of the kernels:
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0 in ou
>7P(T)| = [[™(D)L = p(T)] -T(T)p(T)] ,  (2)
T B
where the rates are defined as the corresponding integrals
Fin/OUt(T) - / dt_Min/OUt(T,t_) >0 (3)
0

and should be non-negative to be meaningful. To see the
possible interference of the finite extension of the kernels
we can perform a Taylor expansion of p in the past up to
first order in Eq. (1). This yields

Tmem(T)) O

(1)
B <1+ Trel(T) ) or"") B
+8T(T)[1 - p(T)] — ST°*(T)p(T)
(4)
where the upper index (1) stands for 1 order correction.
The following abbrevations are introduced:

7]

ﬁP(T)

j‘o‘x’ dt‘t'Min/out(T’ .E)

Tin/out (T) = I‘m(T) + TTout (T) ’
7-mem(Iw) = 7-in(ir) + Tout (T) 3 (5)
T,el(T) : !

T Tin(T) + Dou(T)

The first factor Z(T') := 1 + Tmem(T") /Tre1(T) stems from
the zeroth and first order expansions of the explicit p
and (1 — p) dependence of Eq. (1). As just stated
above, the memory kernels M®/°% are also functionals
in p(t'), so that in addition they also should be sub-
ject of an Taylor expansion in the historical evoluion
of p. The thus occurring corrections of first order we
have indicated in (4) by T'®/°u(T") being proportional
to the functional derivative §M™/°ut(p(t'))/6p(t). At
the moment, however, in this schematic view, we do not
want to further stress the possible manifestation of these
additional terms. The Markov assumption states that
p(T —t) = p(T) over the range of the kernels, or in other
words, the kernels should take a form Mn/out ~ §(£+) for
the relevant time scale of relaxation, i.e., |Tmem| < Trel.
At this stage of approximation we obtain Z(T) =~ 1
and regain the Boltzmann-Uehling-Uhlenbeck equation
for (8/0T)p(T) |- The relaxation rates (8/8)Tp(T) are
renormalized by the “memory factor” Z as soon as the
here defined memory time Tyem starts to interfere with
|

D°(1 - 1) = i(|Plor(1)r(1)]])

the relaxation time 7;.;. Note that strong oscillations in
the kernels M®/°"t may allow both signs for Tmem. Ac-
cording to Eq. (4), one thus observes enhanced relaxation
for Tmem > 0, as well as reduced relaxation for Tem < 0
in comparison to the pure Markovian limit of the under-
lying collision process Eq. (1). The Taylor (or gradient)
expansion breaks down altogether if |Tmem/7rell 21 ,
and the full structure of Mi®/°u peeds to be considered.
Also, of course, the significance of the other correction
terms in (4) have to be investigated. Nonetheless, the
ratio Tiem/7rel remains a useful first indicator for mem-
ory effects.

III. TRANSPORT EQUATION

In this section we want to give a short account of the
formalism restricted to the minimum required formulas.
More detailed derivations are given in [12, 16]. Our aim
here is mainly to obtain a transport equation of the type
characterized by (1) and to provide the invoked memory
kernels for describing the collision process, which both
will be subject of numerical treatment and discussion in
the next section. Thereby, being more or less exploratory
in this work, we are trying to reveal the time structure
of the quantum mechanical collision process in a highly
excited relativistic Fermion system (e.g., in a heavy ion
collision) and not to put too much effort to describe the
in medium scattering amplitudes I'"/°ut a5 realistic as
for example carried out in a G-matrix approach [2].

For our study we choose a simple, but fairly realis-
tic model, the linear quantum hadrodynamical (QHD)
Lagrangian (7] with o and w mesons. This model is usu-
ally treated in mean field approximation. We go beyond
that by adding correlations in Born-collisional approxi-
mation [8] to implement the two-particle collision pro-
cesses and to extract the memory kernels. We formulate
the emerging equations of motion with the technique of
real time Green'’s functions as introduced by Schwinger
[9] and Keldysh [9]. Here time arguments are defined and
ordered on a special time contour path C running from
an initial time t¢ to +0o and back to t;. This formalism
has been sucessfully applied to derive quantum trans-
port equations for nuclear dynamics with nonrelativistic
interactions [10]. Relativistic physics requires changes
[11,12]: The instantanous interactions are replaced by
free retarded meson propagators, now of course on the
contour C| e.g.,

:=0c(t1,t1/) D°> (1 = 1') + O¢(ty,t1) D°<(1 -1 , (6)

where P is the time ordering and f¢ is the step function on the path C. These propagators depend only on the
difference of the coordinates. The retarded and advanced propagators along the physical time axis are obtained by
the rearrangement

D°rt(1 —1") =0(t; — t1/)[D°>(1 - 1') —= D°<(1 - 1')], (7)
D°*(1-1")=—0(ty — t,)[D°>(1 - 1) —= D°<(1 - 1')];.

The equation of motion for the one-particle nucleonic Green’s function G(1,1’) looks similar to the nonrelativistic
case:
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[y, — my — gu(B(1) — 9u (1) (VF )G, 1) = 85(1,1)1 +)( ,2Ee(1,296@2,1), ®
where
$5(1,2) = (13|V|13)(24|V|24) [G(4,3)G(3,4)G(1,2) — exch ] 9)

is the irreducible Born collision self-energy operator and the relativistic interaction is given by the meson propagators

as

(12|V]12) = 64(1,1)88(2,2) [~g2111D5(1 - 2) 13z + g5 (v*)11Dp; v (1 = 2) (1) 23] -

The integral in Eq. (8) runs over space and time along
C and it is summed over spin and isospin indices related
with point 2. This holds also for the repeated indices in
the expression for the self-energy. Note that the colli-
sion term in Eq. (8) is causal in the sense that integral
contributions for t; > max(t;,t1/) always cancel. Ex-
plicit unfolding of the equation of motion in terms of the
two portions G< and G~ results in the relativistically
generalized Kadanoff-Baym equations [8]. The retarded
time structure of the interaction complicates a further

>
explicit unfolding for the self-energy operator X3 such
that a rather messy and not very instructive expression

emerges.
|

[

In the following we restrict our considerations only to
spatially homogenous systems and we assume spin and
isospin saturation. The one-particle distribution function
p(p, T) in momentum space is given by the trace over spin
and isospin indices of the Green’s function G< at equal
times t1 =1 = T, i.e.,

o(p,T) = ~iZ TefnG=(B; T, T)}

The equation of motion for p(p,T) is obtained by taking
the difference of Eq. (8) and its adjoint. We employ

[6/2%(1,1)]t = —4G/=%(1,1')70 and obtain

T
or p(p,T) = %Re (/t dtTr {=<(p; T,?)G” (p;1,T) — £~ (p; T, {)G<(p; 1, T)}) : (10)

We remark that the reduction to a density p(p,T) de-
stroys mamnifest covariance of the equations; it means to
decide for one particular frame, usually the rest frame of
the system. Also the assumption of spatial homogenity
for such a nonequilibrated and thus time-dependent sys-
tem can hold only in one particular Lorentz frame. Equa-
tion (10) is incomplete as the right-hand side requires the
full knowledge of G(p;t1,t2) whereas the left-hand side
computes only the evolution of p(p,T’). We neglect the
influence of damping on G(p;t;,t2) and parametrize it
purely in terms of a mean field propagation as

G (pst1,t2)

~ é+_7n*e_i(E;+guV0)(t1—tz) x P(p, tmin)
:F21.E; [1 - P(P, tmin)] )

(11)

where tn,in = min(t;,t;) represents the lower time of the
two arguments. This ansatz is consistent in the Born ap-
proximation in that it neglects only collisional effects of
higher order in the collision term. It is basically identical
to that introduced by Tohyama [5] for describing non-
relativistic heavy ion collisions at much lower incident
bombarding energies (Ejap/A ~ 6 MeV). It was empha-
sized by Lipavsky et al. [13] that such a quasiparticle
parametrization (11) of the Green’s functions bounded
to p(P, tmin) at its lower time argument is the only possi-
ble way to guarantee causality in the evolution. Informa-

tion on p(p,T) can only propagate from the past to the
future, but not vice versa. We explicitly discarded the
contributions of the antiparticles, which is in accordance
with the o-w model describing valence-particle dynamics
only. Antiparticle production might be less important in
the intermediate energy regime. The mean field time evo-
lution operator is slightly simplified by fixing the effective
mass m* and the single-particle energy po := E, at the
lower time t.,;,. Vp is the nonvanishing, but constant ze-
roth component of the mean vector field. By inserting
(11) into (10) one ends up with

T .
o7 p(p,T) = [ dEM™(p,TiB)1 - p(p,7)]

T
-[ @menes . ()

to
where the memory kernels for in and out scattering are
defined as

. 1 P+m*_<
M®/°ut(p T:f) = —R > (p;
(p,T51) = 5 e<ﬁ{i2iE;E (p,T,t')}

xE—f<E;+aUV°><t‘—T>). (13)

In addition to a trivial substitution  — T — £, Eq. (12)
becomes identical to Eq. (1). Note that the occurrence
of a finite memory is a natural outcome of the reduction
of the many-body dynamics to the one-body level. The
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exact evolution of the system was local in time, obeying
a many-body dynamics i07|®,(T)) = H|®,.(T)), where
H represents the full Hamiltonian of the interacting par-
ticles.

For the further evaluation, we neglect the exchange

part of Eé which is a fair approximation for a dense
system. This allows one to apply the Langreth-Wilkins
rules [14] for convolutions on the real-time path C con-
nected in series, it reduces the number of terms (unfolded
in G~ and G<) enormously, and it makes a numerical
treatment feasible. Accordingly the direct amplitude of
(9) can be rewritten into three parts with integrations
solely on the physical time axis, where only one has the
common Boltzmann-Uehling-Uhlenbeck structure of two
scattering particles.

The remaining two terms contribute corrections to the
production or absorption of real mesons on mass shell

5 oo o]
Min(p’T;t_) :Re( Z gczxg; /t dt3 /t dt4
0——00 0——o0

a,f=1

/ d3P2 d3P3 d3P4 53

(containing terms ~ Dg over the whole time axis). This
kind of dissipation, interesting in itself, shall be omit-
ted. These terms would vanish in the Markovian limit.
Principally, they arise if the memory in these processes
is taken into account. Because of the intrinsic time de-
pendence of the one-particle distribtion function, such
terms could manifest. A similar, but simpler reasoning
would already appear in the treatment of the relativistic
Fock diagram: Because of the assumed quasistationarity,
the most elementary bremsstrahlung process will vanish
in the Markovian treatment due to energy-momentum
restriction of the on-shell particles (nucleons as well as
mesons) [12]. However, the temporal change of the nu-
cleon phase-space density may contain such high frequen-
cies, at least principally, which would allow for such emis-
sions.
Thus we are left with

) (P— P2 —Ps +Pa)

Xe~i(E;~E;2)(f—T) e—i(E;74 —E;. ) (ta—ts) Dgret(p —p2: T, t3) Dgadv(p — pa;ts, t‘)

p+m
XT&{F[; u
2E;

2E;,

F“¢2+m*} I&{Fﬁ"

4+m* Fa¢3+m*
2E;,

2E;,

xp(pz2,t)p(ps, min(ts, t4)) [1 — p(p4,min(ts’t4))]) ) (14)

where in compact notation g, = g,; 'y =7, for p = 1,...,4 and g5 = ig,; ['s = 1. The kernel M°** is generated by
the replacement p — (1 — p). The meson propagators are the usual form of retarded and advanced propagators [11].

Considering (12) and (14), the Markovian approximation is performed by neglecting the historical evolution of the
internal quantities, which means to shift all time arguments of the densities, the effective masses, and the single-particle
energies to the actual time T, i.e., replacing p(p,%) — p(p,T). From the explicit expression (14) it is then obvious that
the semi-infinite time integration in (12) restricts the contributing processes to on-shell scattering, thus leading to the
usual energy-conserving §-function. One ends up with the Boltzmann-Uehling-Uhlenbeck (BUU) equation including
the Pauli blocking and the spin- and isospin averaged Born cross sections of the QHD Lagrangian:

d3p4 1
(27r)3 E;;(T)El;;2 (T)E;a(T)E;4 (T)
x(27)* 83 (p — p3 — Ps + Pa) §(E}(T) — EL,(T) — B, (T) + E, (T))

. 1 1
X{ 9 (Bx )2 — [B3(T) — Ex, (D) (B3 )% — (Ea(T) — By, (T))?
X [puph +m*2(T)][ps, ups + m**(T))]

2 2 1 1
T 299 (gy )7 — (B2 (T) - By, (D] (By_,,)? — (B3(T) - By, (D)2
xm*?(T) (P + P2, ) (Ph + D)

1 1

)2 — [E3(T) — Es,(T)]? (E%,,)? — [E3(T) - Ep, (D)2

P—DP2

d®py d3P3
or p(p,T) |B = (27)3 (27)3

2 4
29 By

P—P2
x[2m**(T) — m**(T)(p.ps + ps,uPls) + PuPsP2, .05 + pnp‘:fpz,upg]}

x{ p(p2,T) p(ps,T) [1 — p(Pa, T)] [(1 — p(p, T)]
—[1 = p(p2,T)][1 — p(pPs,T)] p(Pa, T) p(p,T) } - (15)
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The § function in the four quasiparticle energies, to-
gether with the phase-space factor pp(1—p)(1—p)—(1—
p)(1 — p)pp, lead to the usual feature of the Boltzmann-
Uehling-Uhlenbeck collision term, that it will vanish only
for an equilibrated and stationary (hot) Fermi distribu-
tion.

It can be shown [12, 16] that the quasiparticle ansatz
together with the Markov assumption immensely sim-
plifies to disentangle even more involved Feynman dia-
grams. The basic reason is that assuming quasistation-
arity (and quasihomogenity), the diagrams can be worked
out like in equilibrium with Fourier techniques. This is
the general idea for all derivations of quantum kinetic
equations [12,15]. Yet quasistationarity and the implied
neglection of the corrections due to the first order gradi-
ent expansion are not a priori justified for such a violent
reaction expected in a relativistic heavy ion collision.

IV. MEMORY KERNELS — RESULTS
AND DISCUSSION

To simulate a central heavy ion collision we model the
equilibration by considering an infinitely extended, spa-
tially homogenous system of two interpenetrating and
counterstreaming Fermi fluids. We parametrize the ini-
tial anisotropy in momentum space by a two-center Fermi
distribution

1
<1
exp {B(E} —vlp:|) — Bu} +1 ~

for the valence nucleons, where the effective inverse tem-
perature 3 = 03y and the effective chemical potential
i = po/v have been introduced with v = 1/v/1 — v2.
The velocity v provides the anisotropy in momentum
space and represents the mean velocity of each stream-
ing fluid in the center-of-mass frame. The energy is
given by the expectation value of the mean field Hamil-
tonian within the counterstreaming Fermi fluid scenario.
For low values of the velocity v, the c.m. energy rises
like Eyincm/A = m*(y — 1). For higher velocities the
relativistic compression of the fluids gives an enhance-
ment of the vector potential V°, which further raises
the energy. Then the incident bombarding energy in
(Brot,cm./A)? mN)-
mnN
The chemical potential and the effective mass m* =
my + gs(¢) are determined in fixing the baryon den-
sity pp =4 [ d®p p(p, to) to 2vpo, where pg is the nuclear
ground state density and v accounts for the Lorentz con-
traction of the two oppositely boosted nuclei. The shape
of the generalized Fermi surface reads, for zero tempera-
ture 3~ =0,

p(p,to) = (16)

the laboratory frame is given by 2

ol (Ip2] — pvy?)?
”272 — m#2

72(p272—m*2) =1.
It represents two ellipsoids shifted in longitudinal mo-
mentum by pvy?, which may be overlapping or sep-
arated, depending on whether the shift is smaller or
larger than the longitudinal axis y(u?y? — m*2)!/2. Here
we employ the linear o-w model with the parameters
gs = 9.57, m, = 550 MeV, g, = 11.67, m, = 783 MeV,

which gives a small effective mass m*/m = 0.55 for the
nuclear ground state and m*/m ~ 0.3 for the two-fluid
model at v ~ 0.7c. With these parameters the two el-
lipsoids get detached for velocities larger than v ~ 0.7c
which roughly corresponds to a bombarding energy of
900 MeV/A. These parameters optimize the mean field
within the o-w model and overestimate somewhat the
scattering cross section compared to more detailed in-
medium scattering amplitudes as computed within the
G-matrix approach [2]. We nonetheless take it as a first
reasonable input.

The numerical calculations exploit the axial symme-
try of the simulation. The convolution integrations in
Eq. (14) are performed with the convolution theorem
and Fourier-Bessel transformations. Time integration is
done with a predictor-corrector scheme and a time step
of 0.15fm/c. The final accurancy of the results is on the
1% level. The retardation of the meson fields is neglected
in these first and exploratory calculations.

In this particular case, using the instantaneous approx-
imation for the meson propagators in the memory kernels
(14), the first order expansion as sketched in Sec. II takes

the instructive form
9 (0) . .
3—1:p(T) =Z2"(T)I™(T)[1 - p(T)]

—Z°"(T)T**(T) p(T) , (17)

where the in and out renormalization factors are given
by

. T)
Zinfout(n T) =1+ I"ﬂ(p’—
(p ) Trel(p’T)

_ 1 i (Tin/out(p1 T)) (18)
Fin/out(pv T) 6T Trel(P, T)

and where the first two terms, 1+ Tnem/7rel, are the com-
mon renormalization of the scattering rates, as already
outlined in Sec. II. The last term (= 6T®/°t) which
may differ for the in and out process, arises from the
expansion of the kernels M®/°ut(p)

First, we want to investigate the time structure of the
memory kernels M®/°% as such. To this end, we calcu-
late them for a fixed mean field and distribution func-
tion, ie., for fixed p(p), m*/m, and E; accordingly.
We show in Fig. 1 the results for a small center-of-
mass velocity v = 0.4c and zero temperature 3~1 = 0.
This corresponds to a bombarding energy of Eyin Lab ~
200 MeV/A. In the left upper part Fig. [1(a)] the density
distribution p(p,,p. = 0) and the Boltzmann-Uehling-
Uhlenbeck rate p|, along the radial axis p, are depicted.
As expected, the reaction is strongest at p, ~ 290 MeV,
slightly above the Fermi momentum where the on-shell
inscattering is possible and unblocked. The right part of
Fig. 1 shows the two memory kernel at that momentum.
M°ut exhibits a pronounced oscillation through zero, be-
coming negative after ~ 1fm/c in the past [compare Fig.
1(b)]. Visually the kernels stretch up to ~ 2-4 fm/c. Be-
cause of the oscillation in M°%t, the memory time defined
in (5) turns out to be Tmem ~ —3fm/c and is hence nega-
tive. The relaxation time is evaluated to be 2 fm/c. In the
left lower part Fig. [1(c)], both times are plotted along
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the whole radial momentum axis p,, showing that the

Markovian condition

mf.,m [ < 1is clearly violated nearly

everywhere, particularly at the most reactive Fermi sur-
face. In general, the pattern of each kernel change with
the position (p,,p.) in momentum space. For large mo-
menta well above the Fermi surface, M displays sev-
eral oscillations, whereas M°“ turns out to become more
smooth. This behavior is almost completely reverted
around the Fermi level and even more in the interior of
the density distribution. But the deep interior or the
far outer space are physically not relevant, because the
total scattering rates p|g are vanishingly small [see Fig.
1(a)]. In addition, to demonstrate also the breakdown of
the gradient expansion more explicitly, we have depicted
in Fig. 1(d) the two renormalization factors Zi/°ut and
also their common contribution Z = 1 + Tiem/Trel along
the radial axis. This were taken from a dynamical in-
tegration of the Boltzmann-Uehling-Uhlenbeck equation
after some short evolving time T = 2 fm/c, so that the
time derivatives in (18) could be extracted (the pure BUU
dynamics compared to the full, non-Markovian evolution
is shown in Fig. 4). One recognizes that the negative
renormalization physically does not make sense, and so
the process clearly must be non-Markovian. Nonetheless
trying to give arguments along the first order expansion
one is tempted to reason that the actual relaxation in mo-
mentum space should be considerably slowed down com-
pared to the dynamics treated in the Markovian limit.
As a further and extreme example we consider in Fig.
2 a very violent reaction of v = 0.9¢, where the two
ellipsoides are separated. This would correspond to a
bombarding energy of ~ 4 GeV/nucleon which goes be-
yond the limits of our approach. The reaction rate p|g

has a maximum of about 0.45¢/fm at p, ~ 410 MeV.
The characteristic oscillations of M°"* almost disappear
[Fig. 2(a)] and the memory time Tmem ~ 0.4fm/c turns
out to be small, but positive. Now, although p|g is
moderate, the corresponding relaxation rate I'g reaches
5c/fm, and thus the critical ratio becomes Tmem = 1.7
[Fig. 2(b)]. The Boltzmann-Uehling-Uhlenbeck equation
is invalidated again.

The relaxation in the process will reduce the velocity
+v and thermalize the distribution. In order to investi-
gate the typical memory kernels at later stages, we also
consider cases with temperatures S~ = 50-150 MeV in
the parametrization (16). The results are summarized
in Fig. 3 by plotting the critical ratio @<= for several
velocities v and different temperatures at the gridpoint
p- (p. = 0) with largest scattering rate p|g of each case.
A ratio T‘:“:" > 0.5 is encountered for high temperatures

and/or velocities, both related to high incident energies;
here the relaxation should be enhanced. The Markov
assumption is not valid and even the gradient expan-
sion may fail in some cases. An interesting aspect is
the possibility to obtain more stopping power in heavy
collisions arising from the occurrence of constructive dy-
namical interference during the collision process. For in-
termediate energies < 1 GeV/nucleon one may observe a
reduction of the relaxation in the first stages of the evolu-
tion because "= < —0.5 at small incident temperatures
B~ =~ 0. But soon larger temperatures are reached and
the process should behave Markovian, because the os-
cillations in the still extended kernels cancel to a small
memory time Tiem. In a nonrelativistic energy domain of
< 400 MeV /nucleon (v < 0.5¢) we observe tmem < —1.0

and thus the reaction as described in our model will be
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Qoaf — i FIG. 1. v/c = 0.4, m" = 271.7 MeV,
-0.asf o ' and peg = 365.1 MeV. (a) The distribution
“ 010 : o 3 function p(p-,p-=0) (in arbitrary units, go-
o £ st ing from 1 to 0) and the Boltzmann-Uehling-
N 05 ¢ ) £ )/ g a
_S-D' b (2) v, 3 - (b) Uhlenbeck scattering rate drp(pr,p-=0)|g
0 e R are shown along the radial axis of momen-
T-t [im/c] tum space. (b) The memory kernels M™/"
as function of time in the past. (c) The mem-
B ory time Tmem (Pr,p-=0) (solid line) and the
o relaxation time 7ye (pr, p-=0) (dashed line) as
- E function of radial momentum. (d) The renor-
s N malization factors Z°/°"* and 1 + Tmem /Trel
v - (compare text) are extracted from a dynam-
- = ical simulation of the Boltzmann-Uehling-
] N Uhlenbeck equation as presented in Fig. 4.
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significantly slowed down due to the memory effects and
does not behave Markovian.

Finally, we investigate a complete time evolution ac-
cording to Egs. (12,14), neglecting again the retarda-
tion of the meson propagators. This has been done for
the initial configuration with v = 0.4c and temperature
71 = 0. The proper initialisation requires that one runs
the dynamics with fixed mean field and distribution some
“preparation time” from t = tp = —10fm/ctot =Tp =0
in order to build up properly the memory kernels and to
describe complete collisions as in a Boltzmann-Uehling-
Uhlenbeck equation (this is connected to the question of
energy conservation which will be discussed in a sepa-
rate publication [16]). At T' = To = 0, the fuli dynamics
is released and relaxation can go its way. A compar-
ison of the full evolution with the Boltzmann-Uehling-
Uhlenbeck case is shown in form of density contour plots
in Fig. 4(a). Because of the axial symmetry of the system
only the upper half of the (p,,p.) plane is depicted. One
clearly sees a much delayed relaxation in the full treat-
ment; the reaction is slowed down significantly. This is
also reflected in the evolution of the quadrupole moment
of the distribution function. Calculated from the density
by Q = 1 (3(p?)/(p?) — 1), it is a measure of the devia-
tion of the system from equlibrium. Figure 4(b) shows
Q(T) according to the pure BUU- and the full evolution.
An enhancement of the relaxation time by a factor of 2-3
is clearly visible.

This result agrees with the study of Danielewicz [17],
who has solved numerically the complete nonrelativistic
Kadanoff-Baym equations in a similar homogenous sys-
tem for a bombarding energy ~ 400 MeV /nucleon. It
has been argued there that the “slowing down” is due
to the Heisenberg uncertainty in energy between pro-
ceeding, independent collisions. From our point of view,
these results may be reinterpreted by means of the non-

axis of momentum space. (b) The memory
kernels M™/°" as function of time in the
past, the memory time Tmem (pr, p-=0) (solid
line). (c) The relaxation time 7iei(pr, p-=0)
(dashed line) as function of radial momentum
is depicted.

Markovian charater of the transport process and the cor-
responding memory kernels having here 1‘7““11'1 < 0.

It is to be remarked that we have used coupling param-
eters g, and g, which are adjusted to describe the mean
field. But the absolute strength of the collision term
depends also very sensitively on these couplings, ~ g*.
To account for a more realistic description of heavy ion
collisions, one should employ for the collision term such
coupling constants which (more directly) reproduce the
(in-medium) cross section of nucleons. This will be pur-
sued in a furthcoming publication [16]. It suffices for the
present purposes to estimate how the results scale with g.

2.0

q
20 E

0.0 0.2 0.4 0.6 0.8
v [cl

FIG. 3. The ratio of memory time versus relaxation time
Tmem/Trel is summarized for different velocities and temper-
atures at the momentum grid point p,. with the highest
Boltzmann-Uehling-Uhlenbeck scattering rate. Exclusively,
the couplings of the linear QHD model were employed. Note
that the Markov assumption is only guaranteed for some spe-
cial configurations.
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The memory time Tmem Will change little if we take care
to leave the mean field unchanged, because the shape of
the kernels is not sensitively affected by any rescaling.
But the relaxation time scales as the inverse cross sec-
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FIG. 4. The time evolution of a momentum anisotropical

system with v = 0.4c for the Boltzmann-Uehling-Uhlenbeck
equation and the full one including memory are compared.
(a) The lines from the inner to the outer refer to a constant
density distribution in momentum space of 0.9, 0.5, 0.05, and
0.005, respectively. (b) Additionally we show the relaxation
of the quadrupole moment of the momentum distribution
function for the pure BUU (solid line) and the full dynam-
ics (dashed line). A strong deacceleration in the transport
process containing memory is found.

tion, Trep ~ 07! ~ g7%. Hence reducing the effective

cross section will, of course, enhance the relaxation time
Trel While the memory time T, remains nearly unaf-
fected. Thus the whole dynamics may come bit closer to
the Markovian limit.

V. SUMMARY AND OUTLOOK

The intention of our work was to investigate the sig-
nificance of memory effects in transport theories for en-
ergetic heavy ion collisions and its consequences for the
equilibration times.

Memory effects are the inevitable result of a reduc-
tion of the multiparticle dynamics on, e.g., the one-body
level, which induces phase correlations into the history
of the system [18]. Their interference back in the past
time gives raise to a characteristic correlation or colli-
sion time. Large phase spaces for the intermediate cor-
relations give rise to large destructive interference and
thus to very short memory times. This is the hope
beyond the Boltzmann-Uehling-Uhlenbeck-type descrip-
tions where the intermediate collisions are treated as be-
ing instantanous.

For the theoretical description we employed the tech-
niques of real-time Green’s functions for nonequilibrium
dynamics leading to a transport equation posessing an
in- and out-scattering contribution. The Boltzmann-
Uehling-Uhlenbeck description is obtained as the Marko-
vian limit of this equation. However, the Markov as-
sumption is only valid if the characteristic time scale of
the relaxation in phase space is large compared to the
correlation time. As a quick and easy measure for the
memory effects we introduced the memory time as first
integral moment of the memory kernel in the collision
term. The ratio of memory time to relaxation time serves
as a criterion for the validity of the Markovian approxi-
mation.

We have calculated the memory kernel for a relativistic
o-w model where the heavy ion collision is simulated in a
model of two counterstreaming homogenous nuclear flu-
ids. We find that the memory times depend sensitively on
the energy in the system. It is very large for low energies
and ranges around a few fm/c for the typical relativistic
collisions. Thus they still interfere with the relaxation
times which are of the same order. Moreover, it is an
interesting feature that the memory times can have both
signs, positive or negative, due to the oscillatory pattern
of the memory kernels. The the correction from memory
effects can act in both directions, reduced dissipation for
negative memory times and enhanced dissipation for pos-
itive memory times. Both cases are observed in practice
depending on the kinematical situation.

In our exploratory study the (in-medium) cross sec-
tions are probably overestimated and should be refined
to make more quantitative predictions [16]. The over-
all cross section will influence relaxation time 7pe;. The
shape of the memory kernels and its spreadings are not
much affected by a tuning of the scattering rates which
means that the memory times Tie;m are robust against
a rescaling of the cross section. But it is to be noted
that a more realistic cross section needs to fitted up the
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details of the angular distribution and changing the an-
gular distribution of the cross section has effects which
cannot be easily deduced from scaling arguments. Alto-
gether we expect that the observed interference of the two
time scales will still persist and lead to subsequent modi-
fications compared to the Boltzmann-Uehling-Uhlenbeck
limit. Thus one should reanalyze the memory effects with
carefully fitted cross sections. A good first indicator is
the simple ratio Tmem/7rei Which then asks for more de-
tailed analysis of all contributions if it turns out not to
be very small.

It was found that the shapes of the memory kernels
follow very general pattern in spite of the complicated
microscopic expressions which have been used to gener-
ate them. It is another important issue for future inves-
tigations to related these pattern to simple phase-space
arguments. This may allow eventually much simpler and

nonetheless microsopic estimates of the memory effects
which could turn out to be useful also in other areas
where cascadelike descriptions are used (parton cascades,
quark-gluon dynamics, hadron dynamics).

To conclude, we find that a full treatment of a rela-
tivistic quantum collision term in the interior of a typical
central heavy ion collision can produce relaxation rates
which differ significantly from the standard Boltzmann-
Uehling-Uhlenbeck treatment. The changes go in differ-
ent directions depending on the kinematical regime: An
enhanced collision rate can be expected at very high bom-
barding energies whereas a reduced rate is found at lower
energies. The Markovian limit is recovered for thermal-
ized systems only in the final stages of the collision.

The authors thank Prof. C. Toepffer for his motivation
and many clarifying discussions.

[1] G. Peilert, A. Rosenhauer, J. Aichelin, H. St6cker, and
W. Greiner, Phys. Rev. C 39, 1402 (1989); J. Jaenicke, J.
Aichelin, N. Ohtsuka, R. Linden, and A. Faessler, Nucl.
Phys. A536, 201 (1989).

[2] A. Bohnet, N. Ohtsuka, J. Aichelin, R. Linden, and A.
Faessler, Nucl. Phys. A494, 349 (1989); B. ter Haar and
R. Malfliet, Phys. Lett. B 172, 10 (1986); Phys. Rev. C
36, 1611 (1987).

[3] P. Grangé, H.A. Weidenmiiller, and G. Wolschin, Ann.

" Phys. (N.Y.) 136, 190 (1981).

[4] H.L. Yadav, P.G. Reinhard, and C. Toepffer, Nucl. Phys.
A458, 301 (1986).

[5] M. Tohyama, Phys. Lett. 163B, 14 (1985); Phys. Rev. C
36, 187 (1987).

[6] R.Y. Cusson, P.-G. Reinhard, H. Stocker, J.J. Molitoris,
M.R. Strayer, and W. Greiner, Phys. Rev. Lett. 55, 2786
(1985); J.J. Bai, R.Y. Cusson, J. Wu, P.-G. Reinhard, H.
Stocker, and M.R. Strayer, Z. Phys. A 326, 269 (1987).

[7] J.D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).

(8] L.P. Kadanoff and G. Baym, Quantum Statistical Me-
chanics (Benjamin, New York, 1962).

[9] J. Schwinger, J. Math. Phys. 2, 407 (1961); L.V. Keldysh,
Zh. Eksp. Teor. Fiz. 47, 1483 (1965) [Sov. Phys. JETP
20, 1018 (1965)).

10] C.Y. Wong and H.H.K. Tang, Phys. Rev. C 20, 1419
g g

(1979); P. Danielewicz, Ann. Phys. (N.Y.) 152, 239

(1984); W. Botermans and R. Malfliet, Phys. Rep. 198,

115 (1990).

[11] B. Bezzerides and D.F. DuBois, Ann. Phys. (N.Y.) 70,
10 (1972).

[12] S. Mrowczynski and U. Heinz, Ann. Phys. (N.Y.) 229
(1994).

[13] P. Lipavsky, V. Spicka, and B. Velicky, Phys. Rev. B 34,
6933 (1986).

(14] D. Langreth and J.W. Wilkins, Phys. Rev. B 6, 3189
(1972).

[15] S.R. DeGroot, W.A. Van Leeuwen, and Ch.G. Van
Weert, Relativistic Kinetic Theory (North-Holland, Am-
sterdam, 1980).

[16] C. Greiner, K. Wagner, and P.-G. Reinhard (unpub-
lished); C. Greiner, Ph.D. thesis, University Erlangen,
1992; K. Wagner, Ph.D. thesis, University Erlangen,
1993.

[17] P. Danielewicz, Ann. Phys. (N.Y.) 152, 305 (1984).

[18] E. Fick and G. Sauermann, The Quantum Statistics of
Dynamic Processes, Springer Series in Solid-State Sci-
ences Vol. 86 (Springer, New York, 1990).



