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We present the results of an analysis of two charged particle and transverse energy correlations in
Si+Pb collisions at BNL AGS at 14.6 GeV/c per nucleon. The measured semi-inclusive normalized
two-particle pseudorapidity correlation function exhibits short-range correlations similar to the cor-
relations observed in hadron-hadron and hadron-nucleus collisions at higher energies, although the
observed correlations are smaller than the values scaled from hp and hA data. Estimates, provided
by the observed correlations, of the intermittency indices as well as of the parameters of the cluster
model are presented. Predictions using the FRITIQF event generator, which at this level of statistical
accuracy show no pseudorapidity correlations, are not in agreement with our data. Azimuthal angle
two-particle correlations show nonzero back-to-back correlations in the central region (consistent
with FRITIOF predictions) and are almost tlat in the projectile fragmentation region. We also present
results on the transverse energy azimuthal correlation function, which are similar to those from the
two-particle correlation function.

PACS number(s): 13.20.Jf, 13.85.Hd

I. INTRODUCTION

In the past two decades many experiments and theo-
retical analyses have been performed which sought un-
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derstanding of the dynamics of multiparticle production
in high-energy collisions through data on inclusive distri-
butions. However, measurements of single-particle dis-
tributions alone are insufFicient to understand the details
of the production mechanism. The study of correlation
effects provides information on hadronic production dy-
namics beyond that obtained Rom single-particle spectra
and is very important for understanding the role of res-
onances, minijets, strings, fn.'eballs, etc. The correlation
function, constructed in a proper way, could be a very
sensitive tool for the investigation of special features of
models and dynamical assumptions.

Particle correlations have been extensively studied in
hadron-hadron reactions. When two-particle correlations
in rapidity are studied at 6xed charged particle multi-
plicity, apparent short-range (Ay 1—2) correlations are
observed [1—8]. The most successful interpretation of this
correlation is found in the cluster model [9], although a
physical understanding of the nature of clusters is still
lacking. The study of two-dimensional correlations in
rapidity and azimuthal angle space shows nontrivial az-
imuthal angle behavior. At ISR energies [6,7] it was
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found that the short-range rapidity correlations persist
over the full azimuthal angle range, but the range of ra-
pidity correlation is larger towards AP = vr than towards
4/=0.

The recent interest in intermittency as a probe of re-
action dynamics (for a review see Refs. [10,12]) has also
placed special emphasis on the study of two-particle cor-
relations. The two-particle correlation function can be
simply connected with second-order factorial moments
[13,12], obtained in an intermittency analysis. Obser-
vation of intermittent behavior of factorial moments in
many experiments implies the existence of short-range
two-particle correlations.

The investigation of the dynamics of multiparticle pro-
duction in heavy-ion collisions is particularly important
because of the possibility of quark gluon plasma produc-
tion in such collisions. Are there really any difFerences in
the multiparticle production dynamics between hadron-
hadron and nucleus-nucleus collisions? Do we have some-
thing new? The correlation study could be a very impor-
tant part of the answer to these questions.

We present here the results of such a measurement
carried out with the E814 apparatus operating at the
Brookhaven AGS accelerator. Data on the inclusive
charged particle multiplicity distributions [14] and trans-
verse energy distributions [15] from this experiment have
already been reported. In this paper we utilize pri-
marily charged particle multiplicity distributions seen in
14.6 GeV/c Si-Pb central collisions to directly construct
the two-particle correlation function. In our study we
also explore transverse energy azimuthal angle correla-
tions. Using transverse energy for the correlation study
allows us to take into account also neutral particles and
to use the data from a different detector, with totally
different systematic corrections.

II. CORRELATION FUNCTION

There exist a number of different definitions of the cor-
relation functions. In the current analysis we use one
of the simplest, the normalized two-particle correlation
function:

p(2)(z, z, )
+1)+2

where p~ l (zi, x2) and p(z) are two- and one-particle den-
sities

1 d 0
p (xiix2) =-

a dxgdx2

p (xi) z2)dxi dz2 ——N(N —1),

1 de
P(z) = —

d

and x can be any variable, such as rapidity, pseudorapid-
ity, or azimuthal angle. The normalization of p~ l(xi, z2)
and p(x) is given by

p~ l(z„z2)dzi dx2 ——N(N —1), (4)

p(x)dx = N, (5)

in which N is the total number of particles.
It is well known [1,2] that a mixture of events with

different total multiplicities causes large positive artifi-
cial pseudocorrelations sometimes called long-range cor-
relations. To avoid this effect one should use so-called
semi-inclusive correlation functions, in which one calcu-
lates the correlation function using events with fixed total
multiplicity N

x((2)

N(zi & z2) (6)

To avoid confusion we note here that the correlation
function defined by Eq. (6) is not zero for the case
of no dynamical correlation, which for this case gives

Riv(zi, x2) = 1/N. T—his follows directly from the nor-
malization of two- and one-particle densities [Eqs. (4)
and (5)), and the fact that for the case of no correlation
the two-particle density is proportional to the product
of two one-particle densities. It also worthwhile to note
that the function R has some scaling properties with re-
spect to total multiplicity, or more exactly to particle
density. If the correlations are mostly due to resonance
decays, jet production, and analogous mechanisms, and
if the relative number of these resonances or jets are the
same for different multiplicities, the number of correlated
pairs is proportional to N, so the peak value of R scales
as 1/N or as 1/(dN/dy). For Bose-Einstein correlations
the number of correlated pairs is proportional to N, and
the correlation function in the first approximation does
not depend on multiplicity.

The high statistical accuracy of our data permits a
measurement of the semi-inclusive correlation function,
using relatively narrow multiplicity windows. We study
pseudorapidity correlations as a function of two variables
and present the results for R for control bin gq as a func-
tion of g2, for different total multiplicities and different
azimuthal windows bP. For azimuthal correlations we

present the results as a function of azimuthal angle dif-
ference AP between two sectors in P space within a fixed
pseudorapidity window bg.

III. EXPERIMENTAL SETUP

The E814 experimental setup, shown schematically in
Fig. 1, is described in more details in Refs. [14, 15]. We
use data primarily from the silicon multiplicity detec-
tor, which is complemented by data from the participant
calorimeter (see the insert in Fig. 1). The multiplicity de-

tector, shown in Fig. 2, consists of two silicon pad detec-
tors each segmented into 512 pads. One detector, located
34 mm from the target covers the pseudorapidity region
0.87 & g ( 1.61, and the other, located 82 mm from the
target, covers the region 1.61 ( g ( 3.86. Pseudorapid-
ity coverage is quoted for the case where beam particle
goes through the center of the detector. The size of the
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FIG. 1. Experimental setup of E814 at BNL. For this mea-
surement, we use data from the Multiplicity Detector and the
Participant Calorimeter (see insert).

pads corresponds approximately to 0.1 in both g and az-
imuthal angle P, which determines the angular resolution
in this measurement. There is no charge identification
in this detector. Hits are defined by a simple threshold
discriminator set to approximately 0.5 times minimum
ionizing pulse height. For multiplicities around 100 the
mean pad occupancy is approximately 0.1. Although the
detector does not distinguish between one or more hits in
the same pad, there is no need to correct for this efFect for
the normalized correlation function B used in the present
analysis. For a determination of the autocorrelation, the
efFect of multiple hits could, however, be important, as
is discussed below. It is also important for the multi-
plicity correlation analysis to take into account the exact
position of the incident beam particle. The horizontal po-
sition of a beam particle is measured by a pair of silicon
strip detectors, which are shown in the insert in Fig. 1,
and this information is used on an event by event basis.
The vertical displacement of a beam particle, caused by
the beam divergence, is important mostly for the study
of correlations in azimuthal angle space. The distribu-
tion of the vertical beam coordinate was assumed to be

Gaussian, and the parameters of the distribution were
extracted from the multiplicity detector data (see Ap-
pendix A). The angular divergence of the beam ( 1 mr)
is much smaller than the bin widths in q and P, which
are set by the size of the pads.

The participant calorimeter (PCAL) is a lead-iron-
scintillator sampling calorimeter. It is approximately
azimuthally symmetric, built with four identical quad-
rants. Each quadrant of the PCAL is divided into four
azimuthal slices of 22.5'. Each slice is divided radially
into eight towers. This division, combined with the four
depth segments, leads to a total of 32x8 = 128 towers for
each quadrant and 512 towers for the entire calorimeter.

PCAL measures energy flow into the forward polar an-

gle region 1.0' ( 8 ( 47.0', corresponding to pseudora-
pidity range 0.83 ( g ( 4.7. It has a depth of four inter-
actions lengths and a radius of approximately 84 cm. It
is divided into two electromagnetic depth segments and
two hadronic depth segments. Each of the two electro-
magnetic depth segments has a depth of 0.4 interaction
lengths, consisting of six absorber-scintillator layers. The
next 24 layers make up the first hadronic segment and the
remaining 23 layers constitute the second hadronic seg-
ment. Each of the hadronic segments is approximately
1.6 interaction lengths deep.

It is also important to note that the participant
calorimeter covers a pseudorapidity region similar to that
of the multiplicity detector. This permits the selection of
events on transverse energy deposited in the same pseu-
dorapidity window. Data &om this detector are also used
for the transverse energy correlation study.

IV. ANALY SIS

A. Calculation procedure

The formula for the two-particle correlation function,
describing the correlation between two bins of finite size
(areas in pseudorapidity and azimuthal angle space, con-
sisted, in our case, of one or many pads) i and k, directly
follows from the definition (6):

(n;ns)
(n')(n~)

3.37 cm

$.17 cm

0.60 cm

where n; is the multiplicity in the ith bin. The average
is taken over all events with the same total multiplicity.
The exit pseudorapidity, corresponding to each pad, de-
pends on the position of the beam particle. One must be
careful to correctly account for this efI'ect. The correct
formula for the correlation between two diferent bins is

Detector 1 Detector 2

FIG. 2. E814 Multiplicity Detector (0.8 & g & 3.8).

where () means average over all possible horizontal
beam offsets 2:, and (n;, ) is the mean multiplicity of the
ith bin over all events with the same x beam position.
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As mentioned above, there is no possibility to distin-
guish single &om multiple hits in the same pad. This
limitation becomes important for the calculation of au-
tocorrelations, when both particles from a correlated pair
occupy the same bin. The problem is easy to solve if (a)
the correlation length is much larger than the size of the
bin and (b) the mean pad multiplicities in the bin under
study are equal to each other. In this case the fraction of
all pairs which are counted as one particle is 1/I, where I

is the number of pads in the bin. Thus the correct
er of pairs is the factor (1 —1/t) ~ = t/(t —1) times

the observed number of pairs. In the general case this
problem is circumvented by subtracting the (unknown)
contribution &om each single pad to the correlation func-
tion, defining the autocorrelation function to be
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FIG. 3. Event distribution in ET for the multiplicity win-
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The corresponding formula for the autocorrelation
function is more complicated, because the autocorrela-
tion depends on the form of the one-particle ET distri-
bution. We do not consider E7 autocorrelations in this
paper.

B. Corrections and cuts

In this section we enumerate the corrections and cuts
performed in the analysis. The standard event selection
procedure for E814 data is described in detail elsewhere
[14]. Basically, it consists of placing requirements on the

Here k;~ is the pad occupancy (0 or 1) for the jth
pad in the ith bin. By this procedure we substitute the
real B „t by the average value of all possible pad-pad
correlations within the bin.

PCAL data are used for the evaluation of transverse
energy correlations. The exact beam particle position is
not important for these calculations due to the rather
large dimensions of PCAL in comparison to the width of
the beam profile, which is not the case for the multiplic-
ity detector. We define the transverse energy correlation
function as

beam scintillators to insure that one and only one par-
ticle of Z=14 is incident, and of a cut on the energy
found in the back wall of the target calorimeter to re-

ject events with interactions upstream of the target. The
main physics trigger then requires that the total multi-

plicity, based on discriminator outputs, was above some
minimum value.

Due to the very high sensitivity of correlation func-
tions to detector imperfections, the following additional
selection criteria were added.

(1) Events which show very little associated transverse
energy (ET ) were rejected. Our measure of transverse en-

ergy is found by performing a sum (weighted with sin8)
of the pulse heights &om 512 towers of the participant
calorimeter. A distribution of ET for multiplicity trig-
gered data is shown in Fig. 3. Events with low Ez arise
from a burst of noise in the multiplicity detector in ran-
dom coincidence with a beam particle, and are very ef-

fectively removed by demanding a reasonable value of
transverse energy for each multiplicity window. A min-
imum value E7 is defined for each multiplicity window
well below the peak of the distribution (see Fi . 3).

(2h
~ ~ Two different types of events were found to have

see cg.

pathological noise patterns in the hit distribution. One of
these, illustrated in Fig. 4(b), occurs when noise Huctu-
ations occur on a particular set of preamplifier channels.
These events are detected by a strong cross correlation
[see Fig. 4(a)] between particular channels, which per-
mits them to be identified and removed from the sam-
ple. The second pattern, shown in Fig. 5(b), occurs due
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to unusually large noise fluctuation at the boundaries of
the detectors. Such fluctuations result in a very high
number of hits in one of the outermost rings (numbers
12 and 20). These events were removed by demanding
that the multiplicities in the outermost rings be not more
than some upper limit, which is determined &om the ring
multiplicity distributions [see Fig. 5(a)]. The definition
for maximum multiplicity in these rings was analogous to
the definition of minimum E~. It was checked that both
procedures if applied to the good channels (rings) do not
affect the results.

The fraction of all events rejected by these two criteria
is about 20%.

During the analysis of selected events some additional
precautions were taken to minimize other unphysical con-
tributions to the correlations under study.

(1) The signals from noisy pads were ignored and these
pads were treated as absent, as was done in the multi-
plicity analysis. The total number of such pads is ap-
proximately 5%%uc.

(2) The signals from neighboring pads in the multi-
plicity detector located along a radial line are processed
in the same discriminator module. During the analysis it
was found that there exists strong correlated noise within
some discriminator modules. Therefore, for pseudorapid-
ity correlations, we exclude contributions coming &om
the same discriminator module. This procedure simul-
taneously allows us to avoid the contribution of charge
sharing to the correlation function (see below).

(3) For azimuthal correlations we exclude &om the
analysis the outermost rings.

(4) For the most suspicious pads the correlations with
all other pads were calculated. [As an example see
Fig. 4(a).] It was shown that a few pairs of pads of
the detector are strongly correlated and these correla-
tions cannot have physical origin. Such pairs were also
excluded from the analysis.

There are also some other efFects which could bias the
results.

(1) It was found that the charge sharing between two
neighboring pads could give rise to signals &om both pads
&om a single particle. The contribution of this efFect to
the total multiplicity is approximately l%%uo, but the con-
tribution to the correlation function could be fraction-
ally much larger. We estimate the contribution to R to

be b,B,h, '";„s= 0.01/(n) where (n) is mean multiplic-
ity in the bin in question. The problem was solved by
subtracting the contribution to the correlation function
coming from neighboring pads in the bin under study.

(2) This procedure also avoids a second problem arising
from p conversions. As was shown in a previous analysis
[16] using the FRITIQF event generator, due to the very
small opening angles and the close proximity of the detec-
tor to the target, electrons from p conversion contribute
only to the same pad or adjacent pads.

(3) The corrections for the vertical beam coordinate
are significant for calculations of correlations in az-
imuthal angle space. The corrections to the pseudora-
pidity correlations are rather small. The procedure used
to evaluate this correction is described in the Appendix
A.

V. RESULTS

A. Pseuckorapidity taro-particle correlations

Using the above described procedure we have calcu-
lated two particle pseudorapidity correlation functions
for two difFerent multiplicity windows and difFerent con-
trol bins (position of gi) as a function of g2. The pseudo-
rapidity correlations were calculated within fixed sectors
of difFerent size in azimuthal angle space. All data were
taken with Si projectile incident on a natural lead tar-
get, at a beam momentum of 14.6 GeV/c per nucleon.
For the analysis we use multiplicity regions [80,100] and
[13Q,150] which correspond to central collisions located
on either side of the knee of the multiplicity distribution
[14]. The two regions were chosen to be reasonably nar-
row windows of N at somewhat difFerent centrality, both
of them are located well above the trigger thresholds.

Our results for pseudorapidity correlations for mul-
tiplicity window [80,100) are presented in Fig. 6. The
dashed lines in Figs. 6 and others show the value 1/N, —
which one should expect for the case of no dynamical
correlation. (There is, however, a contribution from the
nonzero width of the multiplicity window, which is dis-
cussed below in the comparison with a cluster model. )
We see clearly the short-range pseudorapidity correla-
tions in the data for large azimuthal angle intervals. Note
that the errors in the figures (we use one standard devia-
tion for the error bars) are calculated under the assump-
tion that the data points are independent. Because of
strong correlations introduced by the calculation proce-
dure they do not represent the true errors for the relative
difFerence between points. DifFerent data points are not
independent because the same data for the control bin
are used to calculate the correlations with all other bins.
This is why most of the points lie on the smooth curve
within their errors.

The FRITIOF results for the same control bins and thoro

multiplicity windows similar to those used for the data
are presented in Fig. 7. There exist other event genera-
tors such as ARC (A Relativistic Cascade) and RQMD
(Relativistic Quantum Molecular Dynamics) which in
some cases describe better the data at AGS energies.
Their disadvantage is that they are much slower than
FRITIoF, and our studies require very high statistics.
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FIG. 6. The correlation function

R(gq, gz) for gq ——1.35 and 2.15, indicated by
arrows on the graphs, as a function of gq cal-
culated within different azimuthal angle sec-
tor sizes bP. Multipbcity window [80,100].
27000 events.

FRITIOF does contain all the main features which we be-
lieve to be important for correlation studies such as mo-
mentum and charge conservation. From the compari-
son of our data with scaled hadron-hadron and hadron-
nucleus data (see below) it seems that the effects of in-
tranuclear cascading (which FR?T1OF does not have) are
not very important for our case.

To reduce the statistical errors, we average the correla-
tion function over a small pseudorapidity region, assum-
ing that the correlation function R(rlq, rl2) for a variation
of qq within a small region br' depends only on the dif-
ference (gq —qz). We calculate the correlation function
for different control bins (qq) in this region (we use re-
gions containing three bins), and, assuming translation
invariance of the correlation function, average it over the
region. Note that we do not lose resolution by this pro-
cedure; it is not equivalent to increasing the size of the
pseudorapidity bins. The results of such averaging are
presented in Fig. 8 (multiplicity window [80,100]) and in
Fig. 9 ([130,150]). To see the effect one should compare
Fig. 8 with corresponding graphs of Fig. 6. For each
graph with rh ——1.75, which is rather close to the bound-
ary of both detectors, the data adjacent to the boundary
are omitted, as they are strongly biased by the overlap-
ping of the two detectors.

For higher multiplicity, the correlations are smaller, as
expected from 1/N scaling. The height of the correla-
tion function appears to increase with decreasing size of
the azimuthal angle sector; for the smallest sector it is
approximately twice as large as the value found for the
whole ring.

In contrast to the real data, the data from the FRITIQF

event generator, which are presented in Fig. 10 (pseudo-
rapidity correlations within a whole ring in the azimuthal
angle space, 8$ = 2x) show no pseudorapidity correlation
at the same level of accuracy (a few tenths of a percent).
The FRITIQF results for other multiplicity windows are
similar.

Due to the scaling properties of the normalized two-
particle correlation function it is possible to make a com-
parison with the data from hadron-hadron and hadron-
nucleus interactions at higher energies [3—7]. For exam-
ple, in meson-nucleus (K+, z+)+(Al, Au) NA22 data [3],
the peak value of the two charged particle correlation
function R(0, 0) is close to 0.3, for dN/dpi = 2.6. This
results in R 0.015 when scaled to our particle density
dN/dg(rl = 1.3) —50 (multiplicity window [80,100]), All
other sets of data, when scaled to our multiplicity den-
sities, give for the peak correlation function values from
0.01 to 0.03.

Split-bin correlation functions [18] (SBCF) have been
used by Seibert [19] to analyze the data [20] from 0+Em
and S+Em collisions at 200 GeV/nucleon. The SBCF
is very close to the second-order factorial moment and
two-particle correlation function [very roughly Sz(hy) =
R(hy/2)], but has some important advantages such as
the use of independent data for the calculation in difer-
ent rapidity intervals and the possibility to extend cor-
relation calculations to other quantities (such as trans-
verse energy) in a natural way. Moreover, although the
semi-inclusive correlations are not studied in Ref. [19],an
event-by-event multiplicity correction and a correction
for the shape of single-particle density are introduced.
The function (N/AY(Sz —Sz)) is constructed, where N
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Control bin gg
1.87

0.49+0.11
0.40+0.10
0.36+0.10
0.36+0.07
0.76+0.15
0.58+0.15
0.56+0.11
0.56+0.07

Width
b

0.35

Sector size
hp

m/4

2'
s/4
z/2

2'

2.59
0.54+0.06
0.51+0.04
0.46+0.04
0.44+0.04
0.71+0.12
0.67+0.04
0.60+0.04
0.56+0.03

2.14
0.60+0.14
0.54+0.10
0.44+0.07
0.38+0.04
0.85+0.21
0.75+0.14
0.65+0.11
0.56+0.06

1.27
0.23+0.14
0.16+0.11
0.30+0.10
0.34+0.06
0.27+0.16
0.30+0.13
0.45+0.12
0.36+0.06

0.45

With the same cluster model parameters they obtain
h 0.5 for particles separated in azimuthal space by
b,P & 7r/2 and h 0.9 for Assts ) yr/2. Qualitatively this
result is consistent with our data, which give a smaller
value of b for small bP. We can see the analogous effect by
calculating the pseudorapidity correlations between par-
ticles produced in the sectors located opposite to each
other. In Fig. 12 the results of such an analysis are pre-
sented for different sector sizes and different values of rll.
If we fit these data by the same formula, we get values
of h larger by about 0.1.

to nucleon and pion with relatively small momentum in
the resonance system. The maximum rapidity separation
between nucleon and pion is 1.2. After fitting with a
Gaussian, the width is significantly smaller than for most
other resonances. The fact that we do not locate our con-
trol bins in the center of the rapidity distribution, as was
done for the ISR and Collider energies, could also slightly
inBuence the results.

The two-dimensional correlation analysis of the ISR
data [6] shows broader pseudorapidity correlations for
the particles located back-to-back in the azimuthal space.

2. Intermittency
p- 0.04

~~ 0.02

0

64I =ss/4 6ys =sr/2
Although there are at present no semi-inclusive mea-

surements of the factorial moments, it is very interest-
ing to compare our results with factorial moments data,
because of the intimate connection between two-particle
correlation function and the second-order factorial mo-
ment. A simple relation between those two quantities
can be derived under the assumption that one-particle
density does not depend on rapidity [p(l)(y)=const=a]
and a two-particle density function depends only on the
difference between yq and y2..
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Multiplying through by (ab, y) and taking the second
derivative with respect to Ay we immediately have

[(o»)'+2(»)]"= 2l "'(»). (14)

If, as was found in many experiments, the factorial mo-
ments exhibit intermittent behavior, i.e.,

Ii2 ——c(Ay) (»)

—0.02

—O.04
~ I-I I s s s I s s s I s s

1 2 3 1 2 3

FIG. 12. The same as Fia. 8 for correlations between op-
posite sectors.

TABLE I. Parameter P = (k(k —1))/(k) For difFerent values of width h and sector sizes hg.
Errors shown after rescaling y (see text). Multiplicity window [80,100].
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FIG. 13. The correlation function R(ETtI)
as a function of azimuthal angle difference

AP between two bins of azimuthal angle size
7r/32 and pseudorapidity 0.96 ( q ( 1.61 for
FR&vroF and Si+Pb data. Multcpliccty win-

dows are shown in the graphs.

then the two-particle density should follow the same
power law:

more precise measurements are needed for a stronger con-
clusion.

p'"(») = (2 - &2)(I &z)(»-) '
2

The experimental nucleus-emulsion data on the second-
order (inclusive) factorial moment give for the intermit-
tency indices Pz values from 0.002 to 0.008 for our par-
ticle densities (see the compilation in Adamovich et aL

[17]). For example, a value P2 ——0.005 implies that for
Ay values of 0.2 and 1.0 the two-particle density differs
by a factor 1.008 and the two-particle correlation func-
tion, which is directly related to p~ ~, changes by 0.008.
This value is somewhat larger than could be expected
from our data. Our data can be fitted, by directly us-
ing Eq. (16), taking into account the finite bin width. In
this case for the pseudorapidity correlation between bins
[ai, bi] and [a2, 62] we have:

bg

dpi drI2 p( ) (rji, rl2)

CX2

A fit to our data gives intermittency indices, for differ-
ent control bins, from 0.001 to 0.005 for the multiplicity
window 80, 100] and less than 0.002 for the multiplicity
window [130,150]. Although these values were obtained
under a very crude approximation, we conclude that our
data do not contradict the intermittency data; however,

B. Asimuthal correlations

In this section we discuss azimuthal multiplicity and
transverse energy correlations for different pseudorapid-
ity regions. The corrections for the vertical beam position
distribution are significant here for multiplicity correla-
tions, but the systematic errors arising &om this correc-
tion are much smaller than the statistical errors shown
in the figures, due to the rather good accuracy of the
extracted parameters of the beam vertical position dis-
tribution (see Appendix A).

The multiplicity correlation functions in the azimuthal
angle space, calculated within pseudorapidity window

[0.96,1.61] [see Fig. 13(b)] show nonzero back-to-back cor-
relations. These results are consistent with FRITIQF cal-
culations [Fig. 13(a)] and the ISR pp results [6]. This
feature is very probably the consequence of the global
momentum conservation, which should be very impor-
tant for a large pseudorapidity region. It could also be
the consequence of a nonzero impact parameter. This
latter very interesting possibility needs more extensive
study.

The azimuthal correlations for smaller pseudorapidity
regions depend on the location of the pseudorapidity in-

terval (see Fig. 14). Pseudorapidity windows located
in the central region give back-to-back correlations, but
windows in the projectile fragmentation region result in
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FIG. 14. The correlation function R(Ap)
as a function of azimuthal angle difference
441 between two bins of azimuthal angle size
z'/8 for difFerent pseudorapidity regions. (a)
Multiplicity window [80,100]. (b) Multiplic-
ity window [130,150].
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FIG. 15. FRITQF predictions for the cor-
relation function R(b,g) as a function of
azimuthal angle difference b,P between two

bins of azimuthal angle size z/8 for different

pseudorapidity regions. Multiplicity window

[120,130].

positive (relative to 1/N—) correlations. FR1T1oF predicts
a much smaller difference in back-to-back correlations be-
tween different pseudorapidity intervals (Fig. 15).

In contrast to the azimuthal multiplicity correlations
the azimuthal transverse energy correlations do not re-
quire any corrections for the vertical beam position. The
participant calorimeter, as mentioned above, consists of
the 16 +symmetric sectors, so we have the same sector
size as for multiplicity analysis. The (raw) transverse en-

ergy distribution for multiplicity window [80,100] and the
total measured pseudorapidity range is shown in Fig. 3.
Although the distribution is rather narrow, a mixture of
events with different ET causes positive pseudocorrela-
tion, just as a mixture of events with different multiplic-
ities does for the multiplicity correlations. Therefore, in
Fig. 16 we show the results for different relatively small
transverse energy regions. In this figure we present re-
sults for events with total multiplicity &om the regions
[80,100] and [130,150].

We can estimate the value of the pseudocorrelation due
to the nonzero width of the transverse energy window,
under the assumption of proportionality of the transverse
energy pseudorapidity distribution to the total trans-
verse energy (within a narrow multiplicity window or
almost constant centrality). In this case b,R~""8
(AE&z)/(ET)z. These quantities have been calculated
along with the correlation functions and are presented
in Table II. The value of the correlation function at s'/2
is also given for comparison. One can see that this effect
explains most but not all of the difference between corre-

lation functions using all E~ events and narrow windows.
We suspect that the residual effect is due to a difference in
the shape of the transverse energy pseudorapidity distri-
bution for different total Ez. The changes in the mean
multiplicities corresponding to the different ET regions
are negligible (see Table II).

The E~ azimuthal correlations show a behavior anal-
ogous to the multiplicity correlations. In Fig. 17 we

present also transverse energy azimuthal correlations for
different pseudorapidity regions (compare to Fig. 14). To
compare Ez correlations with multiplicity correlations
one should consider that ET correlations take into ac-
count the contribution &om neutral particles. We also
cannot avoid without complicated corrections the effects
of shower spreading, which cause large positive correla-
tions within the size of the shower. For large pseudora-
pidities this effect, unfortunately, could be dominant. To
be less sensitive to shower spreading in current analysis
we used transverse energy produced in the two electro-
magnetic sections and only the first hadronic section of
the calorimeter, but the effect can still be significant.

VI. DISCUSSION AND CONCLUSION

We have presented the results of a two-particle and
transverse energy correlation analysis of the Si+Pb col-
lision data at AGS energies. The use of relatively small
multiplicity windows allows us to avoid pseudocorrela-
tions &om mixing of the events with different total mul-

tiplicities. We see the short-range correlations, simi-
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imuthal angle size z/8 and pseudorapidity
0.96 ( g ( 1.61 for diferent Ez regions
(shown in GeV). (a) Multiplicity window
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TABLE II. AR ' " for different multiplicity windows and ET cuts.

Multiplicity
window

[80,100]

[130,150]

ET window

(GeV)

All

[30,38]
[38,46]
[46,54]

All

[48,55]
[55,61]
[61,68]

(&ET)/(E~)'

0.023
0.004
0.003
0.002
0.0081
0.0012
0.0009
0.0008

Rs(s/2)

0.027
-0.002
-0.004
-0.008
0.008

-0.006
-0.009
-0.010

(N)

89.6
87.1
89.9
92.9
138.4
137.5
138.6
139.6

lar to the well-known correlations observed in hadron-
hadron and hadron-nuclei collisions at higher energies.
The heights of the normalized correlation functions are
somewhat smaller than values obtained by 1/N scaling of
the hp and hA data. Analysis of our data within a sim-
ple cluster model gives results comparable to those found
at Fermi National Accelerator Laboratory, and ISR and
SppS colliders at CERN. However, our data favor some-
what smaller values for the width of the cluster decay
distribution and mean multiplicity of cluster decay than
the higher energy data. A qualitative explanation for the
difference may lie in the fact that present experiment is
done at lower energy and does not produce heavy reso-
nances with large probability.

There exist no AA data on two-particle correlations
with which to make comparisons. We have attempted to
extract relevant information &om AA factorial moment
data. Because of the intimate connection between the
two-particle correlation function and the scaled second-
order factorial moment, one should be able to directly
relate the latter to our measurements. However, all the
available data are for inclusive factorial moments only,
and we were unable to take into account in a sufBciently
reliable way the mixture of events with different multi-
plicities. The analysis of our data under the assumption
of intermittent type behavior of the two-particle corre-
lation function gives intermittency indices for different

pseudorapidity regions &om 0.001 to 0.005 for multiplic-
ity window [80,100] and less than 0.002 for multiplicities
[130,150].

The FRITIQF event generator, which shows at this
level of accuracy (a few tenths of a percent for the nor-
malized correlation function), no pseudorapidity corre-
lations, does not agree with our results. Although the
FRITIoF results always underpredicts semi-inclusive two-

particle correlations, the difference for AA collisions is
larger. As for azimuthal two-particle correlations the
agreement between FRITIoF and the data is better, al-

though in the projectile &agmentation region the data
exhibits no back-to-back correlations while the FRITIQF
data does predict such an effect. For relatively large
pseudorapidity windows the clearly evident back-to-back
correlations are most likely due to momentum conserva-
tion but could be also due to nonzero impact parameter
collisions. In the &agmentation region, diffraction could

play an essential role, and the study of correlations in
this region could provide us important information on
the propagation of diffractively excited hadrons through
nuclear matter.

Our results are consistent with that observed in
the SBCF analysis of 0+Em and S+Em collisions at
200 GeV/nucleon. The slightly larger correlations seen
in the emulsion experiment can be explained by the dif-

ference in beam energy for the two different experiments.
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FIG. 17. Transverse energy azimuthal

correlations for different pseudorapidity re-
gions. (a) Multiplicity window [80,100],
38 GeV& ET & 46 GeV. (b) Multiplicity win-
dow [130,150], 55 GeV & E~ & 61 GeV.
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For the first time we present a measurement of the
transverse energy correlation function. Although these
correlations are distorted at small AP or Ari by the
shower spreading in the calorimeter, they have some clear
advantages. They are insensitive to the efFects of low-

energy charged particles and b rays, and, in this experi-
ment, there is no need to make corrections for the beam
position variations, due to the large size of the calorime-
ter. The ET correlations give us the possibility to take
into account also neutral particles and study the cor-
relations between all produced particles, which can be
important in some investigations.

Our results do not indicate any "new" physics of multi-
particle production in the AA collisions at AGS energies.
However, the study of AA collisions with its high multi-
plicities and statistics permits a study of semi-inclusive
two-particle correlations with good accuracy in a rela-
tively wide range of pseudorapidity. The two-particle
correlations in hh collisions are strongly affected by dif-
ferent conservation laws: conservation of the momentum,
charge, and baryon number. The correlations in AA col-
lisions could be less sensitive to these effects.
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APPENDIX A: CORRECTIONS
FOR THE VERTICAL BEAM
POSITION DISTRIBUTION

In the present experiment the vertical position was
not measured on an event by event basis. But fortu-
nately, knowledge of dn/dry, measured in the same ex-
periment, and of the distribution of the vertical beam
offset, which is measured in the multiplicity detector, al-
low one to calculate the corrections analytically without
needing to know the exact beam position in each event.
The correction procedure for the normalized two-particle
correlation function due to the vertical beam position
distribution can be described by the formula:

with respect to the parameters of the distribution cen-
troid yo and variance a„. In Eq. (A5) N; is the number
of hits in the ith pad under the condition that there is a
hit in the control pad. ¹'tis estimated number of hits
using the assumed distribution for vertical beam position.

To calculate N;"t we use the formula:

~est d d P

x (I —exp[—6,'(2:,y) j), (A6)

where dN, t, (z)/dz is the distribution of the total num-
ber of hits in the control pad in horizontal beam position.
The number of hits in the control pad depends on x beam
position, but not on the y position due to the location
of the pad in the horizontal plane. For the dN, „t,/dx
distribution we also use the experimental data from the
silicon strip detector in the beam. We denote by n' the
mean multiplicity in the ith bin under the condition of

Here pseudorapidity q and azimuthal angle P are calcu-
lated in the coordinate system centered on the detector.
P(y) is the normalized vertical distribution of the beam
particle at the target.

As mentioned above, it was assumed that the distribu-
tion P(y) is Gaussian. The width of the distribution was

determined by measuring the spatial distribution of coin-
cidences between selected cells in each plane of the mul-

tiplicity detector. The distribution of such coincidences
is quite sensitive to the distribution of beam particles.
It is due to a small overlap of the two detectors at off
axis beam particles (see Fig. 18). We choose as a control
pad one of the pads located in the horizontal plane &om
the innermost ring of the first detector. We used pads in
the horizontal plane due to nonzero horizontal mean ofF-

set (measured by the vertex silicon strip detector). We
then study the coincidence of hits in this pad with six
pads &om the second detector. We take three pads &om
each of two outermost rings of the second detector. To
extract the parameters of beam position distribution we
minimize the function:

. (N, —N.-')'
X'(yo, ~s) = ).

gcorrected (guncorrected, 1q ]g+ )j iIc

where the correction coeKcient E,I, is

lt'~ = I'~/I'. Ia,

(Al)

(A2)

I I,
—— dyP y

Er]; bg;

X
&na~4 a

dry;dp;

d2n
drlI ddt

d d (rl', 4'; y)
~Pl h

d2n
xd d. (~., O', y),

9k Va

d2n
I~ = dyP y dyed ~ g~, ~y.2 2d dy 2& 2'

(A3)

(A4)

(a) (b)

FIG. 18. (a) Plan view of the detectors, showing how an
off-axis particle can hit both detectors. (b) Overlapping of
the detectors from the interaction point as seen by an o8-'axis
beam particle.
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a hit in the control pad. It depends on the probability
Io, (z, y) that the same particle hits both the control pad
and ith pad.

n.*=uI(z y)
'"'+

~

1
'

uI (z y) lin (A7)
'ncntr ( Scntr )

Here n; and n „q„are mean multiplicities in the i-th and
control pads, tII;(z, y) is calculated as the fraction of the
control pad area in common with the ith pad at offset
(z, y). S; and S,„t, are the areas of the control pad and
ith pad.

In the above formulas we assume a Poisson multiplicity
distribution in each pad. In this case the mean pad oc-
cupancy n; and the mean pad multiplicity n; are related
by the equality

n; = 1 —exp( —6;). (A8)

The results of the fit are presented in Fig. 19, where we
show unbiased distributions in the pads, the distributions
under the condition of a hit in the control pad, and the
estimated distribution using the assumed vertical beam
position distribution.

The fit (y = 9.8 for 9 degrees of freedom) gives for the
width the value 0.„=1.25 6 0.05 mm, and in accordance
with previous results [16] it shows that the beam is well
centered at the center yo

——0.01 + 0.04 mm. Note that
the accuracy in the parameters is more than adequate for
the corrections we need (see results below).

The fitting procedure we used can be also general-
ized to extract the horizontal beam position distribution
(which is independently measured by the silicon strip de-
tector). We use this procedure to check the method.
The result we find for the parameters of horizontal dis-
tribution (o = 1.26 j 0.2 mrn, zo ——3.65 6 0.09 mm)
are in very good agreement with that measured by the
beam vertex detector (o = 1.24 + 0.01 mm, zo
3.50 6 0.01 mm).

To illustrate the order of magnitude of the correction
coefBcients K,A, we present Fig. 20, where the correction
coefEcients for azimuthal and pseudorapidity correlation
are shown. One should compare the figure with the final
correlation results presented in the next chapter. The
difference of K,A, &om unity is approximately the correc-
tion value to the correlation function B,y. One can see,
that the corrections to the azimuthal correlations are sig-
nificant, the correction to the pseudorapidity correlation
are rather small for the correlation within small P sectors
and totally negligible to the pseudorapidity correlation in
the full azimuthal angle space bItI = 2vr.

6000

0 4000
L-
Q

C)
E 2000
C ring 1 2

0'. I . I . I . Il

2 4 6 8
pad's number

6000

4000

2000
ring 11

0 . I . I . I . I

2 4 6 8
pad's number

0

M 3000
flAg 12

o 2000
L

S

1000-
t:

0 I

2 4 6 8
pad's number

3000

2000—
f lng 1 1

1000—

0 I I s I ~ I i I

2 4 6 8
pad's number

U) 3000
ring 12

o 2000
I
QJ

1000—
C

0 a I i I i I ~ I

2 4 6 8
pad's number

3000

2000—
ring 1 1

&ooo —~
0 r I a I ~ I a I

2 4 6 8
pad's number

(c)

FIG. 19. (s) Unbiased hit distributions in the pads un-

der study. (b) The distributions under the condition of hit
in the control pad located right below the horizontal plane.
The estimated distribution shown by dashed lines. (c) The
same as (b) for the control pad located immediately above
the horizontal plane.

APPENDIX B: SIMPLE CLUSTER MODEL

The main features of the cluster model can be ex-
plained in the following way. Let us assume that in some
rapidity window we select the events with Np directly
produced charged particles and N„= o.Ng resonances
which decay always to two charged particles. The to-
tal number of charged particles is N = Ng + 2N„
Ng(1+ 2o;). Under the assumption of no other correla-
tions except the resonance decays we have a multinomial
distribution for the number of particles in each rapidity
bin with mean value proportional to the rapidity density.
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(o)

1.02

1.01 — ~W= ~/2

0.99

0.98

FIG. 20. (a) The correction coefficient for
azimuthal angle correlation between sectors
of size bP = 7r/8, within pseudorspidity win-

dow 0.96 & rI & 1.61. (b) The correction
coe%cient for pseudorapidity correlation for

gi = 2.15, as a function of g2 for two differ-
ent sizes of azimuthal angle sectors bP = 7r/2
and 2'.
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Using this distribution it is easy to derive the formula

&2(y&, y2)—:p
' (yi, y2) —p(y~) p(y2) = &(yi, y2) p(yi) p(y2)

&yz+ y21 1=2p.
I i

~(yl y2) pd(yl)pd(y2) ps(yl)ps(y2)
2 ) Nd r

(B1)

Here p„(y) is resonance rapidity density, pd(y) is the ra-
pidity density of directly produced particles, and u)(b, y)
is the probability density to have rapidity separation Ay
between products of the resonance decay, normalized to
unity

&(yi, y2) = p '~(yi —y2)1+Q

cr l1—
I
I+ 1+o) N

u)(b, y)db, y = 1. (B2)

We denote by p, the rapidity density of the secondaries
&om resonance decays,

p (w) = 4 f u. (v.)~)2(u —w. )]&a'

The resultant one particle density is p(y) = pd(y) +p, (y).
If the one-particle density does not significantly change
over the range of the average rapidity separation between
the products of the resonance decay we have

p. (y) = 2p(y). = ~pd(y).

In this approximation

For isotropic decays the function u)(b, y/2) oc cosh (Ey)
and with (b,y) „depending on resonance and product
masses, and for massless products can be very well fit-
ted by a Gaussian with width 0.86. The contribution of
other resonances (clusters) which can decay to more than
two charged particles can be easily added. Taking into
account also the nonzero width of our multiplicity win-
dows, we find an expression (12) to which we fit our data.
Parameter P in the formula (12) relates to the mean clus-
ter decay multiplicity and for our simple model with only
resonances decaying to two particles is

(B6)
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