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Double-folding model for heavy-ion optical potential: Revised and applied to study
12C and 160 elastic scattering
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The double-folding model is generalized for the calculation of the nucleus-nucleus potential
using the new version of the density-dependent M3Y interaction which reproduces consistently the
equilibrium density, and binding energy of normal nuclear matter as well as the density- and energy
dependence of the nucleon optical potential. The exchange part of the heavy-ion optical potential is

evaluated within a local density formalism, using the finite-range exchange components of the same
interaction. The model is used successfully to describe the elastic C and 0 scattering data at low

and medium energies. The in6uence of difFerent density-dependent parameters (which determine
difFerent nuclear equations of state) on the description of heavy-ion scattering is also discussed.

PACS number(s): 24.10.Ht, 21.30.+y, 21.65.+f, 25.70.Bc

I. INTRODUCTION

During the last decade, the double-folding model [1]
has been widely used by many groups in describing the
heavy-ion (HI) scattering, due to its simple handling in
numerical calculations. The original version of the fold-
ing model [1] seems to deliver satisfying results in most
cases where the HI interaction is dominated by strong ab-
sorption, i.e. , when the elastic-scattering data are sensi-
tive to the HI optical potential only in the surface region.
However, it is well established now that in certain cases of
nuclear rainbow scattering, observed first for o. particles
[2] and later on for other light HI systems [3—5], where
the data are sensitive to the HI optical potential over
a wider radial domain, the simple double-folding model

[1] failed to give a good description to the data. There-
fore, some further developments of the folding model have
been made to obtain a more realistic shape of the folded
potential. One of these approaches is to impose on the
widely used MSY effective nucleon-nucleon (NN) inter-
action [6] an explicit density dependence to account effec-
tively for the in-medium efFects which are more substan-
tial at small internuclear distances, the so-called DDM3Y
interaction [7]. Another way is to correctly treat the sin-
gle nucleon knock-on exchange (SNE) efFects arising from
the Pauli principle [8,9] where the intrinsic energy and
density dependence of the HI potential due to the an-
tisymmetrization efFects is taken into account correctly.
In this approach the exchange potential is derived &om
first principles within a local density formalism, using the
finite-range exchange (M3Y/FEE) interaction, which is
essentially a much better approximation as compared to
the zero-range pseudopotential [10] adopted in the usual
double-folding calculations [1,7].
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Even though these improved versions of the folding
model have been used quite successfully to calculate the
a-nucleus and nucleus-nucleus potentials, there remains
an important question of how good the MSY interaction
approximates the NN interaction in a nuclear medium.
A foremost requirement for an effective in-medium NN
interaction is that the interaction must correctly repro-
duce the basic properties of the normal nuclear matter.
Our recent nuclear matter study [11] using the M3Y in-
teraction has shown that both the original M3Y inter-
action [6] and its density-dependent version DDMBY [7]
cannot provide a reasonable description of the normal
nuclear matter. Therefore, some new density-dependent
versions of the MSY interaction have been introduced
[ll] which consistently reproduce the basic nuclear mat-
ter properties as well as the density and energy depen-
dence of the nucleon optical potential. While giving the
same description of the normal nuclear matter, the new
density-dependent interactions generate difFerent bind-

ing energies of the cold nuclear matter at higher densi-
ties, i.e., difFerent equations of state (EOS) of the cold
nuclear matter. In the present work the double-folding
model is generalized, in the spirit of previous approaches
[7—9], to calculate the real HI optical potential using the
new density-dependent versions of the M3Y interaction
[ll] with the local exchange part evaluated exactly. The
reliability of our approach is tested in the detailed folding
analyses of the elastic-scattering data for 2C and 0 at
low and medium energies. The sensitivity of the results
to difFerent density dependences of the interaction favors
the concept that the cold nuclear matter is most probably
governed by a soft EOS.

A brief description of the new density-dependent in-

teraction, the generalization of the double-folding model,
and some details of the numerical calculation are given
in Sec. II. In Sec. III the results of the folding analyses
of the C and 0 elastic scattering data are discussed.
Conclusions of the present paper are summarized in Sec.
IV.

0556-2813/94/49(3)/1652(17)/$06. 00 1652 1994 The American Physical Society



49 DOUBLE-FOLDING MODEL FOR HEAVY-ION OPTICAL. . . 1653

TABLE I. The parameters of difFerent density dependences of the M3Y interaction [see Eqs.
(3)]. The nuclear matter compressibilities K were obtained from the HF calculation reported in
Ref. [11].

Interaction
DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

+(p)
Eq. (3a)
Eq. (3b)
Eq. (3b)
Eq. (3b)

C
0.2845
1.2253
1.0678
1.0153

3.6391
1.5124 fm
5.1069 fm
21.073 fm'

2.9605 fm
1.0
2.0
3.0

K (MeV)
149.5
210.6
332.1
453.6

II. THEORETICAL FORMALISM

A. EfFective density-dependent NN interaction

To evaluate an in-medium NN interaction starting
&om a realistic &ee NN interaction still remains a chal-
lenge for the nuclear many-body theory. The sophisti-
cated Brueckner-Hartree-Fock (BHF) calculations which
include the two- and three-nucleon correlations are still
unable to describe simultaneously the equilibrium den-
sity and the binding energy of the normal nuclear mat-
ter, and the inclusion of higher-order correlations as well
as relativistic efFects is shown to improve the situation
[12]. Therefore, most of the microscopic nuclear reac-
tion calculations so far still use difFerent kinds of effec-
tive in-medium NN interaction. Such interactions can be
roughly divided into two groups. In the first group one
parametrizes the efFective interaction directly as a whole
(e.g. , the Skyrme forces), leaving out any connection with
a realistic free NN interaction. In the second group one
first derives the efFective interaction in the lowest-order
of the many-body calculation (a solution of the Bethe-
Goldstone equation), starting from a realistic NN inter-
action which reproduces the free NN scattering data; the
higher-order corrections are then parametrized (mostly
in terms of a density and moment»m dependence) and
included into the interaction so that already in a sim-
ple Hartree-Fock (HF) calculation one obtains a good
description of the normal nuclear matter. We have con-
structed [ll], within the second scheme, an energy- and
density-dependent effective interaction which is based on
the original M3Y interaction as the first-order effective
interaction. Since the original MSY interaction [6] was
derived by fitting its matrix elements in an oscillator ba-
sis to those elements of the G matrix obtained from a
Bethe-Goldstone calculation using the Reid soft-core NN
interaction, our nuclear matter results [ll] obtained in a
HF calculation might be compared to those of a sophisti-
cated BHF calculation with the higher-order corrections
taken into account. With the direct (vD) and exchange
(vEx) parts of the original interaction determined from
the singlet and triplet even (vsE, vTE) and odd (vsQ v'rQ)
components of the MSY forces [6]

we have parametrized [11] the energy- and density-
dependent M3Y interaction in the form

vD(EXi(P, &, r) = +(P)g(&)vD(EX) (r)

g(E) = 1 —0.002E. (2)

The explicit form of the density-dependent factor F(p)
is introduced as

C[1+a exp( —Pp)], the DDMSY-type, (Sa)
( (1 —erg), the BDM3Y-type. (Sb)

150. ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

: Cold Nuclear
120—

90—

60—

30—

BDM3Y3

BDM3Y2

BDM3Y1

DDM3Y1

EOS !

I
I

I
I

I
I

/ /

I I
I I

I I
I I

I I
I

I I
I I

I I
I I

/
I

/
/

/
/

/
/

r ~

I

The parameters in Eqs. (3) are adjusted [11] to re-
produce the basic properties of the normal nuclear mat-
ter while generating different EOS for the cold nuclear
rnatter (see Table I and Fig. 1). The energy-dependent
factor g(E) in Eq. (2) is introduced [11] to account for
an additional (explicit) energy dependence of the NN
interaction which is absent in the original static M3Y in-
teraction. Note that the parameters of the well-known
DDMSY interaction [7] were only fitted to the density
and energy dependence of the microscopic nucleon op-
tical potential obtained by Jeukenne, Lejeune, and Ma-
haux (JLM) [13],and they turned out to be irrelevant in
describing the saturation of the cold nuclear matter [11].
The new parametrizations (Table I) used in the present
paper give both a good description of the normal nuclear
matter and an agreement with the JLM results for the
nucleon optical potential (see Figs. 1—3 of Ref. [11])at
different energies and densities.

vD(r) = 7999.0 —2134.25, (la)
4T 2.5T

—30
0.0 0.2

~ I ~ ~ ~

0.4
p [fm']

0.6 0.8

exp( 4r) —exp( —2.5r)
vFx r = 4631.38 —1787.134, ' '

2.5.
exp( —0.7072r)

0.7072T
(lb)

FIG. 1. Different nuclear EOS generated by differ-
ent-density dependent versions of the M3Y interaction [see
Eqs. (3)] with parameters giving the nuclear compressibili-
ties K 150—454 MeV (Table I).
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B. Generalized double-folding model

The basis of the folding approach has been presented
in detail by Satchler and Love [1]. We give here only a
short description of the model and concentrate more on
its improved version being used in the present paper. In
the first order of the many-body theory, the microscopic
nucleus-nucleus potential can be evaluated as an anti-
symmetrized HF-type potential for the dinuclear system

with

s .-& ( s&l
p(R, R+s) p(R+ — jr kr~ R+ — ~s

2
~ ( 2) )

(8)

ji(z) = 3(sinz —zcosz)/z .

The average local Fermi momentum k~ is chosen [14] to
accelerate the convergence of the density-matrix expan-
sion and has the following form

VL) + VEx = ) [(ijI»lij)
iGA1, jCA2

+(ijli)Ex Iji)] (4)

1/2

k~(r) =
3p(r) 4

~(r) —-&'p(r)

where ~i) and
~j) refer to the single-particle wave func-

tions of nucleons in the two colliding nuclei A~ and A2, re-

spectively; vD and vEx are the direct and exchange parts
of the e8'ective NN interaction considered in Sec. IIA.
By introducing the one-body density matrices pii2) (r, r')
of the two colliding nuclei [8,9] [with the diagonal terms
giving the matter densities p(r, r) = p(r)], one can ex-

plicitly write the energy-dependent direct and exchange
potentials as

5&s['7p(r)]'
kF(r) = -7('p(r) +,

( )

xja
5V'p(r)
36p(r)

(1O)

Further, we choose the extended Thomas-Fermi approx-
imation [15] for the kinetic energy density r(r) and the
local Fermi momentum can be obtained as

VD(ER) = f p, (r, , )pr(rs)vp(p, E, s)drrdrr,

with s = r2 —ri + R, (5)

Vsx(E, R) = f pr(rr, rr y s)ps(rs, rs —s)vsx(p, E, s)

x exp
ik(R) s

dFydF2 (6)

Here k(R) is the relative-motion momentum given by

k (R) = [E, —V(E, R) —Vc(R)],

where M = AiAz/(Ai + A2) is the reduced mass, E,
the center-of-mass (c.m. ) energy, E the incident labora-
tory energy per nucleon, and m the bare nucleon mass.
V(E, R) = V~(E, R) + VEx(E, R) and Vc(R) are the
total nuclear and Coulomb potentials, respectively.

In the present work the direct potential (5) is evaluated
using the same method as that developed by Kobos et al.
[7] with some modification to also include the BDM3Y-
type interaction (3b) in the calculation. Therefore, we

give here only the details of the calculation scheme for
the exchange part of the HI potential which is a general-
ization of the approaches suggested first in Refs. [8,9]. It
can be seen from Eq. (6) that the energy-dependent HI
potential is nonlocal through its exchange term. Since
the exact treatment of the nonlocal exchange term is too
complicated numerically, one usually obtains the equiva-
lent local potential by using a realistic localized expres-
sion for the density matrix [14]

where Cg is the strength of the so-called Weizsacker term
representing the surface contribution to v(r). Normally

1
one takes Cp —for a finite fermionic system. How-

36
ever, a detailed study by Baltin [16] has shown that in
a region of small density or high (7p (which just corre-
sponds to the nuclear surface) the Weizsacker correction
term to the kinetic energy density is much larger and

1
should have a strength of Cg —. Therefore, as op-

4
posed to previous approaches [8,9], we have taken the
latter value for Cg which turned out to also give a more
realistic shape to our microscopic HI potential. For the
infinite nuclear matter the surface correction term van-
ishes and one has ky reduced to the Fermi momentum
of the nuclear matter with density p which corresponds
to the well-known Slater approximation for the nonlocal
density matrix.

Another important step is to specify the overlap den-
sity which enters the expressions (3). We have taken this
density to be the sum of the densities of the two collid-
ing nuclei at the midpoint of the internucleon separation,
i.e.,

This procedure simply corresponds to the local density
approximation assumed in di8erent nuclear matter stud-
ies [17] or the so-called frozen density approximation
(FDA) usually adopted in the folding model [1,7,18].
Some more discussion on the validity of the FDA is given
below, in Sec. IIIA.

After some transformations one can obtain the energy-
dependent exchange potential in the following local form:
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VEx(E, R) = 4~g(E) ~Ex(s)s'dsjp(k(R)s/M)
0

X y E'~8 2 F —R)8

VEx(E, R) = 4vrg(E)

x G R, 8 jo k R 8 I vEX 8 8 d8,

(13)

where

where

xF[pi(r) + p2(r —R)]dr,

fi(2)(» s) = s i(2)(r)ji (ks i(~) (r)a)

(12) OO

G(R, s) = — h (t, s)h (t, a) + nG(t, s) j (tR)t dt,2' 0

(14)
and

hi(g)(t, a) = 4x fi(2)(r, s)j p(tr)r dr
0

and jp(z) = sine/x. Applying the folding formulas in

momentum space [1], one can deduce the exchange po-
tential (12) to the form

The explicit form of the G(t, s) function is determined by
the explicit form of the density-dependent function F(p),
namely,

G(t, s) = &

for DDM3Y-type interaction;' yi(t, s)y2(t, s)
P

—) ~ ~

zi(
"+ )(t, s)zz"+ )(t, s) for BDM3Y-type interaction.- (n)

Here

and

yi(2) (t, s) = 4n fi(2) (r, s) exp, —Ppi(2) (r)I
0

xjp(tr)r2dr

z,(,)(t, s) = 4~ fi(2)(r, s)pi(, )(r)jp(«)r'«.
0

Note that Eqs. (13) and (14) were obtained assuaging
an isotropic form for the densities of the nuclei (which
is the case for the ground-state density). In general, by
expanding the densities into multipoles, one can obtain
not only (13) for the optical potential but also the HI
inelastic form factors (different multipole components of
the HI potential) [19].

Since the exchange potential contains the relative-
motion momentum k(R) which in turn depends on the
total HI potential [see Eq. (7)], one has to solve a self-
consistency problem to obtain the exchange part of the
HI potential at each radial point. In general, this problem
can be solved by using an iterative procedure as has been
done first by Chaudhuri et al. [8]. In our earlier works
[9,19,20] in this direction we have used a closed expression
for the exchange potential obtained &om a series expan-
sion of the Bessel function jp(k(R)a/M). This method
has been proven recently by Abele and Staudt [21] to
give the same results as the iterative procedure down
to the radius of about 2 fm (for the sO+ 0 system)
while at the smallest distances the exact iteration gives
a potential more attractive than that obtained with the
closure approximation. Therefore, we have chosen in the
present paper the iterative method again to ensure the
self-consistency at all the radial points, using V~(E, R)
as the starting potential to enter jp(k(R)s/M) in the ex-
change integral (13). The nn~ber of iterations needed to
obtain the exact self-consistent results for VEx(E, R) is

U(E, R) = Ng[VD(E, R) + VEx(E) R)]
&R- Rv1

iWv 1+exp ~—
&v )

d fR —RD)+4ig Daii 1+exp
~ , (16)

where the renormalization factor N~ together with the
parameters of the imaginary potential are adjusted to
obtain the best 6t to the scattering data. The WS sur-
face term in Eq. (16) (denoted further as WSD) is op-
tional and added only in cases where it essentially im-
proves the agreement with data. The Coulomb potential
Vc (R) used in the calculation of the exchange potential
[see Eq. (7)] and in the OM analyses is generated by fold-
ing two uniform charge distributions [22] with the radii

around 20 at the smallest radii and ranges from 3 to 5
at the surface region which indicates stronger exchange
effects at small internuclear distances.

The microscopic energy-dependent HI optical poten-
tials calculated within our approach are used further in
the optical model (OM) analyses to describe the C and

0 elastic-scattering data at difFerent incident energies.
All the nuclear densities used in our folding calculations,
if not otherwise specified, are taken as a Fermi distribu-
tion with parameters chosen [18] to reproduce the shell-
model densities for the considered nuclei. Since the orig-
inal M3Y interaction [6] is real, the calculated HI poten-
tials are also real and enter the OM analyses as the real
part of the HI optical potential. The imaginary part,
as in most of the folding analyses, is taken in some phe-
nomenological form with the parameters adjusted to give
the best 6t to the scattering data. We have assumed for
simplicity the Woods-Saxon (WS) shape for the imagi-

nary potential so that the HI optical potential in our OM
analyses is
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taken from the electron scattering data for the consid-
ered nuclei. All the OM analyses were made using the
nonrelativistic code PTOLEMY [23]. For the medium en-

ergy cases considered in Sec. III, the effective masses and
incident energies were used (see Tables II and V) to give
the relativistically corrected c.m. kinematics [24].

III. RESULTS AND DISCUSSIONS
A. General considerations

Since the parameters of diferent density dependences
(Table I) of the M3Y interaction have been adjusted [11]

to reproduce the basic properties of the cold nuclear mat-
ter at saturation density (po), all the calculated poten-
tials have about the same strength and slope at the sur-
face (see, e.g. , the folded potentials calculated for the
~sO+~sO system at 250 MeV shown in Fig. 2) which
corresponds to the small overlap or low-density region.
The main difference between different types of the folded
potential is showing up at small internuclear distances
which correspond to the higher overlap density of the two
colliding nuclei. Thus the BDM3Y3 interaction, chosen
to generate a very hard EOS (Table I), is much more re-

TABLE II. The optical potential parameters used in our folding analyses of the elastic x2C+ C scattering data at
E&~b = 112—1449 MeV with the imaginary potential assumed to have a volume WS shape [the first two terms in Eq. (16)].

Potential

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDMBY2
BDM3Y3

0.9954
1.0298
1.1198
0.9832

0.9873
1.0188
1.0981
0.9734

0.9253
0.9569
1.0345
0.9477

0.9307
0.9545
1.0120
1.0577

0.9212
0.9517
1.0300
1.1006

0.9572
0.9784
1.0251
1.0854

0.9168
0.9376
0.9937
1.0978

0.9551
0.9?32
1.0163
1.0873

—JR
(MeV fm )

336.6
339.6
348.5
279.5

5.3708
5.3836
5.4031
5.3844

5.0754
5.0918
5.1180
5.1378

C+ C, E~~b ——112 MeV
(&R)' ' ~v Bv

(fm) (MeV) (fm)
3.7950 18.259 5.1753
3.8029 18.123 5.2134
3.8291 17.605 5.3385
3.9015 15.305 5.4541

' C+' C, E)~b ——126.7 MeV
3.7967 17.949
3.8047 17.960
3.8309 18.271
3.9036 17.443

C+ C, E[ab = 240 MeV
3.8110 28.649
3.8192 28.870
3.8460 29.929
3.9196 27.401

C+ C, E~ b
——300 MeV

279.7 3.8190 28.349 5.0461
279.6 3.8274 27.747 5.0917
279.4 3.8546 27.256 5.1503
266.1 3.9285 25.412 5.2630

C+ C, E~ b = 1016 MeV, Imag. WS (I) pot.
(Effective lab. energy=994 MeV, C mass=12. 270)

181.4 3.9280 17.683 5.0714
182.4 3.9376 16.966 5.1652
185.3 3.9675 16.143 5.2726
179.5 4.0451 17.186 5.2171

C+ C, E~,b = 1016 MeV, Imag. WS (II) pot.
(EfFective lab. energy=994 MeV, C mass=12. 270)

188.5 3.9280 49.283 3.6925
187.5 3.9376 49.809 3.6793
184.5 3.9675 50.436 3.6569
177.0 4.0451 50.009 3.6341

' C+ C, E( b = 1449 MeV, Imag. WS (I) pot.
(Effective lab. energy=1404 MeV, C mass=12. 382)

142.9 4.0055 12.255 5.4093
142.1 4.0156 11.701 5.4810
141.2 4.0464 10.363 5.7173
141.1 4.1248 10.121 6.2735

C+ C, E~ b = 1449 MeV, Imag. WS (II) pot.
(EfFective lab. energy=1404 MeV, C mass=12. 382)

148.9 4.0055 44.852 3.7350
147.5 4.0156 44.509 3.7333
144.4 4.0464 43.053 3.7411
139.8 4.1248 38.819 3.7793

av
(fm)

0.6679
0.6563
0.6171
0.5949

0.5810
0.5790
0.5762
0.5722

0.6394
0.6370
0.6317
0.6247

0.6916
0.6827
0.6726
0.6572

0.8371
0.8210
0.8294
0.8253

0.8315
0.8314
0.8323
0.8376

1.0054
1.0301
1.0531
1.0483

0.7809
0.7783
0.7729
0.7702

OR

(mb)
1393
1391
1383
1354

1350
1353
1363
1332

1383 '

1388
1403
1374

1413
1413
1419
1424

1199
1203
1231
1236

1060
1059
1056
1051

1191
1210
1245
1259

927
921
908
886

15.8
15.2
13.5
32.8

10.0
9.6
9.3
18.1

42.2
43.1
46.2
46.1

23.2
25.4
30.7
39.6

18.1
21.9
38.6
104.?

8.8
8.7
8.6
9.8

26.1
27.1
30.4
40.7

20.4
19.6
17.6
13.4
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R [fm]

FIG. 2. The real folded potentials for the 0+ 0 sys-

tem at E~ b ——250 MeV calculated with different den-

sity-dependent versions of the M3Y interaction [see Eqs. (3)].

pulsive in the high-density region which in turn gives a
folded potential less attractive than other folded poten-
tials at small distances. To illustrate the high density
which xnight be formed during a collision at different im-
pact paraxneters we have plotted in Fig. 3 the results
obtained for the 0+ 0 system within the FDA (dis-
cussed in Sec. II B). One can see that at an internuclear
distance from 2 to 3 fm the density should be well above
the normal nuclear matter density, up to about 2po. We
note that this FDA is a reasonable approximation for
the folding calculations [7,18] at energies not very low as
coxnpared to the Fermi energy. A more accurate picture
of the dense nuclear matter formed during a HI collision
can be given by some dynamical model. In Fig. 4 we
have plotted the profile of the matter density built up
during the 0+ 0 collision at E~~b ——350 MeV and
at the impact parameter of 2 fm, obtained Rom a calcu-
lation within the so-called quantum molecular dynamics
approach [25] which has been proven quite successful in
the dynamical simulation of HI collisions. One can see
that during the compression stage, a dense matter with

p 2po is formed in the center of the collision. Although

4
"0+"0, frozen density approx.

R=6 fm
R=5 fm
R=4 fm

Q.

3
"0+"0, E,=350 MeV, b=2 fm

t=8 frn/c

a

2

0
4

"0+"0, frozen density approx.
R=3 fm
R=2 fm
R=l fm

2-

~0

O

0
—10

z [fm]
10

FIG. 3. The overlap density in the 0+ 0 system at
difFerent internuclear distances (impact parameters) obtained
within the FDA (see details in Sec. III A).

FIG. 4. The profile of the overlap density built up (at early
times, t=8—32 fm/c) in the center of the 0+ 0 collision at
B) b ——350 MeV and at impact parameter of 2 fm, given by
the quantum molecular dynamics model [25).
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one cannot simulate an elastic-scattering event from such
a dynamical calculation, the results shown in Fig. 4 con-
Grm to a certain extent the validity of the FDA used in
the folding model. At very low energies, an adiabatic
approximation might be more appropriate than the FDA
and the formalism given in Sec. II as well as the sim-
ple approach developed in Ref. [7] should be modified
accordingly.

The calculated potentials can be used in general to
analyse all the available HI scattering data. However,
the most interesting are those data which are sensitive to
the HI potential not only at the surface region but also
at smaller internuclear distances. They would allow us
to extract from difFerent density-dependent HI potentials
the most realistic one, which in turn should be selective to
the density dependence of the effective NN interaction,
i.e., to some realistic type of the EOS of the cold nuclear
matter. This is the main motive of our study and for that
purpose we have analysed most of the available refractive
scattering data measured so far with z2C and z60.

Before going on to discuss the results of our analyses
in detail, we emphasize that the exchange term of the HI
potential arising &om the SNE efFects is treated explicitly
in terms of a local exchange potential VEx(E, R). From
the discussion in Sec. II it becomes clear that the contri-
bution of the VEX to the total HI potential is energy- and
density dependent. To show this effect we have plotted
in Fig. 5 the direct and exchange contributions to the
total sO+ sO potential (calculated with the DDM3Y1
interaction) at incident energies ranging from 10 to 90
MeV/nucleon. As can be seen from the upper and mid-
dle parts of Fig. 5, most of the energy dependence of
the HI potential is coming from the exchange term. For
the nucleon-nucleus optical potential the same efFect has
been demonstrated earlier by Love [26] and in our recent
study (see Fig. 2 Rom Ref. [11]).One can also see &om
Fig. 5 that the exchange potential is dominating at small
internuclear distances, especially at low energies, which
means that the density-dependent contribution &om VFx
is also much stronger than that from VD. In the surface
region the overlap density decreases exponentially and
the contribution of VEx becomes comparable and even
less than that of VD. At distances 8 & 7 fm the to-
tal HI potential becomes dominated by the direct part
only. This also explains why the simple folding model

[1] has been so successful in most cases of HI scattering
where the data are sensitive to the tail of the HI opti-
cal potential only. It should be noted further that the
SNE efFects taken into account within our folding calcu-
lations approximately exhaust the total exchange poten-
tial when the incident energy is not very low. According
to the results obtained by Horiuchi [27] within the res-
onating group method, the SNE efFects begin to have
a dominating contribution with the incident energy ap-
proaching 30 MeV/nucleon. At lower energies the two-
and more nucleon exchange processes might not be neg-
ligible and a rough way to take them into account in
our folding calculations is to renormalize slightly the to-
tal strength of the folded potential. One 6nds also &om
our results that the higher the incident energy the less
dominant the exchange potential and both the exchange
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0+ 0

DDMBY1 pot. (direct)
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F1G. 5. The direct (upper part) and exchange (middle
part) contribution to the total folded DDM3Yl potential
(lower part) for the 0+ 0 system at incident energies rang-
ing from 10 to 90 MeV/nucleon.

B ~~C+~~C system

C+ C is among the most studied light HI system so
far with the scattering data measured at incident energies

ranging f'rom a few and up to 200 MeV/nucleon. Very

interesting are the low-energy data measured by Stok-
stad et al. [29] where the absorption has been found to
be quite weak allowing the appearance of strong nuclear
rainbow efFects in the angular distribution [30]. A de-

and direct potentials are of the same strength even at
small distances (see dash-dotted curve in Fig. 5). Since
the absolute strength of the energy-dependent exchange
potential is governed to a certain extent by the chosen
shape of the effective NN forces [28] [see, e.g. , Eqs. (1)],
the folding analyses of the scattering data over a wide
energy range might impose some restriction on the efFec-

tive NN interaction, i.e., an indirect inverse information
on the in-medium NN forces. This is among the topics
of our future study using the new version of the folding
model given in the present paper.
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tailed OM analysis of these data by Brandan et al. [31]
has shown that the optical potentials are exceptionally
transparent and can provide information on the C+ C
interaction at very small internuclear distances. In the
present paper we have performed the folding analyses for
the C+ C data at El~b ——112 and 126.7 MeV, which
are not very low, so that one can still rely on the FDA
adopted in our model. The results obtained with all four
types of the folded potential are shown in Table II and in
the upper and middle parts of Fig. 6. Following the pre-
vious OM analyses [30,31], we have assumed the volume
WS shape for the imaginary potential. A slight renormal-
ization of the real folded potentials is also allowed and
the renormalization factor (NR) is adjusted to give the
best fit to the data. Besides the many-nucleon exchange
efFects mentioned above, which might lead to a renormal-
ization of the folded potential, the dynamical polarization
potential (b,U) caused by the coupled-channel effects has
been proven to also contribute to the real part of the op-
tical potential. It has been shown by Sakuragi et al. [32]
that b,U for the i2C+i2C system is surface peaked and
repulsive, hence the lVR values smaller than unity can be
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FIG. 6. The Sts to the elastic C+ C scattering data at
E) b ——112, 126.7, and 24Q MeV given by din'erent types of
the optical potential. The real parts of the optical potential
were calculated using different density dependent versions of
the M3Y interaction, while the imaginary parts were assumed
to have a volume Woods-Saxon shape.

anticipated, in general.
From the fits given by different types of the folded

potential shown in Fig. 6 one finds that a reasonable
good fit can be obtained with the DDM3Y1, BDMSY1,
and BDMSY2 potentials. The corresponding imaginary
WS potentials (Table II) are weak and quite close to
those found in Refs. [30,31]which clearly show the trans-
parency of the optical potential for the C+ C system
at these energies. The NR values obtained with the best-
6t folded potentials are very close to unity which also
indicates the weak (or cancelling) contributions of b, U
and many-nucleon exchange effects to the real optical
potential. The slope and strength of the BDM3Y3 po-
tential are quite difFerent from those of other folded po-
tentials, especially at small radii (as shown in Fig. 2 for
the i 0+isO system). Due to this reason it is very hard
to reproduce the large-angle scattering data using the
BDMSY3 folded potential, e.g. , the prominent minimum
in the 127 MeV data at about 60' which was speci6ed
[30] as the second Airy minimum of the nuclear rainbow,
is clearly shifted by the wrong structure of the BDM3Y3
potential to larger angles (middle part of Fig. 6). It is
also remarkable that values of the volume integral of the
real optical potential per interacting nucleon pair JR,

J~(E) = [V~(E, r) + VEx(E, r)]r dr, (17)
47rNR

2 D

obtained with the first three folded potentials (see Ta-
ble II), are also very close to the systematics found ear-
lier [31],while the JR value obtained with the BDMBYB
potential is difFerent from the "standard" value [31] by
about 25%. The DDM3Y1, BDMBY1, and BDMBY2 po-
tentials belong to the same family of the deep re&ac-
tive potentials; however, with these low-energy C+ C
data, one is still unable to find out which potential Rom
this group is the most appropriate to describe the data.

We have considered further the elastic data for this
system measured at 240 and 300 MeV by the HMI group
[3,4], where a rainbow enhancement of the scattering
cross section at large angles has been observed. As op-
posed to the data at lower energies, the small-angle parts
of the scattering cross section in these cases have been
measured quite accurately which allows one to determine
the strength of the optical potential at the surface rather
uniquely. The NR values of different folded potentials
(Table II) are mainly determined by the strength of the
real potential at the surface region which in turn is 6xed
by the data in the diffraction region. Several data points
in the refractive (rainbow) region have large error bars
and in8uence the OM 6tting procedure very little. How-
ever, the difference between different types of the folded
potential at small distances shows up in the calculated
cross sections at large angles, and this leads us to the best
type of the folded potential which gives a reasonable de-
scription to the data in the whole angular range. From
Figs. 6 and 7 one can see that the best choice of the
folded potential is clearly the DDMSYl and BDM3Yl
ones. Even though the other two potentials (BDMBY2
and BDM3Y3) give the y values of about the same order
as the first two potentials (Table II), the description of
the large-angle data given by the BDM3Y2 and BDM3Y3
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FIG. 8. The same as in Fig. 7 for the C+' C data at
E) b = 1016 MeV with the "weak W" set for the imaginary
potential [WS(I) in Table II].

potentials is visibly worse. To illustrate the origin of this
effect we have plotted in the upper part of Fig. 7 the op-
tical potentials used in our analyses of the 300 MeV data
(the real folded and WS imaginary potentials). Since the
weak WS imaginary potentials are close in strength and
shape, the discrepancy in the calculated cross sections at
large angles is mainly due to the difference in the real
folded potentials at small internuclear distances.

A detailed folding analysis has also been done for the
i2C+i2C data at Ei b = 1016 [33] and 1449 MeV [34].
The earlier OM analyses of these data [33,34] have im-
plied that the data are sensitive to the real optical po-
tential down to about 3 fm even though no clear rainbow
pattern has been observed. Results of our analysis of the
data at 1016 MeV are plotted in Figs. 8 and 9 with the
parameters of optical potential given in Table II. For this
particular case our analysis has revealed a similar ambi-
guity in the imaginary potential like that found earlier
in Ref. [35] with the simple DDM3Y folded potential.
Namely, there are two families of the WS imaginary po-
tential: the weak one with the depth around 16 MeV and
the strong one with the depth near 50 MeV. In the first

case the total optical potential is rather transparent and
the difference in the real folded potentials at about 3 fm
(upper part of Fig. 8) is showing up in the calculated
cross section. One can see that the best fit in the "weak
R"' case is again given by the DDM3Y1 and BDM3Y1
potentials. In the case of strong-absorptive WS poten-
tials (see Fig. 9) all the real folded potentials give about
the same fit to the data and one can see no sensitivity of
the data to the real potential at small radii. The fold-
ing results obtained for the energy of 1449 MeV have the
same tendency, with the existence of the "weak TV" and
"strong W" solutions. In view of somewhat better y
values obtained with the "strong W" potentials [WS(II)
in Table II], it is difFicult to argue in favor of the "weak
W" solutions [WS(I) in Table II] of the i2C+i2C optical
potential where one has indeed a sensitivity of the data
to the real potential down to about 3 fm. Such a sit-
uation typically arises in cases where the refractive and
diffractive structures are superimposed at small scatter-
ing angles. This ambiguity might be solved from a more
systematic study of the accurate data at various inci-
dent energies which would allow one to extract a realistic
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tential for the ~sO+~sO system [20,36—39]. In spite of
certain ambiguities found in the determination of the op-
tical potential for this case, we can now confirm [36] the
sensitivity of the 0+ 0 data at 350 MeV to the scat-
tering potential at small distances. Encouraged by the
interesting refractive effects seen at 350 MeV, some new
measurements have been performed for the 0+ 0 sys-
tem at other energies [40—42]. A rather weak absorp-
tion has been found for this system which is clearly due
to the double closed-shell structure of the 0 nucleus.
The scattering and transfer cross sections have also been
measured at quite large angles where the re&active con-
tributions are dominant [36]. In the present paper we
have analysed the 0+ 0 data at 350 MeV again as
well as the new data at other energies [40—42] using all
four types of the folded potential as done above in the
12g+12g case

Since the data in the diffraction region have been mea-
sured very accurately, in small steps of the scattering an-

gle, they dominantly affect the y fitting procedure. In
order to keep the sensitivity of the large-angle data points
to the potential, each OM fit to the 0+ 0 data has
been done in two steps. First, the uniform 10% error is
assigned to all data points to find some preliminary val-
ues for NR and the parameters of the imaginary potential
as was usually done in previous OM analyses [37,38]. Af-
ter a reasonable agreement with the data in the whole

0
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FIG. 9. The same as in Fig. 7 for the C+ C data at
E) b ——1016 MeV with the "strong 8" set for the imaginary
potential [WS(II) in Table II].

energy dependence of the imaginary potential. Unfortu-
nately, such data are still not available, especially at high
energies, except for the ones considered here [33,34]. An
intuitive extrapolation of the low-energy results would
support the "weak W" family which consistently gives
rather transparent optical potentials for the ~2C+~2C
system at all energies. We have shown that such a trans-
parency gives some information on the C+ C poten-
tial at small distances and implies that &om the 4 types
of the folded potential considered here the DDM3Y1 and
BDM3Y1 potentials are the most suitable ones to fit the
data.
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C. 60+ 0 system

Although there are already many theoretical and ex-
perimental papers devoted to the 0+ 0 system, new
interest has arisen recently in connection with the accu-
rate elastic data measured at E1 b

——350 MeV by the
HMI-Group [5,36] which gave clear evidence for a nu-
clear rainbow. Subsequently, many OM analyses of these
data were made using different kinds of the optical po-
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FIG. 10. The same as in Fig. 6 for the 0+ 0 data at
E~~b = 145, 250, and 350 MeV.
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TABLE III. The same as Table II for the Q+ 0 system at E&~b ——145—480 MeV.

Potential

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

0.9445
0.9653
1.0154
1.0588

0.8905
0.9099
0.9510
0.9866

0.9218
0.9435
0.9942
1.0369

0.8520
0.8741
0.9116
1.0224

—JR
(MeV fm )

339.0
340.3
344.4
341.2

303.7
304.7
306.3
301.8

299.4
300.9
304.8
301.7

259.8
261.6
262.2
278.9

16p+16p

( 2 )1/2

(fm)

4.1574
4.1597
4.1706
4.2075

16p+16p

4.1650
4.1675
4.1788
4.2160

16p+16p g
4.1728
4.1754
4.1870
4.2248

16p+16p
4.1838
4.1866
4.1986
4.2370

145 MeV

Wv
(MeV)
17.133
17.490
18.531
22.601

250 MeV

28.498
28.429
28.360
28.270

350 MeV

31.628
31.430
30.980
31.914
480 MeV
32.675
32.517
32.988
33.521

Rv
(fm)

6.0028
5.9726
5.9176
5.8798

5.6184
5.6318
5.6600
5.7002

5.6099
5.6366
5.6999
5.7048

5.3984
5.4274
5.6948
5.5213

av
(fm)

0.6905
0.7011
0.7128
0.6552

0.7368
0.7349
0.7299
0.7161

0.6534
0.6470
0.6330
0.6301

0.?434
0.7377
0.6030
0.7502

(mb)

1693
1702
1714
1673

1762
1763
1767
1762

1642
1642
1645
1652

1657
1660
1588
1735

53.4
55.4
59.8
70.9

46.0
48.4
57.0
74.6

40.2
41.2
43.4
48.6

6.7
6.9
10.5
10.6

angular range is obtained, the final OM fit is done with
the experimental uncertaint;ies of the data starting from
the parameters of the preliminary search. Thus we could
avoid the "unrealistic" sets of the optical pot;ential which
sometime give even smaller g values but visibly worse
descriptions to the data at large angles. The results given
by different types of the real folded potential using the
simple volume WS shape for the imaginary potential are
given in Table III and plotted in Fig. 10 (the fit to the
preliminary data at 480 MeV [42] is done to have a guide
in the energy dependence of the sO+ 0 potential only).
Similarly to the results obtained above for the 2C+ 2C

system, the deep DDM3Y1 and BDM3Y1 potentials turn
out to be the most relevant ones among the four types of
the folded potential to reproduce the data over the whole
angular range, and the BDM3Y3 potential is again too
shallow in the center and thus gives a wrong description
to the data at large angles. The renormalization of the
real folded potentials in these cases is around 0.9, giv-
ing the J~ values of the real optical potential (Table III)
very close to those from the energy dependence of the
160+160 potential proposed by Kondo and co-workers
[37,40] which in turn is consistent with the results of the
dispersion relation and the analyses of the low-energy
resonances in the 0+ 0 system.

To improve the agreement of the calculated cross sec-
tions with the data in the large-angle (ref'ractive) region,
we have also included into the imaginary potential a sur-
face term [the last term in Eq. (16)] which has been
proven necessary [20,36] in reproducing the data at 350
MeV with the real folding-type potential. The real folded
potentials are kept fixed as given in Table III in order to
see the efFects coming from the imaginary potential used
in our folding analyses. While the inclusion of the surface

(WSD) term does not improve the fit at Ei b = 145 MeV,
the fit to the data at 250, and especially at 350 MeV, be-
comes much better with the WSD term. The improved
results for the energies 250 and 350 MeV are given in Ta-
ble IV and plotted in Figs. 11 and 12. Such a WS+WSD
combination of the imaginary potentials simply keeps the
absorption at the surface strong enough to reproduce the
diffractive part of the scattering data while the absorp-
tion at small distances becomes weaker (see upper part of
Fig. 12) giving rise to a broad rainbow maximum in the
elastic cross section. From Figs. 11 and 12 one can also
see that the inclusion of the WSD term does not much
improve the fit given by the BDM3Y3 real potential. A
renormalization of about 10% of the real folded potential
(see NR values from Tables III and IV) is mainly fixed
by the data points at small angles and the relative differ-
ence in the shape of different folded potentials remains
practically the same (compare Fig. 2 and the upper part
of Fig. 11 for the 250 MeV case). Thus the best fit to
the large-angle data is given by the most relevant type
of the folded potential available. Our preliminary analy-
sis [11] of the 350 MeV data using about the same real
folded potentials as those in this paper with the fixed
renormalization NR ——1 has also favored the DDM3Y1
and BDM3Y1 potentials as the most realistic ones.

Different OM analyses of the data at 350 MeV [36—38]
have shown that the broad maximum near 50' can be
identified as a remnant of the primary rainbow (with the
first Airy minimum around 44'). This rainbow struc-
ture can be reproduced if the real optical potential is
deep enough to belong to the group of refractive poten-
tials (type A from Ref. [37] or the folding-type potentials
[36]). With the new data measured at 145 and 250 MeV
it is of interest to study the evolution of the rainbow
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NR
(mb)
1822
1829
1831
1835

0.8905
0.9099
0.9510
0.9866

0.3637
0.3823
0.4240
0.5031

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

39.8
40.6
42.3
51.5

25.265
25.429
25.929
26.304

1634
1637
1645
1644

TABLE IV. The same as Table II for the 0+ 0 system at E& b ——250 and 350 MeV with the imaginary potential assumed
to be a sum of a volume WS term and a surface WSD term as given in Eq. (16).

0+ 0q Elab —250 MeV, Imag. WS+WSD pot.
Potential Wv RD o&R x2

(MeV) (fm) (fm) (MeV) (fm) (fm)
36.641 4.7915 0.9062 3.5230 5.8309 0.4268 37.4
37.876 4.7038 0.9219 3.98?8 5.8064 0.4267 37.2
38.528 4.6464 0.9313 5.1053 5.7267 0.4231 37.6
39.836 4.6109 0.9355 5.6530 5.7518 0.4012 41.6

0+ 0, E~~b ——350 MeV, Imag. WS+WSD pot.
0.9218 5.7554 0.6488 7.9655 4.7371
0.9435 5.7578 0.6481 7.4643 4.7473
0.9942 5.7612 0.6458 6.2634 4.8143
1.0369 5.7692 0.6309 4.5614 4.9566

pattern with increasing incident energy. A very careful
study in this direction has been made for the C+ C
system by McVoy and Brandan [30I where they show a
smooth shifting of the Airy minima towards small scat-
tering angles as the energy increases. To avoid the Mott

interference in the elastic cross section at large angles
for the identical 0+ 0 system, we have perfomed the
urIsymmetrized OM calculations of the elastic sO+ 0
cross sections at 145, 250, and 350 MeV using the best-
fit folded potential (DDM3Y1) with the optical poten-
tial parameters given in Table III (for the energy of 145
MeV) and Table IV. From the results shown in Fig. 13
one finds that the minimum seen at 0, 54' in ex-
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Wab = 350 MeV.
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FIG. 13. The unsymmetrized OM calculations for the
0+ 0 system at E1 b = 145, 250, and 350 MeV using the

best-fit DDMBY1 folded potential (see details in Sec. III C).

D. 0+ ~C and 60+~ Si systems

Before drawing some systematic conclusions on the
energy- and density-dependent folded potential, we

perimental data at 145 MeV is the third Airy minimum
generated by the deep DDM3Y1 folded potential. This
is consistent with the III Group of the optical potential
for isO+rsO at 145 MeV suggested in Ref. [40], which
also gives the J~ values ( 330 MeV) close to that pre-
dicted by the realistic energy dependence [37] mentioned
above. The first Airy minimum is moving from beyond
100' at 145 MeV to around 66' and 44' at 250 and 350
MeV, respectively. It is remarkable that the broad rain-
bow maximum preceding the first Airy minimum for the
energy of 250 MeV (solid curve in Fig. 13) can still be
seen in the scattering data up to about 80' (lower part of
Fig. 11) with some small oscillations caused by the Mott
interference occurring at larger angles. At 350 MeV the
width of this rainbow shoulder becomes smaller with the
first Airy minimum moved to 0, 44', closer to the
diffraction region. From the results shown here we can
deduce that the energy of 300 MeV would be the most
optimal one to have a broad rainbow scattering pattern
for the 0+ 0 system not much affected either by the
Mott interference at large angles or by the diffraction at
small angles.

The present results and those reported in Refs. [37,38,
40] allow one to conclude that the best-fit folded poten-
tial belongs to the family of the deep refractive potentials
(A type in Refs. [37,38] or III type in Ref. [40]) which
consistently produce the evolution of the Airy oscillation
with the energy. Our new version of the folding model
seems to deliver a reliable real HI optical potential at
different energies which gives us confidence to use the
DDMBY1 (or BDMBY1) potential to predict the scatter-
ing cross section at the energies not yet measured. We
would also like to emphasize that the persistence of Airy-
like minima in the new elastic 0+i 0 data [40,41] fur-
ther supports the rainbow interpretation of the observed
elastic-scattering data.
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FIG. 14. The same as in Fig. 6 for the 0+ C data at
E1 b

——608 and 1503 MeV obtained with the "weak W" set
for the imaginary potential [WS(I) in Table Vj at the energy
of 1503 MeV.

15 20

would like to brie8y discuss the results of our folding
analyses of the 0+12C and l60+28Si data at somewhat
higher energies [43—45] than those measured so far for
the 0+ 0 system. Even though there is no rainbow
pattern observed in these cases, the 0+ C data show
some departure &om the diffractive oscillation pattern
which might be sensitive to the nucleus-nucleus poten-
tial at small radii [35]. The 0+ C data at 1503 MeV,
e.g. , has been shown to be sensitive to the real optical
potential at distances of 3—6 fm [46] while the "strong ab-
sorption" radius (Dqy2) for this system is at about 6.2 fm.
The elastic cross sections obtained with different types of
the folded potential for these cases are plotted in Figs.
14 and 15 and the optical potential parameters are given
in Table V. As in the C+ C cases at high energies
considered in Sec. III B, we have also found two different
families of the imaginary potential for the 0+ C data
at 1503 MeV (the fit to the sO+i2C data at 608 MeV
using our real folded potentials seems to prefer the "weak
W" solution only). From Fig. 14 one can see again that
the best description to the 0+ C data in the whole
angular range is given by the DDM3Y1 and BDM3Y1
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TABLE V. The same as Table II for the elastic 0+ C, and Si scattering at E~ b
——608 and 1503 MeV.

Potential

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

DDM3Y1
BDM3Y1
BDM3Y2
BDM3Y3

0.8341
0.8503
0.8894
0.9505

0.8699
0.8905
0.9413
1.0234

1.0913
1.1068
1.1398
1.1798

0.8940
0.9042
0.9250
0.9472

—Ja
(MeV fm )

233.0
232.3
231.3
230.1

(Effective lab.

164.5
164.4
164.9
166.3

(Effective lab.

206.3
204.4
199.7
191.7

(Effective lab.
170.5
169.0
165.4
159.4

O+ C, E)~b ——608 MeV

~&R) ~ wv Rv
(fm) (MeV) (fm)

4.0218 25.528 5.3465
4.0277 24.996 5.3831
4.0475 23.758 5.4772
4.1026 21.554 5.6744

0+ C, E~~b = 1503 MeV, Imag. WS (I) pot.
energy=1454. 27 MeV, O mass=16. 294 and C

4.1204 16.240 5.6629
4.1272 15.767 5.7248
4.1492 14.731 5.8717
4.2071 13.078 6.1233

0+ C, E~ b = 1503 MeV, Imag. WS (II) pot.
energy=1454. 27 MeV, 0 mass=16. 294 and C

4.1204 44.629 4.8051
4.1272 44.258 4.7992
4.1492 43.261 4.7822
4.2071 41.312 4.7362
' 0+' Si, E)~b ——1503 MeV

energy=1478. 34 MeV, 0 mass=16. 643 and Si
4.5855 68.250 5.2639
4.5913 68.096 5.2458
4.6101 67.484 5.2084
4.6593 65.364 5.1786

av
(fm)

0.6109
0.6092
0.6097
0.6251

mass=12. 389)
0.7741
0.7688
0.7528
0.7291

mass=12. 389)
0.6097
0.6142
0.6272
0.6600

mass=28. 372)
0.7741
0.7829
0.8027
0.8257

OR

(mb)

1350
1357
1381
1451

1323
1331
1347
1376

1178
1179
1180
1186

1744
1750
1762
1774

7.0
8.2
11.7
17.5

9.0
7.8
6.2
10.4

13.4
13.2
12.2
9.7

5.7
5.7
5.6
5.7

potentials only, provided the absorption at 1503 MeV is
weak. The fits to the ~sO+~2C and ~sO+2sSj data at
1503 MeV obtained with the "strong W" solutions for
the imaginary potential are shown in Fig. 15. In these
cases all the real folded potentials give about the same
description to the data, i.e., one finds no sensitivity to the
real optical potential at small radii when the absorption
is strong in this radial region. All the renormalization
factors of the real folded potential N~ obtained for the

0+~ C system at 1503 MeV with a "strong W" imag-
inary potential [WS(II) set in Table V] are greater than
unity. This is somewhat out of the systematic behavior
(Tables II—V) found for the best-fit real folded potential
(around 0.9 and depends weakly on the energy), a fact
that might favor the weak-absorptive [WS(I)] set of the
optical potential for the 0+ C system at 1503 MeV.
Note that for the heavier z6O+28Sj system we coujd find
no "weak W" solution which indicates that this system
is a strong absorbing one and the data are no longer sen-
sitive to the potential at subsurface distances.

The results presented here have shown again that the
weak absorption (or the transparency of the optical po-
tential) found for difFerent light HI systems enables one to
test the real optical potential down to quite small internu-
clear distances. Among the four types of the real folded
potential being tested in our analyses, the DDMBY1 and
BDIY1 potentials are shown to be the most realistic
ones.

E. Energy dependence of the real HI potential

As has been discussed repeatedly in di8erent folding
analyses, the renormalization factor N~ of the folded po-

tential should not deviate strongly from unity. The closer
to 1 the N~ factor the more realistic the model used for
the nucleus-nucleus potential [1]. From the other side,
the folded potential is only the first-order term of the
HI potential and higher-order terms, e.g. , the dynamical
polarization correction AU, contribute to both the real
and imaginary parts of the HI optical potential. Such a
contribution to the real potential is shown to be in many
cases repulsive and surface peaked [32] and the N~ val-

ues smaller than 1 might be considered as reasonable.
All the NR values obtained with the best-fit (DDMBY1)
folded potential from our analyses of the elastic ~sO and
~sC scattering data are plotted vs the incident energy in
the upper part of Fig. 16. We have also deduced the
N~ factors of the DDM3Y1 potential for the 0+ Ca
system at 139.6 and 214.1 MeV by scaling the strength
of the DDMBY1 potential to the best-fit values [1] at
the "strong absorption" radii (Dqg2) found for this sys-
tem. One can see &om the upper part of Fig. 16 that
the N~ factor depends very weakly on the energy and
varies around a value of 0.9. The same behavior can be
found for the BDMBY1 potential (see Tables II—V). Con-
sequently, the intrinsic energy dependence arising &om
the exchange efFects [see Eqs. (6) and (7)] and the weak
explicit energy dependence [g(E) factor in Eq. (2)] intro-
duced into the efFective NN interaction [11] are indeed
the main sources of the total energy dependence of the
real HI optical potential.

The values of the volume integral of the real folded
potential per interacting nucleon pair JR are plotted in
the lower part of Fig. 16. With the incident energy in-
creasing from about 10 to 120 MeV/nucleon, the JR val-
ues decrease smoothly &om about 340 to 150 MeV fm .
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These results agree quite well with a realistic energy de-
pendence of the JR values deduced &om the earlier OM
analyses of the elastic i2C [31] and 0 [37] t
Prom this discussion we can conclude that the energy
dependence of the real HI optical potential is predicted
quite well by the new version of the folding model given
in the present paper.

F. The cold nuclear EOS

Finally, we would like to stress the influence of differ-
ent choices of the cold EOS (Fig. 1) on the results of
our folding analyses. We have shown above that the re-
&active scattering data, which in most cases require a
rather transparent optical potential, are very sensitive
to the real HI potential at small radii. Such data im-
ply that among the four types of the folded potential
considered in our analyses, the DDM3Y1 and BDM3Y1
potentials are the most relevant ones. This means that
the density dependences DDM3Y1 and BDM3Y1 intro-

duced into the original MBY interaction are the most
realistic ones. Since the connection between a density-
dependent effective NN interaction and the EOS of the
cold nuclear matter is straightforward [11),we may con-
clude from our analyses of the re&active HI scattering
that the EOS corresponding to the nuclear compressibil-
ity K 150—210 MeV might be the most realistic for
the cold nuclear matter. This preliminary conclusion on
thee nuclear EOS is in an agreement with some models
of supernova explosion [47] where a value of K 200
MeV or lower is suggested. Note that a method of ex-
tracting the K value from the excitation energies of the
observed giant monopole resonances was widely applied
[48], but it has been shown that a unique value for K can-

be d
not be extracted and any value &om 200 to 350 MeVe can

e educed. Many attempts to determine the nuclear
EOS have been undertaken via the study of the high-
energy central HI collisions where one hopes to deduce
from the measured transverse flows or various particle
(and nuclear-fragment) spectra some information on the
EOS. Diff'erent semimicroscopic transport models [25,49]
have been used successfully in reproducing such data.
The basic input for such a calculation is some efFective
two-body interaction (Skyrme-type forces) with parame-
ters fixed to give a soft (K 200 MeV) or a hard (K
380 MeV) EOS of the cold nuclear matter. Due to the
uncertainties in the experimental data as well as in dif-
ferent inputs used in these calculations, the results ob-
tained so far remain inconclusive concerning the nuclear
EOS. Moreover, the high-density nuclear matter formed
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during the compression stage of a central HI collision is
quite hot, with the temperature in the range of 50—100
MeV [50]; and the EOS of the heated nuclear matter is
of course different from that of the cold nuclear matter.
In this sense, our study of re&active HI scattering within
the present model (using the input for the cold EOS to
study the cold nuclear matter) consistently gives a clear
answer to the question about the cold EOS. A more pre-
cise determination of the K value for the cold nuclear
matter with the inclusion of more data on the 0+ 0
scattering is now in preparation.

IV. SUMMARY

The double-folding model has been generalized for the
calculation of the real HI optical potential using the new
density-dependent versions of the MBY interaction [11]
with parameters chosen to consistently reproduce the ba-
sic nuclear matter properties and the energy dependence
of the nucleon optical potential. The exchange part of
the folded potential is evaluated within the local den-
sity formalism, with the SNE effects taken into account
exactly.

Detailed folding analyses are performed for the elas-
tic C and 60 scattering data at energies &om about
10 to 120 MeV/nucleon using difFerent types of the real
folded potential which have been calculated with different
density-dependent M3Y interactions. It has been shown
that most of the considered C+ C and 0+ 0 data
favor a rather transparent optical potential which has
a sufBciently weak-absorptive imaginary potential. In
these cases the large-angle scattering data can be inter-
preted as being of the re&active nature and they are sen-
sitive to the real optical potential at small internuclear
distances. Such a sensitivity implies a stronger restric-
tion on the shape and strength of the folded potential,
so that one can extract the most realistic potential &om

different types of the folded potential used in the analy-
ses.

The DDM3Y1 and BDM3Y1 potentials have been
found to be the most appropriate in the family of the
folded potentials. These two types of the real folded po-
tential are calculated within the new model using the
density-dependent interactions which in turn can be used
to microscopically generate [ll] a cold nuclear EOS which
is rather soft and has the compressibility K 150—210
MeV. These results provide, therefore, an evidence that
the cold nuclear matter is most probably governed by a
soft EOS.

The best-fit folded potentials, renormalized by a factor
N~ of about 0.9, reproduce reasonably well the energy
dependence of the real optical potential for C and 160
scattering found in previous OM analyses. These poten-
tials belong to the family of the deep re&active poten-
tials which consistently describe the Airy-like structures
at large scattering angles observed in the C+ 2C and

0+ 0 scattering data at different energies.
Systematic analyses of more data as well as a sophisti-

cated microscopic calculation of the imaginary potential
are highly desirable to con6rm the transparency of the
optical potential fox the C+ C and 0+ 0 systems
found in our analyses. This would further support the
rainbow interpretation of the large-angle scattering data
as well as our preliminary conclusion on the EOS of the
cold nuclear matter.
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