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Coulomb and nuclear excitation in intermediate-energy heavy-ion collisions
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Following previous works where the field of application of Glauber methods were extended to
heavy-ion scattering in the energy range of 30—400 Mev/nucleon, we develop here a formalism which
includes both Coulomb and nuclear excitation processes and explicitly accounts for the effects arising
from the energy difFerence in different channels. First order inelastic excitations are described in the
framework of a distorted wave eikonal approximation; in this connection nuclear phase shifts and
form factors are described in terms of microscopic nucleon-nucleon interactions while the Coulomb
excitation is described through a proper manipulation of phenomenological form factors. Several
specific examples are discussed. The interest is then focused on second-order processes, more specif-
ically on the efFects introduced in the elastic channel by the coupling to the inelastic channels, and
the corresponding Coulomb and nuclear polarization potentials are derived and discussed. On the
ground of these achievements a general formalism is built up, capable of describing coupled-channel
problems at any order of scattering. Due to the eikonal propagation, the multichannel multistep
series leads to simple algebraic forms for each partial-wave scattering matrix, which involve powers
of a channel matrix whose elements only depend on the impact parameter.

PACS number(s): 24.10.—i, 03.80.+r, 25.70.—z

I. INTRODUCTION

In the last years a large amount of experimental data
has become available in the field of heavy-ion grazing
collisions at intermediate energies. These include elastic
and inelastic scattering, stripping and pickup reactions,
spin and isospin exchange. These grazing collisions often
involve strong coupling to collective states and are usu-

ally described in the framework of the optical model and
coupled-channels formalism [1]. In these approaches it is
not always easy to separate the structure aspects &om
those pertaining to the scattering mechanisms. This is,
for example, re8ected in the strong dependence of the
optical and coupling potentials on the bombarding en-
ergy. In addition, the geometrical features arising from
the coupling of the large number of relative motion par-
tial waves with the channel angular momenta generate
rather involved computational problems.

While resorting to these approaches is somehow in-
escapable at low bombarding energies due to the domi-
nance of mean-field features of the problem, it is a long
standing achievement that at higher energies it can be
assumed that the dynamics of the scattering process is
dominated by nucleon-nucleon collisions. In this con-
nection, the Glauber model [2] has been widely used to
describe reactions induced by light ions at high energy.
The only ingredients for these descriptions are the densi-
ties and transition densities of the colliding nuclei and
the elementary N-N scattering amplitudes. Owing to
its appealing simplicity, it is clearly worthwhile to assess
the applicability of this method to intermediate energy
heavy-ion scattering processes. Such a project was car-
ried out by DeVries et al. [3] for the analysis of total
reaction cross sections down to bombarding energies of a
few MeV/nucleon. Though this is a rather simple quan-
tity, these achievements can be viewed as a suggestion

to exploit the possibilities of Glauber methods in more
complicated heavy-ion scattering processes.

In a series of papers [4—8] the authors have developed
a method for the description of heavy-ion grazing colli-
sions at intermediate energies (E/A 30—400 MeV) in
the presence of strong channel coupling. In these devel-
opments the starting point has been the extended version
of the Glauber theory set up by Czyz and Maximon [9]
and by Formanek [10] which includes the description of
nucleus-nucleus scattering. The basic ingredients that
this method requires to lead to actual calculations is the
knowledge of nuclear correlation functions of any order,
and the evaluation of the related multidimensional inte-
grals. In this rigid formulation this is not a practicable
approach. Also in the reductive hypothesis of totally
uncorrelated wave functions the combinatorial aspects of
the classification of the sequences of the elementary colli-
sions make the method unpractical already for relatively
light colliding system, as for example the case of o.- C
[7]. As an alternative method the authors have suggested
introducing a truncated basis of nuclear states between
two successive microscopic collisions [7]. As in the stan-
dard coupled-channel approaches the basis is restricted
to those states which reliably are expected to play a rel-
evant role in the considered reaction. In the framework
of the Glauber theory, this coupled-channel description
leads to an algebrization of the scattering problem: the
contribution of each impact parameter to the scattering
amplitude is in fact expressed in terms of suitable prod-
ucts of elements of a channel matrix which depend on the
impact parameter only.

Although a variety of processes have been satisfactorily
described by the above formalism, such as elastic and in-
elastic scattering [4—7], charge exchange [11]and transfer
reactions [12], and including features as the optical and
polarization potentials [8], it is not possible to introduce
in the formalism the Coulomb excitation and the efFects
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related to the excitation energy of the inelastic channels.
In an alternative approach Feshbach and Hiifner [13]start
from the eikonalization of a scattering problem directly
formulated within a coupled-channel scheme. While fi-
nite Q-value effects have been explicitly taken into ac-
count, the Coulomb excitation processes have not been
considered. On the other hand, Coulomb excitation the-
ories developed for the description of high-energy scat-
tering problems take into account the nuclear interac-
tion only through a strong absorption radius [14, 15]. In
the intermediate energy range we are interested in, the
Coulomb and nuclear excitation are often of comparable
importance, so that an unified perspective is necessary.
This perspective has been pursued in some recent papers
(see, e.g. , Ref. [16]), which have, however, concentrated
their interest only on first-order inelastic scattering pro-
cesses.

The aim of our present work is to give a systematic de-
scription of elastic and inelastic heavy-ion intermediate
energy processes at any order of scattering, in the frame-
work of a nucleus-nucleus multiple-scattering theory. An
explicit coupled-channel scheme is introduced and eikonal
propagation is assumed for the nucleus-nucleus relative
motion. Such an approach allows one to introduce in
a natural way both Coulomb excitation and Q-value ef-

fects. In the limiting case in which these features are
disregarded one obtains the formalism previously devel-

oped in Ref. [7].
We start by considering in Sec. II an eikonalized

distorted-wave Born approximation in which both the
Coulomb and the nuclear forces are taken into account
to describe first-order inelastic excitation. Several exam-
ples of analysis of experimental data are displayed, which
correspond to different patterns of Coulomb-nuclear in-
terference. We also introduce a method for describing the
Q-value effects for the nuclear excitation without giving
up the possibility of exploiting some phenomenological
features of the Glauber theory. In Sec. III the interest is
focused on second-order processes, more specifically on
the eKects introduced in the elastic channel by the cou-

pling to the inelastic channels. In this connection we
derive and discuss the corresponding Coulomb and nu-

clear polarization potentials. The general formalism is
developed in Sec. IV. The main points of the method
can be summarized as follows. In a first stage a nucleus-
nucleus Hamiltonian is explicitly introduced in which the
interaction between the two nuclei is described through
effective N Ninteractions [1-3, 8], and then the formal-
ism is extended to include the Coulomb interaction. The
I ippmann-Schwinger equation describing this problem is
expanded in a Born series. The Green's function de-
scribing the propagation of the two nuclei between two
successive collisions is described in the eikonal approx-
imation. Using as a guideline some basic features ob-
tained in the description of the first- and second-order
processes, we proceed to describe the main features of
the dynamics of the multistep scattering process through
a form-factor matrix in the channel space, depending only
on the impact parameter. As a final result the scattering
amplitude of any process is expressed by simple algebraic
manipulations of products of this Diatrix.

II. FIRST-ORDER TRANSITIONS IN THE
DISTORTED WAVE EIKONAL

APPROXIMATION

A. The Coulomb excitation

In this section we are dealing with the first-order
Coulomb excitation in heavy-ion collisions at interme-
diate energies. For simplicity we consider the case of
a structureless projectile and discuss the transition be-
tween the ground state and a state LM of the tar-
get. By separating outside the charge radius R~ the
Coulomb interaction V in the monopole-monopole term

0
V = Z Z e /r and the monopole-multipole interaction
V,

(2.1)

the first-order scattering amplitude in the distorted wave
approximation can be written in the form

&o L,M(~ &)

dr 4 *(k~, r)F, (r)4' + (k, , r),
2vrh

where

(2.2)

F (r) = (LM~V ~00) = Q Y* (r) (2.3)

is the corresponding electric 2 -pole form factor. The
coupling constant is

Q, =
( )s), [Bo~L,(EL)]' ', (2.4)

where the reduced transition probability is commonly ex-
pressed through the phenomenological 2~-pole deforma-

C
tion parameter P according to

Bo L(@L) = l(LII~(EL)110)l' = (& )'&.
- 2

(2.5)

Since we are considering the excitation process at rela-
tively high bombarding energy, an appropriate descrip-
tion of the relative motion is obtained within the eikonal
approximation. In this approximation the distorted
waves have the expressions

*(kz, r) = 4',.„'*(kz,r)
i= e "~' exp~ — dz'V (b, z') ~,hv, ' )

(2 6)
e(+)(k, , r ) = e~+,„(k;,r )

z
= e""exp

~

— dz'V (b, z')
~

.
hv

'
)

(2.7)
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Here and in the following the quantities depending on
the relative motion coordinate r will be evaluated ac-
cording to the prescription described in Ref. [4]. This
amounts to evaluating the integrals along a straight line
trajectory with impact parameter b' = ro(b) where ro(b)
is the distance of closest approach for a Coulomb trajec-
tory. This prescription has been successfully applied in
a series of papers (see, e.g. , Refs. [6, 17]); an improved
version, which also includes the effect of the nuclear in-
teraction on the point of closest approach, was given in
Ref. [18]. On choosing the z axis perpendicular to the
transferred momentum q and separating r into its com-
ponents (b, z), the eikonal Coulomb phase shift is given

I

[19] by

OO

(b) = —— dz V (r) = 2i)7ln(kb) (2.8)

and one gets

'('k r~@ +. &k. r ) = e'~ e'!"'* "~*!'e"& (2.9)

(note that when adding the phase shifts we disregarded
the difference between the velocities e and e~ in the en-

trance and final channels). The scattering amplitude in

the eikonal distorted wave approximation (DWEA) as-

sumes then the form

focal, M(e! 4') = —
2 Q~ d b e'~ e"'&! l dz e'+"*' p' (g")

C' m 1

2' ' r + (2.io)

with Ak, = k;. —kf. . By introducing now the adimen-
sional z-integrated form factor through the definition

e ™bp(b, ) = —— dzF (r)e' *', (2.11)

the expression for the inelastic scattering amplitude be-
comes

fo z (!!,$M)
= ice fd—b 5 J'(qb)e* p (b) .

(2.12)
C

The integrated form factor p (b) can be obtained in
the closed form [14]

(K (Ak, b) —([Ml —1)!
l2 qb, k, b)

(2.i5)

in both cases. As a consequence, according to Eq. (2.13),
in this limit only the terms with M = kL survive and
one gets

I

The function KM is the modified Bessel function of order
M. This expression can be further simplified in the limit
of low excitation energy and/or high collision energy.
Note that since one can approximate Ak, = k;. —kf,
(d/v, hu being the excitation energy (Ef —E;), one
obtains Ak, ~ 0 in both of these limits. The func-
tions K (6k, b) can therefore be approximated by their
lowest-order expression

p, (b) = ——(Ak, ) Q, C, K (b,k, b),

with

(2L+ 1) ~
(—1)

7r ) [(L+M)!(L—M)!] )'

(2.13)

(2.14)

p,, (b) = ——6,(M(~iCL~ l

—
l (2 16)

c i (L —1)! (2'l

This implies that in these cases the emerging excited tar-
get is completely polarized along the z axis and the scat-
tering amplitude is simply given by

jo I I +&(8,!))= 2 (L —I)!Q 0 e '™fdb b J (qb)e*o!!— (2.i7)

This complete polarization of the excited target along the
incident momentum axis is easily interpreted in terms of
classical dynamics. In the sudden limit (Ak, -+ 0) the
collision time is short compared to the characteristic time
of the intrinsic motion. The internal degrees of &eedom of
the target are therefore &ozen during the excitation pro-
cess, and due to the symmetry of the problem the total
impulse has no component along the incident momentum
axis. The resulting angular momentum is consequently
aligned with this axis.

Low impact parameters, where the multipole expan-
sion (2.1) is no longer valid, are naturally suppressed by
the cutoff introduced by the nuclear absorption. Due to
the sensitivity of the results to the choice of the cutoff
we prefer to avoid the use of an ad hoc radius R b, and

to postpone the actual evaluation of the Coulomb excita-
tion cross sections to the next section where the effects of
the nuclear forces are properly accounted for. Note also
that our description is intended to cover energy ranges
where retardation effects and relativistic kinematics can
be disregarded. These issues are discussed for example
in Ref. [20].

B. Nuclear interactions

Phenon enological description

Let us introduce now, in addition to the Coulomb field,
the nuclear potential V~, again separated into the mean
optical potential V and the coupling term V~. In the
DWEA considered above, the expression for the inelastic
scattering amplitude assumes the form
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fe »M(q, &) = —ibe ' S f db b J [qb)e» i i+» i i(y, (b)+y, (b)), (2.18)

where the adimensional z-integrated form factor p (b)
is connected to the nuclear form factor through the equa-
tion

™'p, (b) = —— dz F (r)e' "*', (2.19)

which is the nuclear counterpart of Eq. (2.11). More
precisely, the quantity g~(b) in Eq. (2.18) is the elas-
tic nuclear phase shift, which is obtained in the eikonal
approximation integrating the phenomenological nuclear

0
potential V in the form

OO

g„(b) = —— dz V„(r) .
hv

(2.20)

The inelastic nuclear form factor F (r) is a spherical
tensor of rank L of the form

F, (r) = (qfb, Cb„~V„~Cb„qIb„) = F, (r)Y; (r),
(2.21)

F, (r)=P, R
dV„(r)

(2.22)

in terms of the nuclear dynamic deformation parameter
N

P and the target nuclear radius Rr.

and in the standard collective model associated with the
excitation of vibrational states its radial part is directly
related to the nuclear potential by the expression [1]

2. Mice oscopic description

(2.24)

and s„,s~ are the projections of the coordinate vectors
of the nucleons on the plane perpendicular to the z axis.
An expression of the phase shift directly related to the
phenomenological nucleon-nucleon scattering amplitude
is obtained through the Fourier transform

~ (b) = ~ « po (~) f .(~) po (~) J.(Qb)
0

(2.25)

where the caret denotes Fourier transformation.
Accordingly, a microscopic representation of p (b)

involving the transition density bp™can be obtained in
the form

In a microscopic description based on a modified
Glauber approach [7, 8] the phase shift can be calculated
in terms of densities of the two colliding nuclei and the
nucleon-nucleon profile function in the form

X (b)=fdr dr pe(r )q (~~)»
—s +s ~)ps(r );

(2.23)

the profile function is defined as the two-dimensional
Fourier transform of the elementary scattering amplitude

(b) = f dr dr ps [r ) q (~~)»
—s +s ~) bpeM(r )

«po (~) f (~) bp: (~) J (Vb),
NN 0

(2.26)

where B~M is a geometrical factor given by

B~M = (—1) [(2L+ 1)/4vr] ~ [(1+(—1) )/2]
L M[(L-—M)'(L+ M)']' '

(2.27)

This is originated by the assumed form

bp, (r) = bpr(r) Y* (r) (2.28)

matrix elements of this interaction between antisymmet-
ric nuclear states normalized to unity:

for the transition density of the target.
The direct derivation of the p factor in the present

DWEA formalism goes as follows [8]. One introduces as
a first step the coordinate representation of the nucleon-
nucleon scattering operator, obtained through the Abel
transform of the profile:

2hu„„d p„„(b)
dr „(b2—r 2) ~&2

(2.29)

The microscopic form factor is then defined in terms of

F, (r) = (de, Cb„~V„]Cb„4„)

dr~drr po (r ) t „(~r —r + rr ~)

xbpKM(r ). (2.30)

In the framework of the DWEA we use again the defini-
tion (2.19) to obtain the related z-integrated form factor

)(b (b). The z-variable integral introduced by the relative
motion wave functions implies performing the integration
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dz e' "* 't ~(lr —r. + r~ I) . (2.31)

If we are in the limit b,k, 0 the above relation reduces to
the inverse of the Abel transform of Eq. (2.29) and gives
directly p(b), so that the z integral of the form factor
gives Eq. (2.26).

A similar procedure in the eikonal approximation leads
from the folding potential [8]

V(,) = j„~(r )pe(r )t„„()r—r +r ~)dr dr

(r) =I" e (2.34)

It follows, in this scheme, that the dependence on the
channel excitation energy of the function p (b), induced

by the z integration involving e'+"", can be described
in the form

behavior in the decaying tail, i.e., in the region where the
inelastic process occurs without being absorbed. So, for
suitably large values of the impact parameter, the radial
form factor can be attributed the explicit exponential
form

(2.32) p, (b, 6k) = A(, , (b, Ek) y,, (b, b,k = 0), (2.35)

to the phase shift (2.23).
Note that a peculiar character of the nuclear form fac-

tor so defined, originating from the high-energy structure
of t„~, is its locality in r. We furthermore remark that
we have displayed the above formalism in the case of cen-
tral interaction. The treatment of more general interac-
tions involving spin, isospin, and spin-orbit dependence
is straightforward for processes treated in first order (cf.
Ref. [2]). More elaborated developments are needed for
higher-order descriptions [21].

with

(b gk) LM ( 'I )
I, (b, b,k=0) ' {2.36)

I ( kbk) = J e "& Y* (r)e' '*de. (2.37)

where p, (b, Ek = 0) is the quantity defined in
Eq. (2.26) and A( )

is the adiabaticity correction factor
defined by the relation

8. Q-value sects

The appealing form (2.26) for the nuclear form factor
in the impact parameter representation, which involves

only immediately significative quantities, has been ob-
tained at the cost of disregarding the efFects of the difFer-

ence between the momentum in the initial and. 6nal chan-
nel. While this approximation cannot be accepted at all
in Coulomb excitation, it may be less dangerous in deal-

ing with short-range nuclear forces: this approximation,
in fact, is equivalent to assume that e'+"" e'& /' ~' 1
in this short interaction range, an approximation ex-
pected to be valid at intermediate energies. One can
however account in an approximate way for this Q-value
dependence in the case of relatively lower bombarding
energies.

Let us reconsider the microscopic form factor (2.30).
The complex nature and the energy dependence of the in-

teraction makes this microscopic form factor richer than
the corresponding phenomenological one. However, it
can be reasonably assumed to have the structure

I, (b, b,k) = H I(b, ~k), (2.38)

The parentheses in the indices LM in (2.35) is related
to the fact that in difFerent approximations the depen-
dence on L and/or M could be absent. By expressing
the spherical harmonics in terms of sin8 = b/gb + z
and cos8 = z/gb2 + zz the resulting one-dimension in-
tegral is easily performed numerically. According to the
above discussion, the adiabaticity correction factor can
be assumed to be the same both in the microscopic and
in the phenomenological descriptions. Note that in any
case this correction factor is valid only for b & R b, , for
lower values, on the other hand, the form factor gives no
contribution at all because of the strong absorbtion.

A simple analytical form is obtained by introducing a
further approximation to the form factor. This amounts
to approximating the angular part of the nuclear inter-
action by the value it has at the point of maximum ap-
proach, i.e., Y~M(8, 0) Y~M(vr/2, 0). Under this as-
sumption one gets

Z,
"

(r) = S."(.). ™Y;(8, 0), - where
(2.33)

as in the phenomenological case. One can accept, further-
more, that the two form factors will have a similar radial and

~Y, (~/2, 0) (2.39)

I(b, &k) = e " cos(t"),K,z}dz = H, K
l

g1+ (a~k}2~l
Q1 + (ab, k) 2 '

)( a (2.40}

consequently,

A(b, bk} = I(b, Ek) 1 (b (b&
I(b, Ek = 0)

K,
l

—Ql+ (abk)2
I K, l

—
l

.
i Ea&

(2.41)
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Note that the dependence of the adiabaticity factor on
LM disappears in this approximation. Examples of adia-
baticity factors are given in Fig. 1, where the correspond-
ing factors for Coulomb excitation are also shown. The
6gure confirms the expected feature that the damping
effect due to the finite Q value is drastically reduced in
the nuclear case in comparison with the Coulomb case.

By taking into account that we are interested in re-
gions in which 6 )) a, so that the argument of the Bessel
function K, is much larger than 1, the dependence of
the adiabaticity factor on Ak can be further simpli6ed
by expanding this function in its asymptotic series and
retaining the first term, i.e. , K, (z) gm/2ze '. This
leads to the simple final result

A(b, Ak) =
l

1 ——(aAk)
l

e ~-
4

(2.42)

0.8

40A„208Pb (~+)

0
Cl

0.4
Coulomb

I

0.2,'—

0
0 5 10 15 20 25

Excitation energy (MeV)
30

FIG. 1. Adiabaticity factors for the Coulomb and nuclear
excitation of a quadrupole mode in lead as a function of the
excitation energy. The bombarding energy per nucleon Is 41
MeV.

It is worth noticing that the dependence on Q
value, ruled by the Gaussian function, is the same as
the one derived in the kamework of the semiclassical
time-dependent description of the inelastic scattering
(cf. Ref. [22]). We underline, however, that in our ref-
erence kame, with the beam axis as quantization axis,
there is no mingling of Q-value effects with those orig-
inating &om the value of the magnetic quantum num-
ber. In our case the perturbative expansion of Y~M (8, 0)
around 0 = vr/2 gives no correction in first order, while
the second-order term must be evaluated numerically. In
spite of these apparent hindrances, the approximation is
rather accurate, as apparent from the examples given in
Fig. 2, where these expressions are compared with the
"exact" expressions (2.36). In Fig. 3 the dependence of
the adiabatic factor on the impact parameter b is shown.
Its rather smooth behavior and the limited window in
6 contributing to the nuclear excitation suggest to use,
in the expression for the scattering amplitude, a unique
factor A(b, Ak) = A(bs, Ak) corresponding to the graz-
ing value 6 . This can be also seen from Fig. 4(a) whereg

~ ~ ~ +angular distributions of nuclear excitation of diferent 2

levels in lead have been evaluated. One can note that
an overall scaling factor is sufBcient to relate the di8'er-

ent cross sections. On the converse [see Fig. 4(b)], the
Q-value effects are dramatically manifested in the case of
Coulomb excitation of the same levels.

1.2

1.0

I I 1
'

I I 1 I 1

Ar Pb (2')

cl 08

0.6

0.4

0.2
0 10 15 20 25 30

Excitation energy (MeV)

FIG. 2. Nuclear adiabaticity factor as a function of the
excitation energy of a quadrupole state. The slope parameter
a has been taken equal to 0.6 fm, the impact parameter b =
14 fm, and the bombarding energy is 41 MeV/nucleon. The
dotted and dashed curves, corresponding to M = 0, 2, re-
spectively, have been calculated using expression (2.36). The
solid and the dot-dashed lines were calculated using the ap-
proximated formulas (2.42) and (2.41), respectively.

C. Applications

Examples of Coulomb excitation cross sections at dif-
ferent bombarding energies are given in Figs. 5 and 6.
The nuclear interaction is considered only for the dis-
tortion and absorption eKects through the nuclear phase
shift y~, disregarding for the moment the contribution
of the nuclear excitation. For example, this prescription
in the case of the angular integrated cross section for
Coulomb excitation amounts to using the expression

2R (2.43)

We note that the use of the realistic smooth transmis-
sion coeKcient through the nuclear phase shift inhibits
the possibility of obtaining closed analytical expressions,
at variance with the results derived in the sharp-cutoH
assumption [14, 15].

In Fig. 5 the reaction Ar+ Pb is considered. We
display the Coulomb excitation (CE) angular distribution
at diferent bombarding energies for the giant quadrupole
resonance (GQR), in order to evidence the forward focus-
ing effect with increasing energy. The angular range 60
in which the cross section is appreciably concentrated is
in good agreement with the predictions based on semi-
classical considerations [14,15], i.e. , 60 = 2Z~ Z e /RE
For the same reaction, in Fig. 6 we display, as a function
of the bombarding energy, the total integrated CE cross
sections for diferent modes. More precisely, for each mul-

tipolarity L & 4 a vibrational low-lying mode and a giant
mode are considered with coupling strengths resulting
from the random phase approximation (RPA) calcula-
tion [23]. For the dipole mode only, the giant isovector
resonance has been considered. For each mode the cross
section reaches a maximum and then decreases, with the
value of the maximum depending on the excitation en-

ergy as a consequence of the adiabaticity condition.
To evidence the importance of the Q value at low bom-

barding energies we display in Fig. 7 both the cross sec-
tions obtained with the exact expression (2.13) for the
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the experimental data, we include now the nuclear exci-
tation. As an example we consider the case of the ex-
citation of the octupole modes in lead in the reaction
20 208Ne + Pb. As a preliminary we display in Fig. 8 the
result of a purely theoretical calculation; the separated
contributions to the cross section obtained with only nu-
clear (dot-dashed) or Coulomb excitation (dashed) are
also evidenced. The different adiabaticity factors for
the Coulomb and the nuclear contributions makes the
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interference pattern strongly dependent on the excita-
tion energy. The two contributions are comparable (and
therefore lead to strong interference) in the case of low
excitation energy [Fig. 8(a)], while the nuclear contri-
bution becomes dominant in the latter case (and hence
weak interference) [Fig. 8(b)]. We should also keep in
mind, however, that the balance between the Coulomb
and the nuclear contributions depends also on the mul-
tipolarity of the excited state, being the Coulomb form
factor strongly L dependent in &ont of a nuclear coupling
practically insensitive to the multipolarity.

In Fig. 9 an actual comparison with the experimen-
tal data is exhibited for the excitation of the 2+ state
in lead at 4.1 MeV in the reaction oAr + Pb. As in
the previous figure, the expression (2.18) has been used,
with Coulomb and nuclear phase shifts given by Eq. (2.8)
and (2.20) and with z-integrated form factors given by
Eq. (2.13) and (2.35). We note the fact that the only
necessary inputs of the calculation are the densities and
transition densities of the colliding systems and the mi-

croscopic N-N scattering amplitude at the correspond-
ing energy. Densities and N-N scattering amplitudes
can be taken &om the phenomenological data, while for
the transition density we have assumed the standard col-
lective description with a normalization adjusted to the

experimental B(EL). The calculation therefore avoids
all uncertainties connected with the choice of the ion-ion
optical potential and form factor.

Other examples of analysis of experimental data, per-
formed by applying the same procedure, are given in Figs.
10 and 11. Note that in the case of Fig. 10(a), because
of the isovector nature of the excited state, the excita-
tion process is mainly due to the Coulomb field. In the
octupole case illustrated in Fig. 11(b), where the agree-
ment between theory and experiment is of lower quality,
results of similar nature were obtained in the analog dis-
torted wave Born approximation (DWBA) analysis given
in Ref. [24].

III. SECOND-ORDER ELASTIC SCATTERING
AND POLARIZATION POTENTIALS

A. The Coulomb excitation

In this section we consider the modifications on the
elastic scattering originated from the coupling to inelastic
channels. We shall first consider the Coulomb excitation.
The second-order elastic scattering amplitude for the se-
quential excitation and deexcitation of an intermediate
state LM can be written as

f, ~~( ) = —
2 dr dr ' 4„&'(ky, r)F' (r)G„),(k~;r, r ')F (r ')4,+,.zl(k;, r '),

2vrh
(3.1)

where G,ik(k~; r, r ) is the eikonalized propagator of the colliding nuclei in channel L:
Z

Geo (k, ir r ) = ——b(b —b')8(z —z')e'"~ *i lexp~ —— V~(r")dz"
~hv

(3.2)

is the relative linear momentum in the excited channel. As in the previous section, in the phase shift integrajs
we disregard velocity ~latlons; this allows us to add the partial contributions to the phase shifts arising &om the
distorted waves and from the Green's function. Furthermore, it is useful to extract from the form factors the y
dependence by writing

F (r, 8, $) = e ™F(r, 8) = e ™F(b, z),

where r = gb2 + z2 and 8 = arctan(b/z). Note that the function F~M so defined is real for real couplings, such as the
ones arising &om Coulomb interactions. The final expression for scattering amplitude is therefore

Z

f (8) =
2 db e'~ e~&~ l 'dz dz' 8(z —z')e' "*'FM(b, z)e ' "*'F M(b, z').

V —OO —OO

The integrals of the type entering in the above equation can be usefully put into the form
OO Z OO OO

dz f (b, z) dz'g(b, z') = — dz f (b, z) dz'g(b, z')
2

OO Z

dz dz' [g(b, z) f(b, z') —g(b, z') f(b, z)].

(3.4)

(3.5)

According to Eqs. (3.4), (3.3), and (2.19) one obtains

dz e' " *P„(bz)j dz' e ' "'*I ,(b)z,
g2 2 OO Z

Ip, (b)] + dz dz'F, (b, z)F, (b, z')[e' *&' ' ) —e ' "*~' ' ~]. (3.6)
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Since

e' * ' —e ' "* ' ' ) = 2i sin[BI(,, (z —z ')] 2i sin[&a(z —z ')/v] (3.7)

and the functions I"I,M are real, one immediately recognizes that the (p, )z term is real and negative while the
integral in the right hand side of the above equation is purely imaginary. In the energy regime at which we are

working, where ur/v 0, this term is vanishing. By summing the direct elastic and the ()M ) term of the inelastic
transition, one gets therefore for the elastic scattering amplitude the final expression

f.i(~) = f.i(~)+).f.—.(t))
M

2

db e'e' 1 —e" ~'~ b + —) (y., (b))'M
(3.8)

In order to introduce the polarization potential the fol-

lowing procedure can be used. We first put Eq. (3.8) in
the form

obtained [8] by inverting y' (b) and one has

.he d y' (b)

f, (g)
'

db e'a 1 ex~ (~)+x~ (~)

2'
where the additional phase shift

2

x'. (b) =(e b+ —,).(p. (b))'M

(3 9)

(3.10)

Note that this polarization potential is purely imaginary
and negative for pure Coulomb interaction as a conse-
quence of the fact that y' (b) is a real, negative and
monotonically increasing function of b.

In the weak coupling limit the additional phase shift
can be approximated according to

has been de6ned. In the eikonal approximation, po-
tentials and corresponding phase shifts are connected
through the Abel transform [2]. Due to the additivity
properties of this transform, the polarization potential

(i.e., the correction to the bare potential V ) is directly
I

(b) =
b

)'.: (b . (b))
M

(3.12)

If we further disregard excitation energy effects, from
Eq. (2.16) one gets

C -2) ~1 M

M

C

I L,M=L

- 2 1 4z Z e [(L —1)!] 2

(hv)' (2L + 1)' '"' (2L)!
(3.13)

The Abel transform of the above function is analytically
known, and in this approximation the polarization po-
tential assumes the simple dependence

.3~Z,'e'[&o .(&L)][(L—')'1'2
h (2L+ 1) (2I).' 2L+1r

(3.14)
In the particular case of quadrupole states, the expression
reads

2vrZ'e'B, , (E2) 1
AV (r) =i-

Note that our procedure, which gives directly a local
potential via the Abel transform of the phase shift, dif-

fers &om other approaches used in similar contexts. As
a result our 6nal expression, although similar, does not
exactly coincide with the high-energy limit of the po-
larization potential obtained in Ref. [1], whose starting
point is the second-order Feshbach potential and resorts
then to localization procedures. Alternative forms of the
polarization potential have been derived within semiclas-
sical descriptions of the scattering process [22, 25]. Also

in this connection one observes that the results obtained
by different approaches are very similar, but not coinci-
dent.

B. The nuclear interaction
and Coulomb-nuclear interference

Due to the linearity embodied in the eikonal propaga-
tion, the addition of a nuclear mean potential amounts
to adding a nuclear phase shift in the Green's function.
The z-integrated form factor is now given by the sum
of the form factors of Eqs. (2.13) and (2.35) related to
Vc and V~ respectively, as discussed in Sec. IIB. Note
however that, although the structure of the second order
term for the nuclear case has again the form displayed
by Eq. (3.6), some simplifications may not occur. In this
case, in fact, the commutator-like expression in the last
member of that equation may contribute also in the case
in which Ak, = 0, when not commuting operators, such
as spin-orbit interactions or others, are active. Problems
arising in this connection have been discussed, e.g. , by
Glauber [2] and by Mandelzweig and Wallace [21]. We
will only deal in the following with states whose nuclear
excitation is only due to the central part of the interac-
tion.

With this proviso the extension of Eq. (3.8) in order to
take into account both Coulomb and nuclear interactions
is straightforward and gives the scattering amplitude
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2

f I(8) = — db e''I' I —e* ~ ~+* ~ I + —) (II (b) + II (b))
M

(3.16)

Elastic angular distributions for the reaction
Ar+ 3 U are displayed in Fig. 12. The Grst-order cross

section is plotted in full line. The dotted and dashed
lines, accounting for the coupling with the Coulomb
and nuclear+Coulomb excitation and deexcitation of oc-
tupole states, respectively, exhibit important reductions
with respect to the first cross section.

By introducing in analogy to Eq. (3.10) the phase shift

real part of the total polarization potential (full line) is
compared with the contribution arising from the nuclear
interaction. In Fig. 13(b) the total imaginary polariza-
tion potential is displayed together with the pure nuclear
(dashed line) and pure Coulomb (dotted line) compo-
nents. A further comparison with the immaginary part
of the nuclear optical potential shows the long range ab-
sorptive effects produced by the couplings.

(3.i7) IV. THE MULTISTEP-MULTICHANNEL
PROBLEM

Eq. (3.16) can be put into the form

f (g) db b'9'tb ] xo (~)+xpg (s)+x (&)

2'
(3.is)

This phase shift can now be inverted in the same way
as in Eq. (3.11) to give the total polarization potential
AV which is in general complex. We recall the fact that
in the pure Coulomb case the polarization potential in
our eikonal limit is purely imaginary, due to the vanish-
ing of the real part arising &om the commutator term in

N
Eq. (3.5). The nuclear p, on the other hand, has in gen-
eral a complex character arising &om the "dressed" inter-
action described by tNN, or p, or by the microscopic scat-
tering amplitudes f~~. Therefore, even neglecting the
contribution &om the commutator part, the related po-
larization potential includes both re&action and absorp-
tion components. As an example, in addition to the two
separate nuclear and Coulomb polarization potentials we

have the interference term, which due to the opposite
character of nuclear and Coulomb forces tend to cancel
the previous term. This is illustrated in Fig. 13 for the re-
action 4oAr+2ssU at 41 MeV/nucleon. In Fig. 13(a) the

2
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In the present section we extend to any order of scat-
tering the methods displayed in Secs. II and III for the
description of 6rst- and second-order scattering, respec-
tively. Our aim is to describe multistep scattering pro-
cesses in which the nuclear and the Coulomb forces play
a comparable role and the bombarding energy is sufB-
ciently high to justify an eikonal description of the rela-
tive motion of the two colliding nuclei. The formalism is
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FIG. 12. EfFect of the coupling on the elastic scattering
cross section. The solid line corresponds to the "pure" elas-
tic channel. The dashed line includes the coupling to the
Coulomb excitation channel and the dotted line includes both
Coulomb and nuclear excitations. The long dashed line guides
the eye to the pure Rutherford case.

FIG. 13. Polarization potentials for the reaction Ar
+ U at 41 MeV/nucleon. In Fig. 13(a) the real part of
the total polarization potential (full line) is compared with
the contribution arising from the nuclear interaction. In
Fig. 13(b) the total imaginary polarization potential is dis-
played together with the pure nuclear (dashed line) and pure
Coulomb (dotted line) components. A further comparison
with the immaginary part of the nuclear optical potential
shows the long range absorptive efFects produced by the cou-
plings.
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A. Preliminary developments
in standard scattering theory

The Hamiltontan
and the Lippmann-Schminger equation

We assume that the complete projectile-target Hamil-
tonian can be written in the form

H =H&+H&+7, (4 1)

where

developed in the framework of standard scattering the-
ory, but we use effective microscopic interactions to de-
scribe the nucleus-nucleus interaction. Disregarding the
Coulomb excitation processes, our final result is formally
equivalent to the equations obtained by Feshbach and
Hufner [13]. In a nucleon —nucleus Hamiltonian they re-
place the two-body interactions by the nucleon —nucleon

t~ scattering operators; the scattering problem is then
solved by the eikonalization of the coupled —channel sys-
tem of differential equations derived Rom the above in-
troduced Hamiltonian. We prefer to attack the problem
in the &amework of the Lippmann-Schwinger equation
and then eikonalize the Green's function describing the
nucleus-nucleus multiple scattering mechanism. The re-
sults so obtained can be also compared with those previ-
ously obtained by the authors in Ref. [7], provided the Q-
value effects and Coulomb interactions are disregarded.

To make the exposition of our formalism clearer we

keep separated the developments which can be given in
the framework of standard scattering theory (Sec. IV
A) fMm the ones in which eikonal methods are mas-
sively used (Sec. IV B). Simple formal applications of
the method are given in Sec. IV C.

ditions [27]; in the following it will be omitted, except
when it appears as a label of the energy. The quantity
K is the kinetic energy operator of the relative motion.

The uncoupled state of the target and projectile is de-

fined by the relation

4„=4; 4~ (4.5)

To avoid formal complications arising &om the angular
momentum algebra we shall assume that the projectile is

always in its ground state with zero angular momentum
and that the target states are identified by a quantum
number n = L,M„, so that in the following we shall
write

@'n —@L„,M C'0 ~ (4.7)

The energies are defined so that for the ground state 40
one has eo ——0.

2. Introduciny the Coulomb interaction
and optical potential

In Refs. [28, 29] a formalism has been built up to de-
scribe the nucleon-nucleon effective interaction in terms
of a tN„operator which embodies both the nuclear and
the electromagnetic forces. In heavy-ion scattering pro-
cesses Coulomb excitation is conveniently accounted for
in the &amework of the phenomenological description
outlined in the previous sections, so we prefer to assume
a more empirical philosophy.

Our basic assumption is that the complete transition
operator can be defined by the equation

The states 4 and 4 are supposed to be separately
antisymmetric and are normalized so that

(4.6)

(4 2) r =y+vg, r,
where the full interaction is

(4.8)

and t~ is the effective t~~ operator describing the inter-
action between the ath nucleon of the target with the 2th
nucleon of the projectile. In agreement with Ref. [26],
this is a generalization of the nucleon-nucleus Hamilto-
nian used in Ref. [13] to the description of the scattering
of composite objects. As discussed in Sec. II B 2, with
the definition of t through Eqs. (2.24) and (2.29),
the optical potential and the inelastic form factors can
be obtained by folding this interaction and correspond
to those obtained &om our Glauber-like coupled-channel
approach [8].

The starting point for our developments is the
Lippmann-Schwinger equation

T = 7+ 7gpT, (4-3)

where

(4.4)

is the unperturbed propagator. The symbol (+) has the
standard meaning of designating outgoing boundary con-

v=r+v, (4.9)

[this approximation can be viewed as a further simplifi-
cation of Eq. (2.49) of Ref. [29]]. With reference to the
Born expansion

& = &+ Wo&+ &Qo&Qo&+ (4.10)

of the above equation, our assumption can by rephrased

by saying that each step of the nucleus-nucleus colli-
sion is ruled by the effective nuclear operator 7 plus the
Coulomb potential V. The ultimate justification of this
asymmetry relies on the fact that, owing to the weaker
character of the Coulomb forces, we can treat them at
the first order while the nuclear forces must be summed
to any order of nucleon-nucleon collision.

In the Glauber theory and in our previous works [7, 8]
the phase shift related to the nuclear direct elastic scat-
tering emerges quite naturally &om the nucleus-nucleus

multiple scattering process. It has been furthermore
shown that this phase shift is associated with the folding
optical potential
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vg = (@pl&l@p) . (4.11) Eq. (4.7)] and of the optical Green's function describing
their relative motion.

V "= (@OI7 + Klc'o) = Vo.

The formal solution of Eq. (4.8) can be written

(4.12)

Since in the present approach the Coulomb phase shift
cannot be associated to a multiple N-N scattering pro-
cess, it is useful to introduce directly into the formalism
the complete optical potential

3. The multistep expansion

The above formalism can be further developed by the
introduction of the two-potential method. Accordingly
the scattering amplitude for the transition from the ini-
tial channel i to the final channel f can be written

1'="'E. K-H..-V' (4.13) fi f = ~if fel + fif (4.18)

by introducing the optical potential one obtains

T =V+V 1
V,E+ —K —HT I —Vp —VR

where

(4.14)

where f,i describes the direct elastic scattering produced
by the optical potential Vp, and f;f in our problem is the
multiple scattering term

(4.19)

VR = V —Vo (4.15)

is the residual interaction. In the following we shall con-
sider the Born expansion of this operator in terms of the
optical Green's function T = VR+ VRgpT, (4.2O)

the functions @+ are scattering states of the optical po-
tential. The multiple scattering operator T, defined by
the integral equation

can be given the expansion
(4.16)

1
goi, t = go =

E —K —HI —HT —Vp
T = VR+ VRgoVR+ VRgoVRgoV +

In terms of this perturbative series one can write
In this connection it is useful to introduce the spectral
representation

(4.21)

(rgpr') = ) C„)(C„G„(r,r'), (4.17) )~f (~)
(4.22)

expressed in terms of the states of the nuclei [see where

f f
' = —,(Il' '(k f)C'fI VRgOVRgovRgo '' goVR I@',@'+ (k;))

n factors VR

(4.23)

On representing the optical Green s function according to its spectral expansion [see Eq. (4.17)] one gets

(n} m

2 h,
' (4 (kf)4fVR@o, )Go, (@o,VR4„) ~ (4O„,VR@o„,)G~„,(@~„,VR4;4+ (k;)). (4.24)

It is clear from the structure of the residual interac-
tion that in the present formalism the diagonal matrix
elements involving the ground state are zero, i.e.,

(@pl (V —Vp) I
C'p)—:o. (4.25)

With the further standard assumption about the diago-
nal matrix elements

(4.26)

one gets

(@-I(v —v ) I@-)= o. (4.27)

In the following we shall assume that Eq. (4.27) is always
satisfied. As a consequence, the optical potential is the
same in all the channels.

B. The eikonal multistep multichannel
approximation (EMMA)

The relations from Eq. (4.18) to Eq. (4.24) are direct
consequences of Eq. (4.8) in standard scattering theory
and take into account features such as multiple scattering
processes, strong and Coulomb coupling, and excitation
energy eHects. On the grounds of these results we are go-
ing now to develop a general method suitable to describe
problems in which, beside the above features, the eikonal
propagation is assumed to play an important role. More
precisely, we assume that the distorted waves and the
Green's function are correctly described in the eikonal
approximation while the elementary interactions are as-
sumed to satisfy relations (2.24) and (2.29). The next
paragraph is devoted to reobtain the results of Secs. II
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and III starting from Eq. (4.24) plus the eikonal assump-
tions, and to introduce a more general notation for the
z-integrated form factors to be used in the setting up of
the general formalism.

The ftrst- and second o-rder scattering terms

The first-order scattering term in Eq. (4.24) can be
written in the form

f) )(8 r)) = — /dr qr ) ~
(k r)(q q ~V ~q q )q(. )(k, , r), (4.28)

coincident with the sum of the Coulomb and nuclear DWEA expressions discussed in Sec. II. By defining the optical
potential Vp(r) appearing in the exponential of the eikonal distorted waves as the folding of the interaction according
to Eq. (4.12) one obtains the phase shift

x(b) = x.(b) + x.(b) (4.29)

introduced in Eqs. (2.8) and (2.2S). The explicit integration on the z variable in Eq. (4.28) gives the final form for
the first-order scattering term

f;r ()&, &)) = —)k f d& &
e's' e* ) )+* ) )D;r()s),

where

(4.30)

D- (b) =-—
hv

hv

dz E„„(r)e' "'*+ j p (r, )eep'„„,'(r') &()z —s +s') dr, dr

dz F , (r)e' " *„+„Jpse(q) p"„,(q) f (t)) e s dq;'' (4.al)

the factors p previously introduced to couple the ground to excited states have been now replaced by the general
matrix D(b). Explicit expressions for the transition densities p„„can be obtained in the framework of specific
nuclear models, as, for example, the collective Bohr-Mottelson or the Tassie models. The quantity pertaining to the
first integral is the generalization of Eq. (2.1a) to the case in which both the initial and the final states of the target
carry angular momentum, while the second integral is the partner of Eq. (2.26). Note that the integral involving
nuclear interactions can be multiplied by an adiabaticity factor A„„(b,b,k) as discussed in Sec. II 8 to account for
finite Q-value effects.

As a second step, we can consider the explicit form assumed by the second-order term of the scattering amplitude

f(f ———
2

{kl)( ) (ky)C&y~VngpV~~C&;@(+) (k,)), (4.a2)

when the eikonal assumption is introduced. The optical Green function t q, is approximated in the form

z

G,, (r, r') = G,;k(k, ;r, r ') = ——b(b —b')8(z —z')exp[ik (z —z')]exp~ —— Vp(r")dz"
~

.
v gs 1

(4.as)

If the form factors are evaluated according to the prescriptions discussed above, the procedure displayed in Sec. III
allows one to put the second-order scattering amplitude in the general form

f( = —— dzb e' ' e"& ~+~~(s ) D (b)D;(b),
2vr

fq (4.s4)

where the sum is extended to aH the intermediate states assumed to play a relevant role in the process examined.

2. The general equation8

The general result arising from the above procedure is the algebrization of the scattering problem for each impact
parameter: Eq. (4.24) has been in fact transformed in a simple integral of products of elements of the matrix D(b).
More precisely, the general term of the nth order of f;f can be written

f ( ) — d2besqi'bexc (b)+x)q (s) (T )( ) (b) (4.s5)

where

T = —, Dfq, bDq, q, b . -.Dq„„-b = —, Db
&1 &&2 &

.&n —l

(4.s6)
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and therefore, on suinming to all the orders, one gets for f;f

f = —— d'b e' e +" ) —([D(b)]"j.if
n=1

x~(»+x~ »
2'

~

~

if
(4.37)

The factorials take origin &om an ordered product when the operators are assumed to commute or when commuta-

tors are disregarded (see, e.g. , Ref. [30]). Since in the eikonal approximation the elastic potential —scattering ainplitude

has the form

f db e*ab 1 ex~(s)+x„(~)Jel- 2x

the scattering amplitude can be written in the final form it assumes in the EMMA

(4.38)

f. b. f, + f. db e ~b b, ex&( )+x&(~) e ( )

2~ if
(4.39)

This expression is the generalization to any order of scat-
tering of the equations set up in Secs. II and III to de-
scribe first- and second-order processes, respectively. Our
model is essentially the association of this formula with
the representation of the D matrix given by Eq. (4.31),
and the adiabaticity factor given by Eq. (2.36).

With reference to the formalism developed in Ref. [7],
we observe that in the present approach the diagonal ele-
ments in the matrix D are identically zero since the direct
elastic scattering has been extracted from the beginning
to generate the optical phase shift. With this proviso,
the present formalism becomes identical to the previous
one when Coulomb interaction and finite Q value are dis-
regarded.

More general equations can be written by introduc-
ing z-ordering operators (see Ref. [13)) which parallel the
time-ordering operators in semiclassical time-dependent
approaches [30]. A thorough discussion on these prob-
lems in connection with the Glauber theory can be found
in Ref. [21].

8. The polarization potential

JOO
(&)+x~ (&)+x (&)e

2K
(4.40)

or, in other terms, one should provide an explicit repre-
sentation of the type

The polarization potential for any problem capable of
being &amed in the EMMA formalism can be obtained,
in principle, according to the procedure displayed in Sec.
III. As a first step, one writes the elastic-scattering am-
plitude appearing in Eq. (4.39) in the form

D(b) x'(6)
00

(4.41)

.hv d y'(b)
err dr (b2 —r2)i&2 (4.42)

In general to find an explicit form for y'(b) is not an
easy task. This quantity can be obtained in a pertur-
bative context, as discussed in Sec. III, or in particular
coupling schemes, as described in the next subsection.

C. Schematic examples

Let us consider as an example the bordered interac-
tion matrix [13,7] originating from the case in which the
ground state is directly coupled with all the excited states
and no other coupling is active. Recalling that the ma-
trix D is symmetric, it is easy to verify that in this case
one gets

([D(b)]")oo ——[C(b)]" even n (4.43)

for the "elastic matrix element" and

([D(b)]")0;= Do'[C(b)]" '
for the inelastic ones, where

- 1/2

odd A (4.44)

C(b) = ) :(Do')' (4.45)

The scattering amplitudes, according to Eq. (4.39), will
take on the form

for the "elastic" element of the exponential matrix. The
second step amounts to evaluating the Abel transform of
the additional phase shift y (b). This gives the polariza-
tion potential according to the relation

ik
foo = — db e'~' 1 —ex&( )+x~ cosh C(b)

2K
(4.46)

fo; = —— db e'+' ex~( )+x~ [Do, (b)/C(b)]sinh C(b)
27r (4.47)
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for the elastic and the inelastic scattering, respectively.
These results coincide in their structure with the ones
obtained in Ref. [7] for the same coupling scheme, in the
limit A~ Az )) 1.

According to the discussion in the previous subsection,
in the problem we are considering the polarization poten-
tial can be obtained by inverting the phase shift

y '(b) = ln [cosh C(b)] (4.48)
through Eq. (4.42).

Another soluble problem is obtained when the coupling

matrix elements are assumed to have the form

D, ,~i(b) = v(b), (4.49)

i.e. , only the two diagonals adjacent the principal diago-
nal have nonzero elements. For the sufFiciently interest-
ing problem in which the ground state is coupled to two
excited states according to the scheme (4.49), one gets a
closed form for the scattering amplitudes in terms of hy-
perbolic functions. For the elastic and the two inelastic
channels one obtains, respectively,

f — c(b e''t '1 ——exc( +"lv( i [1+cosh(V2v(b))]
2~ 2

(4.50)

e&o is)+x~ ( )
~

sinh[v 2v(b)]
~

iy . 5 b t1 (4.51)

db e' ' exc ++~ i ) —(cosh[V 2v(b)] —1)
2x 2

(4.52)

V. CONCLUDING REMARKS

The interplay of nuclear and Coulomb interactions has

always been one of the most interesting features in in-

elastic excitations induced by heavy ions. The different
dependence of the two contributions on the bombard-

ing energy, on the mass and charge of the colliding sys-

tems, on the excitation energy, and on the multipolar-

ity of the populated state does in fact ofFer the possi-
bility of a wide spectrum of different situations. While
at low bombarding energies around the Coulomb barrier
the two processes have been usually described on equal

footing, at high energy one has often concentrated on ei-

ther effect. For example in the case of collisions induced

by very heavy systems, where the Coulomb excitation of
the dipole modes is dominant, the effect of the nuclear
interactions has been limited to the introduction of an
absorption radius. On the other hand, in the case of
relatively light projectiles, all the dynamics of the pro-
cess at high energy have been described in terms of the
individual nucleon-nucleon collisions, along approaches
which are essentially derived Rom the Glauber model and

traditionally neglect, for example, the efFect of finite Q
values. In this paper we have displayed a general &ame-
work, intended to cover the intermediate energy regime,
where the contributions of the two processes are mingled
together. Along the eikonal approximation we combine
to all orders the underlying microscopic nuclear multiple
scattering with the macroscopic Coulomb interactions,
profitting from the results already existing in both 6elds.

As a direct consequence of the eikonal propagation the
traditional system of differential coupled equations re-
duces, for each impact parameter, to a simple algebraic
expression involving a matrix whose elements are ob-
tained by integrating along straight lines densities, tran-
sition densities, and microscopic effective interaction. It
should be further possible, in analogy to previous de-
velopments, to combine this algebrization of the relative
motion with the specific intrinsic algebra describing the
dynamical symmetry associated with the nuclear states.
Analytic expressions should in that case be derived for
the scattering amplitude if the coupling matrix has a suit-
able geometrical structure, as in the examples displayed
in Sec. IVC.
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