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Mass dependence of critical behavior in nucleus-nucleus collisions
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The Z distributions of fragments emitted from central collisions of Ar + Sc at beam energies
from 15 to 115 MeV/nucleon have been St ted to power laws o (2) oc 2 ".The A parameter reaches a
minimum at a beam energy of 23.9 k 0.7 MeV/nucleon. A percolation model calculation reproduces
the observed Z distributions for all beam energies, using the mean excitation energy as extracted
from proton kinetic energy spectra. We extract the critical value of the deposited excitation energy
for our system and make predictions for the dependence of this quantity on the size of the fragmenting
system.

PACS number(s): 25.70.Pq

Central collisions of heavy ions at intermediate beam
energies from 10 MeV/nucleon to several hundred
MeV/nucleon go through two stages: an initial compres-
sion stage and a final expansion stage. In these reac-
tions the compression can create nuclear matter density
as high as twice the normal nuclear density and equi-
librated matter with mean excitation energy of several
tens of MeV per nucleon. Therefore intermediate energy
heavy- ion reactions may provide information on the ther-
modynamic properties of nuclear matter, i.e., the nuclear
matter equation of state (EOS), if finite-size effects of the
reaction system are taken into account. Prom consider-
ation of the long-range attractive mean-Geld interaction
and short-range repulsive nucleon-nucleon interactions in
nuclear reactions, a liquid-gas phase transition has been
predicted by comparing the nuclear matter EOS with the
Van der Waals EOS [1—6]. This phase transition is of first
order, terminating in a second-order phase transition at
the critical point. The cluster size distribution at the crit-
ical point is given by ~(A) oc A, where r is a critical
exponent with a value characteristic of the universality
class of the phase transition, and A is the cluster size. It
has been shown [7—9] that for small-size systems in the
vicinity of the critical point, the clusters size distribution
can be fitted by a power law with apparent exponent A,
which has a minimum, A;„=w, at the critical point.

The previously measured inclusive cluster distribu-
tions of proton-induced reaction [10,11]do exhibit power-
law features and indicate a critical behavior. How-
ever, these measurements summed over difFerent im-

pact parameters with difFerent excitation energies. To
obtain an unambiguous signature of the phase tran-
sition, well-characterized central collisions with well-
defined excitation-energy deposition into the system need
to be measured and the finite-size efFects have to be ad-
dressed.

We chose a nearly symmetric system, Ar + Sc, to
suppress projectile and target spectators in central colli-
sions. The experiment was done with the Michigan State
University 4' Array [12] with Bragg curve spectrometers
[13].Beam energies of 15, 25, 35, 45, 65, 75, 85, 95, 105,
and 115 MeV/nucleon were used to cover the excitation-
energy region for which most of the theories predict the
occurrence of the second-order phase transition [1,3,8,14].
The correction for detector acceptance and centrality se-
lection has been discussed previously [15].

To estimate the finite-size efFect, a bond-breaking per-
colation calculation [7,14,16—27] is performed. The bond-
breaking percolation model assumes that each nucleon is
"linked" with its nearest neighbors by potential bonds.
Each bond can absorb a maximum energy, called the
bond-breaking energy, E~, and has a probability, P&, to
break. Such simulations have allowed the fitting of Pg
to experimental data for Z distributions Rom heavy-ion
reactions [27].

In the present work, we assume that the energy dis-
tributed into each bond, eg, can be described by a Boltz-
mann distribution with a mean energy (eq). Each site of
the lattice has an average of o. bonds. The average exci-
tation energy deposited per site is (E,) = n(eq), and the
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binding energy per nucleon of the initial nuclear system

is B = aEp. When the system expands, any bond which

has an energy greater than Eg will break. Therefore the
bond-breaking probability is
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where ts = s(es) and T, = crt' = 2
(es) = 2(E,) are

slope parameters. We note that the bond-breaking prob-
ability Pg calculated by Eq. (1) is independent of n,
therefore the calculation is independent of the lattice
structure.

We also note in passing that this approach is consistent
with the introduction of the mean coordination (c)

(1 —ps). It can be shown that, for example, the mean
multiplicity of clusters per lattice site is very different
for different lattice structures when plotted as a function
of pp. But there is hardly a difference between different
lattice structures, if one plots the same quantity against
(c). This is again an example of the independence of the
physical quantities &om the lattice structure, once the
trivial 0, dependence is removed.

It should also be pointed out here that the relevant de-
grees of &eedom in the above equation are not the bonds
(the number of which is somewhat arbitrary and depen-
dent on the specific lattice structure chosen), but the
sites (i.e., nucleons) whose number is fixed. We chose
to use the classical Boltzmann statistics, but at the ex-
citation energies relevant here and in the limit of large
number of nucleons, this classical approximation should
be sufFicient. One can also obtain a formula sixnilar to the
one above by constructing an analogy between the bond
percolation model and the Ising model of ferromagnets
[2S-30].

By fitting the proton kinetic-energy spectra with a sin-
gle xnoving Boltzmann source [31—33], we obtain the slope
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parameters T, for each beam energy. The initial size of
the lattice is assumed to be given by the fireball geom-
etry for an overlap region of projectile and target with
impact parameter of 0.25 b, where b „ is the sum
of the radii of the projectile and the target nuclei. This
cutoff in impact parameter was chosen in order to ap-
proximate the experimental centrality trigger. It should
be pointed out here that the mean excitation energy per
nucleon is dependent on the impact parameter for asym-
metric systems, but independent for symmetric systems.
This is because the projectile mass &action in the over-
lap zone is always 1/2 in the symmetric case. Therefore

FIG. 1. (a) Bond-breaking probabilityPI, vs slope param-
eters T, calculated using Eq. (1) with a binding energy of
7 MeV/nucleon (dotted curve) and 7.8 MeV/nucleon (solid
curve). (b) Slope parameters of proton kinetic-energy spectra
for beam energies from 15 to 115 MeV/nucleon obtained by a
single moving relativistic Boltzmann source fit to the proton
kinetic-energy spectra in the laboratory frame.
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FIG. 2. Z distributions of both experimen-
tal data and percolation calculations of Ar
+ Sc at 15 to 115 MeV/nucleon. The solid
circles are Z distributions corrected for detec-
tor acceptance from central collisions of Ar
+ Sc, and the histograms are percolation
calculations with an initial lattice size of 68
and a binding energy of 7.8 MeV/nucleon.
The percolation calculations are normalized
to experimental data for 3 ( Z ( 12. The
dashed curves are power-law 6ts to the per-
colation calculations.
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FIG. 3. Comparison of power-law 6tting parameters, A, to
the percolation calculations with experimental results. The
solid circles are the power-law [cr(Z) Z "] fit to the exper-
imental data of Ar + Sc from 15 to 115 MeV/nucleon, and
the open squares are GSI data of Au + C, Al, and Cu at 600
MeV/nucleon [34]. The solid histogram is the power-law fit
to the percolation calculations with a lattice size of 68 cal-
culated from fireball geometry and a binding energy of 7.8
MeV/nucleon. The dashed histogram is the percolation cal-
culation for a lattice size of 150 with a binding energy of 7.0
MeV/nucleon.
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FIG. 4. (a) The apparent exponent of the power law fits, -

A, as a function of the slope parameter T, for diferent initial
lattice size. The solid diamonds are for size 50, the squares are
for size 100, the crosses are for size 200, and the solid circles
are for size 500. The solid curves are four-term polynomial
fits to the points. (b) The power-law parameter as a function
of T, with diferent binding energies. The lattice size is 100
and the binding energies are 6 MeV/nucleon (solid circles),
7 MeV/nucleon (solid squares), and 6 MeV/nucleon (solid
diamonds). Ail error bars are statistical.

our assumption of impact-parameter independent excita-
tion energy per nucleon of the participant zone should be
valid in good approximation.

Therefore we used an initial cubic lattice of 68 sites
with the bond-breaking probabilities calculated by Eq.
(1), using the slope parameters of protons and a bind-
ing energy of 7.8 MeV/nucleon. The binding energy was
used as a fitting parameter. We also compare this cal-
culation to fragmentation data of 600 MeV/nucleon Au
+ C, Al, and C in Ref. [34]. We convert the excitation
energies calculated by Ref. [34] to beam energies of a sym-
metric system (projectile and target have equal masses)
assuming a total inelastic collision. Then the same beam
energy as Ar + Sc and proton slope parameters are
used with an initial lattice of 150 sites to reproduce the
Au + C, Al, and Cu data. For Au + C, Al, and Cu, a
7.0 MeV/nucleon binding energy was found.

Figure 1(a) shows the bond-breaking probability vs
slope parameter T, calculated by Eq. (1) with B = 7.0
MeV/nucleon (dotted curve) and B = 7.8 MeV/nucleon
(solid curve). The slope parameters for each beam energy
are shown in Fig. 1(b). Figure 2 shows the experimen-
tal Z distributions corrected for detector acceptance from
central collisions of Ar + Sc at beam energies from 15
to 115 MeV/nucleon (solid circle), compared to our per-
colation calculation (histogram). The dashed curve is the
percolation calculation Gtted to a power-law distribution,
o (Z) oc Z ". The percolation results are normalized to
the experimental data for 3 & Z & 12. The apparent ex-
ponent of the power law, A, vs beam energy is shown in
Fig. 3. The solid circles are the power law fits to the ex-
perimental data of Ar + Sc, and the solid histogram
is the percolation calculation with 68 sites and a binding
energy of 7.8 MeV/nucleon. The open squares are GSI
data of Au + C, Al, and Cu at 600 MeV/nucleon [34],
and the dotted histogram is the percolation calculation
with 150 sites and 7.0 MeV/nucleon binding energy. The
equivalent beam energy on the plot for the GSI data is
obtained by converting the excitation energy calculated
by Ref. [34] to a symmetric system assuming a total in-

elastic collision. To obtain the critical exponent, w, we
fit the A vs Eb, with a four term polynomial. For

Ar + Sc, we get 7 = 1.21 k 0.01 at a beam energy of
23.9+0.7 MeV/nucleon. The percolation calculation with
68 sites and a binding energy of 7.8 MeV/nucleon gives
v = 1.5 6 0.1 at a beam energy of 28 6 0.4 MeV/nucleon.
For GSI data of Au + C, Al, and Cu, we get w = 2.0+0.01
at a beam energy of 29 6 0.2 MeV/nucleon. The perco-
lation calculation with 150 sites and a binding energy of
7.0 MeV/nucleon gives 7 = 1.98 6 0.03 at a beam energy
of 32.7 + 0.1 MeV/nucleon. All errors are statistical.

In order to estimate the finite size efFects and to obtain
the critical excitation energy for infinite nuclear matter,
we performed percolation calculations using a binding
energy of 8 MeV/nucleon for different lattice sizes, rang-
ing from 50 sites to 800 sites, and for slope parameters
T, ranging from 5 MeV to 19 MeV. The critical exci-
tation energy increases when the lattice size increases.
Above 400 sites, the critical value for the slope parame-
ter converges to 13.1+0.6 MeV. This value can be com-
pared with the theoretical calculation of 15.3 MeV given
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by Ref. [I]. In Fig. 4(a), we plot the A parameter vs

slope parameter T, for difFerent lattice sizes. The solid
curves are four-term polynomial fits for T, of 7 MeV to
19 MeV, made in order to extract the critical value. The
diamonds are for size 50, squares are for size 100, crosses
for size 200, and circles for size 500. For size 800 (not
shown in the figure), the points are almost coincident
with size 500, which indicates that the critical value of
T, approaches an asymptotic limit at large size. Also, for
100 sites, we performed calculations for diferent binding
energy to illustrate the sensitivity of the critical point
with the binding energy. Figure 4(b) shows the calcu-
lation for B = 6 MeV/nucleon (solid circles), B = 7
MeV/nucleon (solid squares), and B = 8 MeV/nucleon
(solid diamonds). All error bars in the figures are sta-
tistical. Figure 5(a) shows the critical value of slope pa-
rameter T, = T, (7), extracted from the polynomial fits
vs the size of the lattice. Figure 5(b) shows the critical
exponent ~ as a function of the lattice size. It approaches
a limit of 2.3 6 0.2 at a large size.

In conclusion, the Z distributions of Ar + Sc have
been measured, and power-law fits show a minimum of
the apparent exponent A of 1.21 6 0.01 at 23.9 6 0.7
MeV/nucleon beam energy corresponding to a slope pa-
rameter of T, = 8.4 6 0.3 MeV. The percolation calcula-
tion, using the binding energy as an adjustable parameter
and proton kinetic energy slope parameters as input, re-
produces both the experimental data of Ar + Sc and Au

+ C, Al, and Cu. The 6nite-size efFect is estimated by
increasing the initial lattice size of the percolation cal-
culation. The critical value of T, approaches an asymp-
totic limit of 13.1 6 0.6 MeV for a binding energy of 8
Me V/nucleon.
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FIG. 5. The size dependence of the critical value of slope

parameter T, = T,(7) and the critical exponent 7 (a) Th.e
critical slope parameter T, with different initial lattice size.
(b) The critical power-law exponent 7 as function of initial
lattice size.
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