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The nonlocal Schrodinger equation is solved rigorously in a microscopic folding model, incorpo-
rating both direct and knock-on exchange potentials, for n-°0 scattering at laboratory energies of
20 and 50 MeV. The model uses the complex and density dependent n-n interaction of N. Yamaguchi
et al., uses harmonic oscillator wave functions for the bound nucleons, and calculates the scattering
wave function for this nonlocal problem using a Bessel-Sturmian expansion method incorporating
correct boundary conditions. All spins are neglected. The local phase-equivalent potential is ob-
tained from the scattering matrix elements at a given energy by using the iterative perturbative
inversion method. This representation allows comparison between the microscopic model and a
phenomenological potential, showing good agreement for the local real part of the potential at 20
MeV. From the ratio of the wave functions for the nonlocal potential and for the potential calculated
by inversion, a Perey damping factor (PDF) is obtained which is of similar form to the well-known
Perey-Buck prescription for the PDF for a Gaussian nonlocality of the conventional range of 0.85 fm.
The significance of these results for distorted wave Born approximation calculations is discussed.

PACS number(s): 24.10.Ht, 25.40.Dn

I. INTRODUCTION

The optical potential which describes the elastic scat-
tering of a nucleon from a target nucleus is nonlocal and,
in principle, very complicated. The dynamic polariza-
tion of the nucleus during the scattering process is one
of the sources of the nonlocality, and the knock-on ex-
change mechanism is another. Since the nonlocalities of
the optical potential are not known exactly, it is the gen-
eral practice to use instead of local optical potential when
evaluating a nuclear reaction by means of the distorted
wave Born approximation (DWBA). As is well known,
the wave functions for a nonlocal potential are different
from those of a local equivalent potential (LEP), [1] and
it is common practice to correct for this difference by the
use of a multiplicative factor, called the Perey damping
factor (PDF). The most commonly used PDF is the one
introduced many years ago by Perey and Buck [1,2], but
this factor is known to be valid only if the nonlocality is
of a Gaussian form.

The need to investigate the form of the PDF which
corresponds to a particular nonlocality has regained re-
newed importance in view of the study of the shell-model
occupation numbers by means of the (e,e’p) reaction. It
is desirable to determine these numbers to an accuracy
of better than 10%, yet their values vary by more than
20% depending on the type of the optical model used
to describe the distortion of the knocked-out nucleon [3].
Recent advances in calculating microscopic nonlocal op-
tical potentials from effective n-n interactions makes it
less well justified to use phenomenological potentials to
obtain the distorted wave functions needed in the calcu-
lation of (e, e’p) or (p,p’) reactions. Until such nonlocal
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optical potentials are in wide use, it is of interest to ex-
amine the local equivalent optical potentials and their
corresponding PDF’s as a preferred meeting ground be-
tween theory and experiment.

The aim of this paper is to rigorously study the effect
of the knock-on exchange nonlocality and at the same
time obtain a LEP by a method of inversion. Our exam-
ple refers to n-180 scattering at low energy (20 and 50
MeV). Our LEP is L independent, yet it reproduces the
scattering matrix elements to high precision. We thereby
provide a result against which the commonly used ap-
proximate methods for obtaining LEP’s for the knock-
on exchange term can be compared. Among the lat-
ter exist the energy density approximation method [4,5]
and another one developed by Horiuchi [6], based on the
Wentzel-Kramers-Brillouin (WKB) approximation. We
also compare the nonlocal and corresponding local wave
functions in order to investigate how well their ratio is
given by the conventional Perey-Buck result [2].

We obtain the exact solution for the nonlocal poten-
tial by a Fourier-Sturmian expansion technique [7], which
for the case of a local potential has been found to con-
verge very well [8] and which has been generalized to
the nonlocal case [9]. We obtain the LEP by the itera-
tive perturbative (IP) inversion method [10], which uses
as input information the scattering matrix elements for
all L values at a given energy. The resulting LEP is
phase equivalent to the nonlocal potential, i.e., the wave
functions asymptotically are nearly the same, while at
small distances they differ. As implemented, this inver-
sion method avoids the presence of spurious waviness in
the potential by obtaining the solution of an overdeter-
mined system of equations by means of the singular value
decomposition method.

1621 ©1994 The American Physical Society
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Some aspects of our investigation have been studied
previously. Lassaut and Vinh Mau [11] have calculated
n-*He elastic scattering phase shifts from various effective
nucleon-nucleon interactions and obtained approximate
LEP’s for the exchange terms. Fiedeldey, Sofianos, and
Allen [12], using a particular set of n-*He phase shifts
from Ref. [11], obtained a real LEP using their inver-
sion technique and examined the corresponding Perey
factors. Keneko, LeMere, and Tang [13] have employed
a real nucleon-nucleon potential to construct the direct
and exchange pieces of the nucleon-nucleus optical poten-
tial, while the imaginary part of this potential was taken
from previously determined phenomenological local opti-
cal potentials. They obtain good fits to the experimental
cross sections and polarizations, thus showing that the
exchange nonlocality based on the knock-on term alone
(this is their model K method) is compatible with experi-
ment for nuclei which have more than 12 nucleons. Their
LEP’s use the WKB methods developed by Horiuchi [6],
but they do not investigate the PDF’s. The work of Ho-
riuchi on the interaction potential between two heavy
ions, based on the microscopic resonating-group-method
formulation, is also to be noted [14]. Recently, IP inver-
sion has been used to directly calibrate the resonating-
group-method Wentzel-Kramers-Brillouin (RGM-WKB)
approach [15]. An older study by Owen and Satchler [16]
is similar to that of Ref. [13] in that the imaginary po-
tential is also local and phenomenological. They obtain
a LEP by searching for the parameters of a conventional
Woods-Saxon-type optical potential which gives the same
cross section as that of the nonlocal potential, and they
compare the local and nonlocal wave functions. The ef-
fect of the exchange nonlocality has also been investi-
gated by Bauhoff, von Geramb, and Pélla [17]. Their
study is similar to ours in that the nonlocal optical po-
tential is based on folding a complex density-dependent
effective interaction over the target nucleon distribution,
but differs from ours in that the inversion of the nonlocal
into a LEP is based on the Wronskian method [18] and
hence is L dependent.

The main difference of our study from the ones men-
tioned above is that we combine the following features
into the same study: We employ a complex effective n-
n interaction [19], include the knock-on exchange term
rigorously to calculate the n-1°0 phase shifts, use an in-
version technique [10] to transform the phase shifts into
an L-independent local potential, and rigorously com-
pare the wave functions. The effective n-n interaction
we use is still much simpler than the sophisticated ones
which have been used recently [20] in order to calculate
elastic nucleon-nucleus cross sections. However, the cited
calculations are for energies where the impulse approx-
imation might be expected to work. We are concerned
with much lower energies which are important in making
the link between scattering and bound state potentials.
At such energies one must employ an effective potential
rather than the free 7' matrix.

The inversion method used to obtain the local equiv-
alent potential from the scattering matrix elements
(SME’s) [10] is an iterative, perturbative method, which
has had numerous applications. It has been used to ex-

amine the nonlocality due to nuclear dynamic polariza-
tion and obtain the corresponding Perey damping factors
[21]. It has also been used to obtain local potentials for
p-*He scattering from R-matrix phase shifts [22] and also
for heavy-ion scattering [23]. A user’s manual describing
the inversion code is available [24].

II. FORMALISM

In the presence of exchange, the Schrodinger equation
becomes nonlocal. In the Hartree-Fock approximation,
the local potential is obtained by folding the microscopic
n-n interaction over the occupied single-particle states

Pa
Vir(ro) = 3 [ walrn) vai(lrs = rol)alea)ars |

(2.1a)

and the exchange kernel for the knock-on exchange pro-
cess is given by

K(rﬂvré)) = - Z‘Pa(rﬂ)*vexch(lro - r:)|)‘Pa(r()) .

a

(2.1b)

The density dependence of the microscopic n-n effective
interaction is not explicitly indicated in the above, but is
taken into account in what follows. Only the central part
of the n-n interaction is included here. Since the latter
is rotationally invariant, the exchange kernel can be pro-
jected onto each partial wave with angular momentum
number L. The result is denoted as K (rq,7(), and an
analytical expression is given below.

The central part of the n-n interaction is given [19] by
a sum over three Gaussian terms of the form V; exp[o;r?],
each multiplied by a factor {1+ A;kr + B;k%}, where kr
is the density-dependent local Fermi momentum. For the
nucleus 160, we approximate kr(R) by a sum over two
Gaussians in R? and likewise for k%—. As a result, the n-n
interaction of Ref. [19] can be represented as a sum of
terms of the form

V exp[—ar? — BrR?], (2.2)

where 7 is the distance between the two interacting nucle-
ons and R is the position of their center of mass relative
to the center of the nucleus. The quantities V and «a are
obtained from the tables in Ref. [19], and the parameters
Br arise from the approximation of the R dependence
of kp or k% in terms of two Gaussian functions of RZ.
For the single-particle states in 10, we use harmonic os-
cillator wave functions in the absence of spin-orbit cou-
plings. Their radial parts contain powers of r; times
exp[—B,r2]. With the assumptions described above, one
obtains for the partial wave exchange kernel K, for each
term of the n-n interaction given by Eq. (2.2) the result
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K (rorh) = 4V (262)*/ 1 2rorh expl— (B + ap) (r3 + r'2)] {n(z) +

In the above, z = 2rorjanm, ap = (a + Br/4), apy =
(x—pBr/4), and iL(z) is a spherical modified Bessel func-
tion defined in [25]. The final result for K, is a superpo-
sition of expressions of the type of Eq. (2.3), for all the
components (2.2) of the exchange part of the effective n-
n interaction. It is clear that K, is indeed L dependent
and of a complicated nature. In Figs. 1 and 2 we illus-
trate the real and imaginary parts of the exchange kernel
Kp(ry,72) for the n-%0 interaction at an incident en-
ergy of 20 MeV for two values of the angular momentum
L. The magnitude of the real part of K decreases with
L, as can be seen from the smaller scale of the vertical
axis for the L = 3 result. For the imaginary part, the
height of the ridges on either side of the trough decreases
gradually with L.

Our method of solving the nonlocal Schrodinger equa-

Real Part, L=0 20 MeV

=
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FIG. 1. Real part of the exchange kernel K (ri,rz2), de-
fined by Eq. (2.3) for the n-'®O interaction at an incident
energy of 20 MeV. The microscopic n-n interaction was taken
from Ref. [19], with the imaginary part reduced by a factor
of 0.6. The values of the angular momentum L are indicated.
The change in the vertical scale between the top (L = 0) and
bottom parts (L = 3) of the panels are to be noted.
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tion consists in expanding the (unknown) scattering
wave function Fr(r) for each partial wave L in a ba-
sis set of (known) Bessel-Sturmian functions ¢r;(r), j =
1,2,...,M [7,8]. One obtains linear algebraic equations
for the expansion coefficients, which require the calcula-
tion of matrix elements of the interaction between Stur-
mian basis states. In the presence of the exchange terms,
this procedure can be generalized [9] and leads to the cal-
culation of direct and exchange matrix elements of the

type

Viit =3 (@a(r1)or;(r2)[vairpa(r1) by (ra)

a

~VexPa(r2)or; (r1)])-

Since the potentials and bound state wave functions are
of the Gaussian form and the Sturmian functions are
known spherical Bessel functions, it is possible to evalu-
ate all the matrix elements analytically [9].

Imag. Part, L=0 20 MeV

FIG. 2. Similar to Fig.
KL(Tl,’I‘z).

1 for the imaginary part of
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III. RESULTS FOR THE POTENTIAL

Unless otherwise stated, the imaginary part of the mi-
croscopic n-n interaction [19] is reduced by a factor of 0.6.
The size of this reduction is comparable to the reduction
used by other authors for n-4°Ca scattering [19] and for
n-160 scattering [26]. The size of the matching radius R
used in the determination of the Sturmian wave numbers
Ky is 15 fm. The harmonic oscillator wave function de-
cay constant 3, for the nucleus of 10 has the value of
0.165 fm~2. It is determined so that the rms radius of the
charge distribution of ®O agrees with the experimental
[27] value 2.70 fm. (The rms value of the proton’s charge
distribution is taken equal to 0.8 fm.) The size of the
Sturmian basis M is 25, which suffices for an accuracy of
four significant figures.

The results for the elastic scattering matrix elements
(SME’s) at an incident laboratory energy of 20 MeV are
shown in Fig. 3, and the corresponding elastic cross sec-
tion is shown in Fig. 4. The phenomenological optical-
model fit uses the parameters of Petler et al. [26], with
the spin-orbit potential set to zero. Considering that
the theoretical calculation has only one free parameter
(the strength of the microscopic imaginary potential),
the agreement with the data is encouraging. The po-
tential Vi,,, reproducing the theoretical SME’s, is shown
in Fig. 5 by the solid lines. Inversion allows us to deduce
that the nonlocal folding model based on the complex
effective Gaussian (CEG) potential [19] gives a good rep-
resentation of the real part of the local phenomenological
optical potential, but a somewhat poorer representation
of the imaginary part. Specifically, the imaginary part
of Vi, has a considerably larger volume component than
the best phenomenological optical potential. The direct
part of the theoretical Hartree potential, obtained from
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FIG. 3. Argand diagram of the elastic scattering matrix
elements (SME’s) for n-'°0O scattering for an incident labora-
tory energy of 20 MeV. The open circles represent the results
of the microscopic theory including exchange. The micro-
scopic n-n interaction is the same as described in Fig. 1. The
solid circles represent the optical-model results, employing the
parameters of Petler et al. [26]. All spin-orbit potentials were
set to zero. The first three values of the angular momentum
number L are indicated.
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FIG. 4. Elastic cross sections obtained with the SME’s
shown in Fig. 3. The solid and dashed curves represent, re-
spectively, the theoretical and phenomenological results; the
experimental points are from Ref. [26]. Thirteen partial
waves were used for the cross section calculation.

Eq. (2.1a), is illustrated by the dotted lines in Fig. 6.
The difference between the dotted and solid lines is the
contribution of the exchange potential, which is seen to
be large (about half the total). This large size of the
effect of the exchange potential is consistent with the
magnitude of the exchange kernel, illustrated in Fig. 1.

A local approximation U}, (7o) to the exchange poten-
tial, based on Sinha’s expression [5]

10 ———1———— —
oL Re
—_
>
é’-lo— -
N—’ Inv.
E‘ZOT om.|
30 .

—_
>
[
=
=2 >
(@)
A i
20 L b
0 2 4 6 8

r (fm)

FIG. 5. Comparison of the inversion potential (solid lines)
with the optical model of Ref. [26] (dotted lines), for n-'¢O
scattering at 20 MeV. The real and imaginary parts are shown
in the top and bottom panels, respectively. The corresponding
SME’s are illustrated in Fig. 3 for the first seven partial
waves.
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FIG. 6. Dotted lines show the direct part of the n-¢0O po-
tential at 20 MeV, defined in Eq. (2.1a). The dashed lines
represent an approximation to the direct plus exchange po-
tentials, based on Sinha’s method, defined in Eq. (3.1). The
solid lines represents the inversion potential. One can see
that nearly half of the real part of the total potential is due
to exchange effects.

Ul (r0) = /p(ro + 8, T0)Vex (s, R)[sin(ks) /ks]d®s ,
(3.1)

was also obtained. Here k is the local wave number
k2(ro) = (2m/h2)[E — U(ro)], U is taken as the real part
of the phenomenological optical potential, R = ro+s/2 is
the center-of-mass position of the two interacting parti-
cles, and p(ry, 7o) is the two-body density obtained from
the harmonic oscillator wave functions in 60. The sum
of the direct potential (dotted lines) plus Sinha’s ap-
proximation to the exchange potential is shown by the
dashed lines in Fig. 6. The good agreement between the
Sinha’s LEP and our inversion potential indicates that
both LEP’s belong to the same family of optical poten-
tials, and their difference is an indication of the reliability
of Sinha’s procedure.

The real part of the inversion potential is not very
sensitive to the imaginary part of the microscopic n-n
interaction. This can be shown by changing the imagi-
nary reduction factor of the microscopic n-n interaction
from 0.7 to 0.6. The change in the real part of Vi,, was
not visible in a graph showing the two potentials, while
the imaginary part changed by a factor proportional to
the change from 0.7 to 0.6. The inversion potential is
very sensitive to the density dependence of the n-n in-
teraction. This can be seen by changing the density of

10 ———1—
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Pot (MeV)

Pot (MeV)
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FIG. 7. Sensitivity of the inversion potential to the nuclear
density. For the dashed lines the density in 6O is represented
by a single Gaussian given by Eq. (3.2), while for the solid
lines the density is close to the true one, as given by the har-
monic oscillator single-particle description without spin. The
dotted lines illustrate the phenomenological optical model of
Ref. [26].

the nucleon distribution in 0 from the one given by the
harmonic oscillator shell-model wave functions (it has a
maximum at 1.231 fm) to that of a simple Gaussian of
the form

p(r) = N exp(—26r?) ,

which has the maximum at 7 = 0 and assumes that all
180 nucleons in are in the s state. The resulting inversion
potential acquires a repulsive “hump” near the center of
the nucleus, as is illustrated in Fig. 7. Such repulsive
humps were also observed [11] to occur in n-*He scatter-
ing when density-dependent microscopic potentials were
used.

The energy dependence of the inversion potential is
illustrated in Fig. 8. As the energy is changed from 20
to 50 MeV, the real potential becomes less deep and the
imaginary becomes more volume and less surface, all in
agreement with phenomenological expectations.

(3.2)

IV. RESULTS FOR THE WAVE FUNCTIONS

The comparison between the nonlocal and local wave
functions is illustrated in Figs. 9 and 10. The nonlo-
cal radial wave function is obtained from the Sturmian
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FIG. 8. Energy dependence of inversion potential for n-60
scattering. The solid and dashed lines represent the 20 and
50 MeV results, respectively. The top and bottom panels
represent the real and imaginary parts of these potentials,
respectively.

method of solving the nonlocal Schrédinger equation, and
the local wave function results from the local potential
Vinv- The ratio between the absolute values of two “to-
tal” wave functions, summed over all partial waves, is
denoted as the “total” Perey damping factor. It is illus-
trated in Fig. 9 as the ratio of the total nonlocal and total
local wave functions. It is clear from the figure that the
ratio of the two wave functions falls to about 0.86% over
much of the nuclear volume, but rises to about 0.92 near
the center of the nucleus and to unity toward the surface
of the nucleus. Plots of the total Perey damping factor,
such as Fig. 9 and also shown previously [22-24], are use-
ful because they reveal details otherwise difficult to spot,
such as the central “bump,” which would be absent if
the conventional Perey-Buck PDF were valid. Also, the
approximate spherical symmetry, evident in Fig. 9, is
absent in the case that the nonlocality is due to channel
coupling [22].

It is also possible to compare the nonlocal (n!) and the
local (I) wave functions, described above, for each partial
wave L, by means of the ratio Fy(r) = fénl) (r)/.’Fg)(r).
Since the zeros of the two functions do not generally oc-
cur at exactly the same position, this ratio becomes very
large near the zeros of the local wave function, thus mak-
ing the plot for all values of r not very informative. This
difficulty is circumvented by choosing only the maximum
or minimum values of each wave function for calculating
their ratio. The maxima of the absolute values of the

real (imaginary) parts of the two wave functions occur
approximately at the same radial distances, and hence
their ratio can be plotted at these discrete values of r,
as is done in the right (left) panels of Fig. 10. The plot
includes the points for all values of L from 0 to 2. The
solid (open) symbols represent the ratios for an energy
of 20 (50) MeV. The solid lines show the Perey-Buck re-
sult [2] for the damping factor for a nonlocality range of
B = 0.85 fm, which is the standard value accepted in the
literature. For convenience the formula is repeated here:

F(r) =1 — (2m/h*)(B/2)*VNn(r)]"V/2 . (4.1)
The real part of the optical model of Ref. [26] was used
for Vv in the equation above for the 20 MeV (dashed)

Impact parameter (fm)

z—axis (fm)

Bl Above 105
[ ] 101 — 105
Il 09 - 10
B 095 - 099

0.90 — 0.95
[T ] o085-09
] Below 085

FIG. 9. Contour plot of the “total” Perey damping factor
as a function of the impact parameter and the distance along
the z axis for n-'®0 scattering at 20 MeV. This is the ratio
of the absolute value of two “full” (summed over all partial
waves) wave functions. The wave function in the numerator is
the exact nonlocal one (with exchange); the wave function in
the denominator corresponds to the local inversion potential.
Near the center of the nucleus, this ratio lies between 0.90
and 0.95; in the next region, which is spread over most of
the nuclear volume, the ratio is between 0.85 and 0.90. In the
next two layers, it rises from between 0.90 and 0.95 to between
0.95 and 0.99. Outside of the nucleus, with the exception of
a few bands at the right, the value of the ratio is between
0.99 and 1.01. The bands are due to the cumulative effect of
a slight mismatch error in the asymptotic value of the wave
functions.
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FIG. 10. Ratio of partial wave functions, at their maxima
or minima, plotted at the discrete radial positions where the
extrema occur, for n-'®O scattering. The wave function in
the numerator is the exact nonlocal one (with exchange); the
wave function in the denominator corresponds to the local
inversion potential. The ratio of the real parts of these wave
functions is displayed in the left panel, that of the imaginary
parts in the right panel. The solid symbols represent the
ratios at an incident energy of 50 MeV, the open ones at 20
MeV. The shapes of the symbols correspond to the different
angular momenta L, as indicated. The solid line and dashed
lines represent the conventional Perey-Buck damping factors,
given by Eq. (4.1) for 50 and 20 MeV, respectively. Only the
real parts of the inversion potentials were used in Eq. (4.1)
to calculate these curves; the nonlocality parameter 3 has the
conventional value of 0.85 fm.

curve, and the real part of the inversion potential was
used for the 50 MeV (solid) curve. The points illustrat-
ing the ratio of the real parts of the two wave functions lie
quite close to the Perey-Buck lines, but there is a notice-
able discrepancy for the imaginary ratios, especially for
the L = 0 results. Nevertheless, the overall agreement
with Eq. (4.1) is quite good, which indicates that the
conventional Perey factor [Eq. (4.1)] appears to be ade-
quate to represent the effect of the exchange nonlocality
upon the wave function amplitudes, at least for the n-60
example given here. This result is not sensitive to the de-
tails of the potential, because it was also found to hold for
the case in which the density dependence was represented
by one Gaussian only, as explained in connection to Eq.
(3.2), and for which the inversion potential is illustrated
by the “Inv-2” curve in Fig. 7. It would be of interest
to extend this calculation to higher energies and heav-
ier nuclei, especially because Owen and Satchler [16] find
that the good agreement they obtained for the PDF with
the Perey-Buck result for 10 becomes less good for the
heavier nuclei. These results have an important negative
implication: Having shown that the conventional Perey-
Buck PDF represents the effect of the exchange nonlocal-
ity quite well and since channel coupling induces strong
nonlocal effects [22,28], we conclude that it is wrong to
suppose that the inclusion of a conventional Perey damp-
ing factor means that overall nonlocality has been ade-
quately corrected for.

Comparison between the nl and [ wave functions can
also be carried out by doing an integral of physical sig-

nificance, containing one such wave function, and then
comparing the integrals. Such a comparison has mean-
ing for wave functions which are not phase equivalent.
The integral chosen for this purpose is one which is akin
to the ones which occur in the theory of the (e, e’p) re-
action,

I, = (kg)™* /000 Fir(r)exp(—2br?)jp(gr)dr .  (4.2)

Here g represents the momentum which the electron
transfers to the nucleus, the spherical Bessel function
jL appears because the electron’s incident and outgoing
states are represented by plane waves, the exponential
function represents the nuclear transition density, and
Fr, is the distorted partial wave of the knocked-out nu-
cleon in the final state, with outgoing momentum k. The
two angular momentum numbers L should differ by the
multipolarity of the transition, but this point is ignored.
The results are illustrated in Figs. 11 and 12. In both fig-
ures the solid lines indicate the result for I}J"l) for which
Fr, is the solution of the nonlocal Schrodinger equation
with exchange. In Fig. 11 the dot-dashed line repre-

0.00
-0.05
m/é -0.10 —
& 015 F
-0.20
-0.25
025 ———1——————
r 1
0.20 ’._‘L__:O e~ Imag -—:
m/:a\ 0.15
S 010
0.05

0.00

q (fm™)

FIG. 11. Integrals of the type which occur in (e,e€’p) cal-
culations [Eq. (4.2)] as a function of the momentum transfer.
The solid lines represent the results obtained with the exact
nonlocal distorted wave function Fr;. When the wave dis-
torted by the local inversion potential is used, one obtains the
dotted and dot-dashed lines. The conventional Perey damp-
ing factor given by Eq. (4.1) was multiplied into the distorted
wave for the dotted lines and was not used for the dot-dashed
lines. The angular momentum number L for each partial wave
is indicated next to the curves.
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FIG. 12. Same as Fig. 11. The dotted lines are obtained
when the distorted wave is calculated with the phenomeno-
logical optical potential of Ref. [26] and is multiplied by the
conventional Perey damping factor of Eq. (4.1).

sents the value of Ig) for which fg) is the solution of the
Schréodinger equation for the inversion potential, and the
dotted curves are obtained by multiplying the same .7-'}‘[)
by the Perey damping factor of Eq. (4.1). For the low
partial waves (L = 0 and 1), the dot-dashed and dotted
curves differ by about 16% which is compatible with the
result that the local and nonlocal wave function ampli-
tudes differ by 15% at small distances. The fact that the
dotted lines are in good agreement with the solid ones is
an indication that the conventional Perey damping factor
is adequate in simulating the effect of the exchange non-
locality, at least for the partial waves higher than L = 0.
The result for the phenomenological optical-model wave
function, already multiplied by the PDF, is shown in Fig.
12. Here, however, a systematic difference with the ex-
act nonlocal result of approximately 12% is found. Had
the PDF not been used, then the optical-model result for
Ig) would have been larger than the nonlocal result by
about 16% + 12% = 28%, at least for the real part of
Iy, for the low partial waves. The effect on the (e,e’p)
cross section would have still been larger since the latter
involves the square of the matrix element of the type of
I;,. Thus comparison between Figs. 11 and 12 illustrates
the differences in the DWBA matrix elements when one
uses a phenomenological versus a microscopic optical po-
tential. However, as noted above, since our calculations
do not include the dynamic polarization nonlocality, it

is doubtful whether the use of a PDF of the Perey-Buck
type is justified.

V. SUMMARY AND CONCLUSIONS

We obtained a rigorous L-independent local equivalent
potential for n-180 scattering by a method of inversion,
which represents the effects of the knock-on exchange
nonlocality. This result should be useful for providing a
comparison for approximate methods of obtaining LEP’s.
Our Sturmian method of obtaining the rigorous solution
of the nonlocal Schrédinger equation requires the calcu-
lation of microscopic matrix elements which contain the
wave functions of the two interacting nucleons. When
the microscopic nucleon-nucleon interaction is given in
terms of Gaussian functions, as is the case for the CEG
interaction of Ref. [19] employed here, then these matrix
elements (direct and exchange) can be calculated ana-
lytically [9]. By an inversion method [10], a local, L-
independent “inversion” potential V;,,(r) was obtained
from the SME’s which is phase equivalent to the non-
local Hartree-Fock potential. A comparison between the
nonlocal and local phase equivalent wave functions shows
that the decrease in the amplitudes of the nonlocal wave
function compared to the local one is in reasonably good
agreement with the conventional Perey factor given many
years ago [2]. This result has been established so far
only for the n-'%0 case, and it represents only the effect
of the knock-on exchange nonlocality. The present re-
sults are based on the microscopic CEG effective nucleon-
nucleon interaction [19]. Other interactions should also
be tried, and different targets at different scattering en-
ergies should be explored, in order to establish more gen-
erally the results mentioned above.

The present work exemplifies a viable procedure
whereby theories of scattering can be tested. Where
there exists a reliable local phenomenological potential,
one may exhibit the strengths and weaknesses of a nonlo-
cal theory by comparing its local equivalent, determined
by inversion, with that phenomenological potential. Al-
though the present calculations have not included spin,
the inversion procedure can be and has been applied
where spin is included.

In addition to the exchange effect, another source of
nonlocality is the dynamic polarization of the nucleus
during the scattering process. The latter is as yet only
poorly known. In two related studies, the inversion po-
tential which represents a channel-coupling nonlocality
was obtained [22,28] and the Perey damping factor was
found to be quite different from the conventional Perey-
Buck [2] result in that it generally is larger than unity
and strongly angular momentum dependent. It seems
to us surprising that the conventional Perey-Buck damp-
ing factor, which is based on the energy dependence of
the phenomenological optical potential and hence should
include the effect of all the nonlocalities, so closely re-
sembles the damping due to exchange nonlocality alone.
When both the channel-coupling and exchange effects are
included simultaneously, then the Perey damping factor
is not known, although the indications are that a cancel-
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lation between the two effects takes place [29]. Further
work along these lines would be desirable.
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Real Part, L=0 20 MeV

FIG. 1. Real part of the exchange kernel Ky (ri,rz), de-
fined by Eq. (2.3) for the n-'®O interaction at an incident
energy of 20 MeV. The microscopic n-n interaction was taken
from Ref. [19], with the imaginary part reduced by a factor
of 0.6. The values of the angular momentum L are indicated.
The change in the vertical scale between the top (L = 0) and
bottom parts (L = 3) of the panels are to be noted.
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FIG. 2. Similar to Fig. 1
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for the imaginary part of



Impact parameter (fm)

z—axis (fm)

Bl Above 105

101 = 105
0.99 — 101
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FIG. 9. Contour plot of the “total” Perey damping factor
as a function of the impact parameter and the distance along
the z axis for n-'®Q scattering at 20 MeV. This is the ratio
of the absolute value of two “full” (summed over all partial
waves) wave functions. The wave function in the numerator is
the exact nonlocal one (with exchange); the wave function in
the denominator corresponds to the local inversion potential.
Near the center of the nucleus, this ratio lies between 0.90
and 0.95; in the next region, which is spread over most of
the nuclear volume, the ratio is between 0.85 and 0.90. In the
next two layers, it rises from between 0.90 and 0.95 to between
0.95 and 0.99. Outside of the nucleus, with the exception of
a few bands at the right, the value of the ratio is between
0.99 and 1.01. The bands are due to the cumulative effect of
a slight mismatch error in the asymptotic value of the wave
functions.



