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Optical model calculations for the elastic scattering of intermediate energy alpha particles
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Optical model calculations for intermediate energy alpha particles are performed with single-folded

potentials using a Woods-Saxon parametrization for the matter densities and Gaussians for the effective

alpha-nucleon interaction. A nearside and farside decomposition of the angular distributions are per-

formed. We shoe& that the refraction determines the gross features of the angular distributions.

PACS number(s): 24.10.Ht, 25.55.Ci

I. INTRODUCTION II. ANALYSIS

Angular distributions of differential cross sections in
the elastic scattering of alpha particles at energies below
100 MeV show typical diffractive patterns with well-
defined sharp minima. From these minima it is possible
to determine a Fraunhofer "strong absorption" radius. A
strong absorption radius may also be defined from the S
matrix or from the total reaction cross section, as dis-
cussed in the review article by Batty et al. [1]. This ex-
cellent article discusses many important features of alpha
particle scattering. The great disadvantage with all these
accurately determined strong absorption radii is the fact
that they have no simple interpretation in terms of the
matter densities.

When alpha particles of intermediate energies () 100
MeV) became available, it was found that the diffractive
pattern in the angular cross section distribution was fol-
lowed by an exponential falloff. Many analyses have
shown that the large-angle behavior is very sensitive to
the real part of the optica1 potential at very small radii.
In a recent report [2], it was shown that the strong real
potential of the alpha particles substantially reduces the
absorption in the interior of the nucleus. This effect is an
important reason why alpha particles can probe the inte-
rior of the nucleus.

Hussein and McVoy have shown [3] that a near-side
and far-side decomposition of the differential cross sec-
tion offers a possibility to get a much better insight into
the strong sensitivity to the real potential in the elastic
scattering of heavy ions and alpha particles. We will
therefore do such a decomposition, following the method
suggested by Fuller [4].

The aim of the calculations presented here was to learn
more about the energy dependence of the interaction be-
tween alpha particles and nuclei. The motivation for this
was the fact that we in the near future will perform a
measurement of total reaction cross sections for alpha
particles in the energy range 100—200 MeV. We have
used a very simple single-folding model, and our ambition
was not to obtain a perfect agreement with the experi-
mental angular distributions, but to find systematic
trends with energy.

The calculations were done with the code EcIS [5] us-

ing the folding model option. With this option the poten-
tials are obtained from

U(r) = —f [ V(r')f (r r')+i W(r—')g (r r')]d3r', —

U(r)= —J p (r')V, tt(r, r')d r', (3)

where p (r') is the matter density of the target nucleus
and V,tt(r, r') is the effective alpha-nucleon interaction.
This interaction includes the effect of the finite size of the
alpha particle. Therefore the P values are expected to be
larger than 1 fm. Our effective interaction may be written
as

(4)

where V(r') and 8'(r') are Woods-Saxon potentials and
f(r r') an—d g(r r') are Gau—ssian folding functions
given by

f (r r')=— 1 ~ 2(r &') /lt (2)
( 2~ )3/2P3

Folding calculations for alpha particles and other par-
ticles are often performed using the same folding parame-
ters P for the real and imaginary potentials. Sometimes,
only the real potential is folded and the imaginary poten-
tial is assumed to have a Woods-Saxon shape. It is well
known from optical mode1 calculations, however, that
much better fits can be obtained with different shapes of
the real and imaginary potentials. Consequently, we de-
cided to perform the folding with different folding param-
eters. We also considered it more meaningful to make
comparisons between two folded potentials than between
one folded and one of the conventional Woods-Saxon
shape.

If the radial parameters of the two potentials are the
same and equal to the parameters of the matter distribu-
tion, Eq. (1) is equivalent to a folding of the matter densi-

ty with an effective interaction
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The quantities in this expression are related to the pa-
rameters of the optical potential by

o =2Py„IW'/(kn, ), (sa)

a= V/W, (&b)

where p is the reduced mass, k the wave number, and p
the relativistic enhancement factor, which according to
Ref. [6] is k/(IMu), were u is the velocity of the projectile
in the laboratory system and n, is the normalization fac-
tor of the matter distribution, which approximately is
given by

n, =—aR 1+4 3 ma

3 R

The analyses were done in the same phenomenological
way as in optical model calculations. The matter distri-
butions, well known from electron scattering and other
experiments, were allowed to vary without any restric-
tions. The parameters of the interaction also varied free-
ly. We will see below that this approach made it possible
to draw important conclusions about the general features
of elastic scattering of alpha particles.

The fitting procedure was done as a grid search for the
real folding parameter p„. For each value of p„, we ob-
tained the strength of the real and imaginary interactions,
the radius and diffuseness of the matter distribution, and
the folding parameter p, of the imaginary potential.

For each angular distribution, the S matrix was ex-
tracted from ECIs and the near-side and far-side ampli-
tudes were calculated with the method suggested by Full-
er !4]. Whereas the total amplitude in the elastic scatter-
ing is given by

f=fr+fr
=fg + . Q(2l +1)e '(SI —1)PI(cosg),

2ik

where SI denotes the S-matrix elements, O.
I the point

Coulomb phase shifts, and Pi(cos8) the Legendre polyno-
mials of first kind, the near-side (far-side) amplitude fIvI~I
is obtained from

f&IFI=fz + . Q(2l +1)e '(SI —1)QI '(cos8) .
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FIG. 1. Angular distributions for the
differential cross sections divided by the
squared wave number in the elastic scattering
of alpha particles from ' C and Ca as a func-
tion of the momentum transfer q. In the lower
set of curves for ' C, the angular distributions
have been arbitrarily shifted horizintally rela-
tive to the distribution obtained at 104 MeV.
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Here fit and fz are the near-side and far-side Ruther-

ford amplitudes [4] and QI*' are linear combinations of
Legendre functions of the first and second kinds accord-
ing to

ing from ' C in the energy region 104—1370 MeV and in
Sec. III C the scattering from Ni in the energy region
104—699 MeV. Finally, we will discuss some shortcom-
ings of our simple folding model in Sec. III D.

Q& (cos8) =—P&(cos8)+i—Q&(cos8) (9)
A. Scattering from Ni at 172.5 MeV

The experimental results we have analyzed are the
Karlsruhe data [7] at 104 MeV, the Maryland data [8] at
140 MeV, and Orsay data [9] at 166 MeV, the Jiilich data
[10]at 120, 145, and 172.5 MeV, and the Saclay data [11]
at 288, 340, 480, 699, and 1370 MeV. To get qualitatively
similar data sets, some large angle scattering data have
been excluded. Figure 1 shows the experimental data for
' C and Ca. In the upper part, the differential cross sec-
tion data are divided by the squared wave number and
are plotted versus the momentum transfer. If the nuclei
had been "black disks, " the angular distributions should
have been identical. We observe that at the lower ener-
gies the diffractive region is similar and that the exponen-
tial falloff differs at large angles. The third plot below
shows that the exponential falloff has about the same
slope at all energies when the angular distributions are
shifted in momentum transfer arbitrarily relative to the
104-MeV data. We will in Sec. IIIB show that these
effects to a large extent are caused by the energy depen-
dence of the real potential.

III. RESULTS AND DISCUSSION

Our calculations were rather extensive and we will only
discuss some results in more detail. In Sec. III A we will
describe the analyses for Ni at 172.5 MeV. In Sec. III B
we will study the energy dependence in the elastic scatter-

The results obtained for the elastic scattering of 172.5-
MeV alpha particles from Ni are found in Table I. The
upper part was obtained with folding of both the real and
imaginary potentials (f-f), whereas the lower part shows
the results obtained with a Woods-Saxon parametrization
for the imaginary potential (f-WS). As seen in Table I,
nine different calculations were done with the value of the
real folding parameter ranging from 0.0 to 2.5 fm.

Figure 2 shows the experimental data with the eight
best fits with the real folding parameter ranging from 0.0
to 2.25 fm in the (f-f) case (upper set) and in the (f-WS)
case (lower set). Even if the y values differ, all fits repro-
duce the main features of the angular distribution very
well. In the (f f) case, -the angular distributions are al-
most indistinguishable up to 50', and for larger angles
there is just a modest difference in slope. The (f-f) set
has a much smoother behavior, and this set gives thus an
excellent opportunity to investigate the large-angle region
in more detail and we will do such a study below.

We observe immediately in Table I that the two sets of
data have systematic differences. The conventional as-
sumption that the results for the real potential are not
very sensitive to the shape of the imaginary potential is
strongly questioned. The g values have a minimum for
very large values of p„when both potentials are folded.
When the imaginary potential has a Woods-Saxon shape,
the minimum y value is obtained for a very small value
of P„. This might be an indication that the real and imag-

TABLE I. Best fit parameters in the optical model calculations for the elastic scattering of 172.5-MeV alpha particles from "Ni.
The upper sets have been obtained with both potentials folded; in the lower set the imaginary potential has a Woods-Saxon parame-
trization.

Real Matter density Interaction Mean square radii Volume integrals/nucleon
folding Reduced Diffuseness Strength Matter Real Imaginary Real Imaginary

parameter radius a Real Imaginary a P;-P„y distribution potential potential potential potential

0.00
0.50
1.00
1.25
1.75
2.00
2.25
2.50

1.18
1.18
1.17
1.16
1.13
1.12
1.13
1.11

0.86
0.84
0.78
0.73
0.60
0.51
0.35
0.008

112.1
112.3
112.5
112.3
109.5
107.4
105.2
101.6

42.6
42.6
41.8
40.5
35.7
33.4
31.4
29.1

2.63 1.43 865
2.64 1.03 771
2.69 0.82 580
2.78 0.79 498
3.07 0.78 409
3.21 0.77 395
3.35 0.76 393
3.49 0.71 399

4.78
4.72
4.54
4.41
4.0
3.86
3.62
3.33

4.78
4.76
4.71
4.67
4.60
4.57
4.55
4.54

5.09
5.08
5.07
5.07
5.12
5.14
5.16
5.17

249.5
251.0
253.5
254.5
254.6
254.8
254.3
258.0

98.5
99.0
99.4
98.8
96.0
95.2
94.3
94.5

0.00
0.50
1.00
1.25
1.50
1.75
2.00
2.25
2.50

1.22
1.21
1.18
1.15
1.16
1.16
1.16
1.19
1.20

0.81
0.80
0.76
0.72
0.64
0.56
0.43
0.14
0.006

129.2
127.9
124.8
122.5
120.6
118.1
116.0
115.6
118.9

24.9
23.6
21.0
18.8
22.3
22.6
22.6
22.9
24.3

5.19
5.41
5.95
6.53
5.40
5.24
5.13
5.04
4.91

136
126
149
195
236
276
312
333
514

4.74
4.68
4.51
4.38
4.23
4.05
3.84
3.61
3.64

4.74
4.72
4.67
4.64
4.61
4.58
4.55
4.54
4.73

5.14
5.16
5.20
5.23
5.19
5.21
5.23
5.24
5.32

287.5
285.4
280.8
277.9
274.5
271.5
269.2
268.5
287.3

95.6
93.9
90.6
88.0
93.4
94.2
94.9
95.7

104.4
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FIG. 2. Best fit angular distributions in the elastic scattering

of 172.5-MeV alpha particles from "Ni. The upper set was ob-
tained with both potentials folded. In the lower set, the imagi-
nary potential has a Woods-Saxon shape.

inary potentials should have the same parametrizations.
We also observe that the parameter which has the strong-
est correlation with p, is the diffuseness a of the matter
density. A more detailed study of all cases shows that for
large values of p„ there is approximately a linear relation
between the square of the diffuseness, a, and the real
folding parameter p„. From the first analysis of electron
scattering, it is known that all nuclei should have a
diffuseness of about 0.5 fm in a Woods-Saxon parametriz-
ation. Therefore too large values of p„should be rejected
even if they give lower y values. Consequently, the re-
sults in the figures will not include p„=2.5 fm.

Friedman et al. [12] have analyzed several nuclei at
104, 140, and 173 MeV using a Fourier-Bessel description
of the optical potential. They quote the values of the
volume integrals per nucleon for the real and imaginary
potentials as 269+3 and 98 MeV fm and for the rms ra-
dii 4.61+0.08 and 5.23 fm, respectively. Their results are
in very good agreement with the (f-WS) results and in
reasonable agreement with the (f f) results in Table-I.
The consistency in the values of the volume integrals of
the real and imaginary potentials and in the rms radii
strongly supports the conclusion by Friedman et al. [12]
that the folding model approach is appropriate for analy-
ses of elastic scattering of alpha particles.

In heavy-ion scattering, it is well known that the real
potentials, which reproduce the angular distribution for
elastic scattering, tend to have the same value of the real
potential at a specific radius. In an analysis of ' C-' C

scattering [13],we found the same feature in Glauber cal-
culations for a specific impact parameter. The invariant-
sphere ambiguity was thus reduced to an invariant-circle
ambiguity. It was therefore natural to look for similar
phenomena in the elastic scattering of alpha particles,
and we decided to plot all potentials as a function of r.
We will also plot so-called "effective potentials. " As
shown by Wallace [14] and in Ref. [6], these potentials
can be used in Glauber calculations and the results will
then include the first-order noneikonal corrections. In
the scattering of intermediate-energy alpha particles, the
Glauber approximation with first-order noneikonal
corrections does not reproduce a partial wave calculation
very well [6]. The results are, however, much better with
than without these corrections. Therefore the effective
potentials should display the major effects of the imagi-
nary potential on the effective refraction and of the real
potential on the effective absorption. The effective poten-
tials are given by

U,tt(r)= V(r)+ 2+r V(r)
1 d

2kU dr
(10)

where V(r) is the sum of the optical and Coulomb poten-
tials.

Figure 3(a) shows the matter densities in the (f-f) and
(f-WS) cases. Figure 3(b) shows the nominal and effective
real and imaginary potentials in the (f-f) case, and Fig.
3(c) shows those in the (f-WS) case. As seen, there is no
indication of an invariant point in the real potential. For
the imaginary potential, however, there is a weak indica-
tion for an invariant point at a very large r value. In-
stead, we observe first a remarkable and unexpected in-

variant point ambiguity in the matter distribution and,
second, that the real potentials, nominal and effective, are
extremely similar except very small radii in the (f f) case. -

Since this invariant point in the matter density appeared
for all nuclei in all energies, also with a Woods-Saxon pa-
rametrization of the imaginary potential, we decided to
denote this radius as the strong refraction radius in analo-

gy with the strong absorption radius. At first, we had the
prefix Woods-Saxon Gaussian to indicate that this radius
may be an effect of our parametrizations, but we found
this too lengthy. The small uncertainty in the strong re-
fraction radius in Fig. 3(a) is surprising with respect to
the fact that we span such a large region for the folding
parameter. We also note, however, a small difference be-
tween the strong refraction radii in the two cases. The
most important feature of the strong refraction radius is
of course that it is directly related to the matter density.
The dashed curve in Fig. 3(a) shows the matter density
for Ni calculated by Fayans [15], and apparently the
strong refraction radius has a reasonable value. A more
detailed study of Table I for the f fcase shows that the-
rms radius for the real potential decreases by about 1%
when the folding parameter is increased by 0.25 fm,
whereas the variation in the volume integral is consider-
ably smaller. The strong refraction might thus be due to
the fact that the volume integral of the real potential is
constant. In the f WS case, however, b-oth the rms ra-
dius and the volume integral decrease with increasing
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folding parameter, and so there is no obvious explanation
to the strong refraction radius.

Several authors have done so called "notch tests" of
the real potentials in order to investigate the radial sensi-
tivity of the elastic scattering of alpha particles. In these
tests, parts of the optical potential are removed
arti5cially. Our results indicate that in folding model cal-
culations such tests might be much more interesting for
the matter density.

Figure 4 shows the result of a near-side and far-side
decomposition of the angular distributions shown in Fig.

2. The solid curve shows the total cross section, whereas
the dashed and dotted curves show the near-side and far-
side cross sections. As seen, the interference between the
two components results in a diffractive pattern for small
angles. For the angular region 30 —80', the far-side am-
plitude is so dominating that the total cross section essen-
tially is identical with the far-side cross section. As
shown by Hussein and McVoy [3], this asymmetry is an
effect of the refraction in presence of absorption. McVoy
and Satchler [16]have discussed the possibility to observe
nuclear rainbows in the elastic scattering of heavy ions.
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FIG. 3. Results obtained with both potentials folded (f f) and with the real potential fo-lded and the imaginary one of the Woods-
Saxon shape. (a) shows the matter densities in the two cases. The dashed curve shows the matter density for ' Ni, calculated by Fay-
ans [15]. (b) and (c) show the nominal and effective potentials, as described in the text, in the (f f) and (f-WS) cases, resp-ectively.
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They start their discussion from the nuclear deflection
function 8&, defined as the real part of 28 5& lB/, where 5~

is the sum of the nuclear and Coulomb phase shifts.
From the minimum in the real deflection function, they
define the rainbow scattering angle 8„, in analogy with
classical scattering theory. The angular region inside 8z
is called the bright side and the region outside is called
the dark side. The cross section on the dark side arises in
the semiclassical interpretation from a single complex L
value so that do ld8~ exp[ —(ImL)8]. This explains the
exponential falloff for the differential cross section on the
dark side. On the bright side each angle 8 can be
reached by two L values, L & and L & . The interference
between these two contributions produces broad Airy
maxima, separated with b,e=2nl(L & L& ).. McV—oy
and Satchler emphasize that the last semiclassical con-
clusion does not consider the fact that the contribution
from the smaller L value, L&, will be much more
damped by the presence of the imaginary potential.

We calculated the real as well as the imaginary part of
the deflection functions to get a more detailed compar-
ison between the potentials. The results obtained in the
f-f and f-WS cases are shown in the left and right sides
of Fig. 5. The upper and lower parts show the real and

imaginary parts, respectively. The rainbow angle appears
for 1=25 and varies between 39' and 42' in the f-f case
and between 45' and 52 in the f-WS case. We also ob-
serve that the angular distributions in Fig. 2 essentially
only difFer on the dark side. To investigate to what ex-
tent the slope of the exponential falloff is a pure refrac-
tive effect, we performed two further calculations. In the
first one, shown in the left part of Fig. 6, the calculations
were performed with the real potential obtained with
p„=1.50 fm, and the imaginary potentials obtained with
P„=1.00, 1.25, 1.50, 1.75, and 2.00 fm. In the set to the
right, the calculations were done with the imaginary po-
tential obtained with p, =1.50 fm and the real potential
was varied in the same way. As seen, both sets of curves
are unaffected at small angles. The change when the
imaginary potential is varied may be interpreted as a

FIG. 5. Real (upper part) and imaginary (lower part) parts of
the deflection functions for the two cases shown in Fig. 2.

damping of the amplitude or an angular displacement of
the exponential falloff. When the real potential varies, it
is just the slope on the dark side that changes. If we now
study the real potential in Fig. 3(b) again, it is obvious
that the slope of the exponential falloff is determined by
the behavior of the real potential inside 4 fm. If we study
the deflection functions in Fig. 5, it is diScult to judge to
what extent the slope is determined by the I value of the
rainbow angle and to the behavior for small I values.
Since the bright side differential cross sections do not
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FIG. 6. Angular distributions calculated with the real poten-
tial obtained from the fitting procedure in the (f f) case with-
P, =1.50 and the imaginary potentials from the fitting pro-
cedures with P, = 1.00, 1.25, 1.50, 1.75, and 2.00 (left part). In
the right part, the imaginary potential was Sxed at the value ob-
tained with p„=1.50 and the real potential was varied in the
same way.
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FIG. 12. Deflection functions for the calculations shown in

Fig. 11.

104 and 172 MeV. Also, the arbitrarily chosen 75'flo

reduction gives a result very similar to the one obtained
at 1370 MeV. It is of interest to note that the near-side
cross section is very insensitive to the strength of the real
potential up to about 40' and that when the refractive
efFects become small the total cross section oscillates
around the near-side cross section.

The deflection functions for these four different
strengths of the real potential are shown in Fig. 12. Re-
garding the real part, we observe not only a decrease in
the rainbow angle, but also a decrease in the l value for
which it appears. The effects on the imaginary part are
very dramatic, in spite of the fact that the imaginary po-
tential is the same. Our results confirm the results of Ref.
[2], and we observe how the real potential increases the
imaginary phase shifts in the surface, which in turn in-
creases the strong absorption radius, but also decreases
the absorption for small partia1 waves.

The deflection functions obtained by varying only the
strength of the real potential are of course not very realis-
tic, as can be seen from a comparison with Fig. 9. Such a
variation reproduces, however, the gross features of the
angular distributions in a surprisingly realistic way. The
strong effects of the real potential on the absorption
clearly call into doubt a semiclassical interpretation of
the angular distributions.

In comparisons between heavy-ion and alpha particle
scattering it has been found that the difFerential cross sec-

tions for heavy ions are comparatively small and one has
introduced the concept of surface transparency. We
think that this term is rather misleading, and a more real-
istic concept should be refractiue surface absorption. It
should be stressed that the increased absorption in the
surface is combined with a decreased absorption for small
partial waves, and as a result of the strong refraction, the
alpha particle can probe the interior of the nucleus.

Finally, we want to stress the extremely large effects of
refraction that are present in scattering of alpha particles.
Figure 11 shows that the diff'erential cross section should
be reduced with more than a factor of 1000 in a large an-
gular range if the real potential had been small. It is also
remarkable of course that this increase comes only from
the far-side cross section.

C. Scattering from Ni
in the energy region 104-699MeV

At last, we describe in detail our results for Ni. The
reason for this choice is the fact that Ni is one of the
few nuclei for which the elastic scattering has been mea-
sured above 172 MeV. Figure 13 shows a near-side and
far-side decomposition of the angular distributions ob-
tained at 104, 288, 340, 480, and 699 MeV, as a comple-
ment to the results at 172.5 MeV, shown in Fig. 4. The
calculations shown in Fig. 13 were performed with con-
ventional Woods-Saxon potentials. Since the absorption
is more dominant for a heavier nucleus, the diffractive re-
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gion is more extended for Ni than it was for ' C. The
effects of the refraction is, however, very important also
in this case. The refractive effects decrease slowly with
energy, but also at 699 MeV the ratio between the far-
side and near-side cross sections is as large as a factor of
10 in a large angular region.

D. Deyendence on atomic number and energy
in the folding calculations

The results obtained for difFerent nuclei at different en-
ergies are rather consistent for the volume integrals of the
potentials. We have also a clear indication that the fold-
ing parameter should be larger for the imaginary poten-
tial than for the real one. This is exempli6ed in Table II
with the values obtained at 104 and 140 MeV. The re-
sults for Pb deviate somewhat. We also note that some
variations seem to be correlated to the difference in the
folding parameters. From this we learn that in a future
calculation the imaginary folding parameter should be
larger than the real one. The difference should not vary,
however, if one wants to extract reliable values for the
strength of the interaction.

The major problem with our results is the total
diffuseness, i.e., the relation between the diffuseness of the

matter density, a, and the real folding parameter p„. As
mentioned above, a good 6t was found to require that
a +const XP„have the same value. The constant was
found to be of the order of 0.3 and varied somewhat from
case to case. This expression could thus be considered as
an "effective diffuseness" in the alpha-nucleus interac-
tion. Figure 14 shows the values of a plotted versus p„
for the nuclei studied at 104 and 140 MeV. One observes
that for the same value of P„ the diffuseness seems to in-

crease strongly with the atomic number. We interpret
this as a strong indication of a density dependence in the
interaction. It has been shown [1] that with a density
dependence it is possible to get better agreement with the
experimental results and that the main effect is to make
the potential weaker for small r values. We argue, how-
ever, that the density dependence is required to make the
surface more diffuse.

The values of the folding parameter seem to decrease
with energy. At 1370 MeV the folding parameters are
very small, in the case of ' C as well as Ca. The
diffuseness goes negative for p„=1.50. Such small folding

parameters are of course unrealistic, and it is diScult to
believe that a density dependence could drastically
change this result for such a light nucleus as ' C. We

TABLE II. Best fit parameters obtained in the analyses of the elastic scattering of alpha particles of 104 and 140 MeV. The five
values at each position have been obtained with the values 1.00, 1.25, 1.50, 1.75, and 2.00 fm for the real folding parameter P, .

Energy
(MeV) Nucleus

Volume integrals/nucleon
Real potential Imaginary paotential

i r

(fm)

140

12C

Ca
"Ca

Ni
208Pb

12'
Ca

208Pb

321
302
313
301
342
273
278
377

321
300
309
297
360
274
279
373

321 321
298 295
306 304
291 292
365 359
277 278
279 280
371

344 106
293 116
294 115
292 163
346 107
278 107
281 117

77

107 107
113 111
114 112
149 135
98 84

108 109
115 113
75 75

107
108
110
138
90

109
110

107 0.77 0.66 0.57 0.50 0.45
106 0.93 0.91 0.91 0.91 0.89
105 0.97 0.96 0.93 0.92 0.93
140 0.01 0.14 0.28 0.25 0.17
84 1.23 1.35 1.75 1.47 1.68

109 0.92 0.79 0.67 0.59 0.53
110 0.68 0.67 0.66 0.66 0.62

1.25 1.27 2.12
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are drawn as guides for the eye.

The goal of our calculations reported here was to learn
more about the energy dependence of the effective alpha-
nucleon interaction as a preparation for the analysis of
total reaction cross sections, which we plan to measure at
The Svedberg Laboratory in Uppsala in the energy range
100—200 MeV. We have learnt that the gross features of
the energy dependence of the angular distributions is due
to the energy dependence in the real potential. The re-
fraction affects mainly the far-side contribution and in-
creases the total cross section by several orders of magni-
tude in a large angular region.

The very strong interaction of alpha particles has the
effect of producing a strong interference between refrac-
tive and absorptive effects. The refraction increases the
imaginary phase shifts for large l values so that the
strong refraction radius increases considerably. We
denote this effect as refractive surface absorption. For
small partial waves, however, the absorption decreases
with increasing refraction, and thus the possibility to ex-
tract information from small radii is improved.

Our results show that our planned measurements of to-
tal reaction cross sections will make it possible to deter-
mine not only the imaginary, but also the real potential
with greater accuracy.

have become rather convinced that the scattering of al-
pha particles at this energy must be performed with a rel-
ativistic potential. In such a calculation, the optical po-
tential is the sum of a scalar and vector potential and this
sum can of course give a potential with a much sharper
surface if the two potentials have different shapes.

Regarding all problems with dependence on atomic
number and energy, it is quite remarkable that in all cases
studied we have found a well-defined strong refraction ra-
dius also at 1370 MeV where the folding parameter has
unreasonably small values.
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