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Intermediate mass fragments from the reactions
486, 55Q, 64Q, and 73Q Mev Kr + 63Cu
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Intermediate mass fragments have been studied from the reaction Kr + Cu for Kr beam
energies of 486, 550, 640, and 730 MeV. Average center-of-mass (c.m. ) energies are nearly constant
with the c.m. angle and vary little with incident energy. Furthermore, the angular distributions are
well approximated by 1/sing, . .. From this and other evidence we conclude that equilibration has
occurred prior to fissionlike asymmetric binary breakup of the composite nucleus in the predominant
mechanism for IMF production.

PACS number(s): 24.60.Dr, 25.70.Gh, 25.70.Jj

I. INTRODUCTION

In recent years, unfolding the mechanisms and sources
of intermediate mass fragment (IMF) production has
been a major goal of heavy-ion reaction studies (see, for
example, Ref. [1] and references therein). The attempt
to distinguish simultaneous multi&agmentation &om se-
quential binary 6ssion, for example, has become a ma-
jor challenge (e.g., [2,3] ). Much of this work, however,
has been done with incident energies & 20A MeV. For
these relatively high incident velocities, it is particularly
difBcult to identify the mechanisms responsible for IMF
production because incomplete fusion and deeply inelas-
tic reactions lead to a broad range of energy depositions.
For lower energies (E/A of & 10 MeV) the situation is
quite different. The more central collisions lead to essen-
tially complete fusion so that one can easily characterize
the total excitation energy of the equilibrated composite
systems. For the IMF's, we must ask if they are indeed
ejected &om such equilibrated composite nuclei. If so,

then we can use their emission probabilities, energies,
etc. , to probe their formation barriers and other proper-
ties of the emitting systems.

In this paper we report experimental results for inclu-
sive IMF measurements &om four reactions: 486, 550,
640& and 730 MeV Kr + Cu. Initial excitation en-
ergies for complete fusion range &om 125 to 231 MeV,
and cross sections for IMF's increase rapidly (e.g. , for
~2C from 0.9 to 14 mb). Observations of the IMF energy
spectra, angular distributions, yields, and dimensionless
cross sections lead to the conclusion that, for these re-
actions, there is indeed equilibration after the fusion of
target and projectile. A subsequent asymmetric binary
6ssion like breakup is the major source of IMF emission
[4]. In a forthcoming paper [5], we analyze the IMF ex-
citation functions within the framework of the statistical
model in an attempt to extract IMF 6ssion barriers.

II. EXPERIMENTAL SETUP
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The Berkeley SuperHILAC provided beams of 486,
550, 640, and 730 MeV Kr, which bombarded a Cu
target of thickness 1030 tsg/cm2. Two "wedge" detectors
[6], for registration of He and heavier particles, were
placed symmetrically on either side of the beam. These
detectors are composed of 5 coplanar solid-state stopping
detectors (= 4.5 msr) spaced radially every 10' and have
a common gas ionization chamber to provide the AE sig-
nal. Angular positions for the stopping detectors in each
wedge were &om 38 to 78 . Additionally, three individ-
ual gas ionization chambers (equipped with solid-state
stopping detectors) were placed, one each, at 18' above
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excitation energy.
Also note in Fig. 10 the enhanced cross sections for

Z=6, and the depressed cross sections for Z=9. This
effect, most notable for the 486 MeV reaction, is often
identified as a "shell effect" (see, e.g. , [16]), which may
arise at scission or in the post scission evaporation. As
the primary IMF's are born with some excitation energy,
they may undergo further decay through the evapora-
tion of light particles. Binding energies are often larger
for light IMF's of even Z than for those of odd Z. Pri-
mary IMF's with odd charge thus have a greater proba-
bility for further decay. This enhancement in the carbon
cross section may then result partially from its preferen-
tial formation by evaporation &om such primary decay
products. However, it is true that the experimentally
derived postscission particle multiplicities are small [8];
hence it is likely that the shell effects arise mainly Rom
the primary formation probabilities.

We now compare dimensionless IMF cross sections pro-
duced in two entrance channels. A dimensionless IMF
cross section, oi~i;(E+)/n'(A/2m)~, is defined as follows:

&max', (E') = ) (2e + 1) P(e, E')
&min

with excitation energy E*, entrance channel wavelength

(A), and orbital angular momentum e The .exit channel
factor P(e, E') represents the spin and excitation-energy
dependent decay probabilities for the emission of an IMF.
We note that division of the experimental cross section
by the entrance-channel dependent term m'A leaves a
summation over only exit-channel spin-dependent decay
probabilities. If these decay probabilities are indeed de-
cided by the composite nucleus, then dimensionless cross
sections should agree for matched entrance channels (i.e.,
matched in E* and covering the relevant spin zone).

Reference [17] reported IMF cross sections up to Z=Q
&om the reaction 337 MeV Ar + " Ag. This system
matches in excitation energy the 640 MeV Kr reaction
(E*=194 MeV). Dimensionless cross sections are com-
pared in Table I for these two systems. The general
agreement between these two entrance channels provides
additional evidence that the IMF's in this energy regime
are produced by compound-nucleus reactions. The dis-
crepancy for Li may be due to the overwhelming presence
of He, which was great enough to make it dificult to
achieve complete separation.

It has been very common in heavy-ion reaction studies
to classify reaction groups by their major heavy frag-
ments, i.e. , evaporation residues (ER's), fusion fission
(FF), deeply inelastic reactions (DIR), and quasielastic
reactions (QER). These classifications have also served
as guides to the spin zones involved.

At low energies (e.g. , 486 MeV in Fig. 10) there is a
deep valley ia e for 3 & Z & 12, which serves to sep-
arate the FF group from the ER group produced after
the particle evaporation (e.g. , n, H and He "particles" ).
An IMF emission of 3 & Z & 12 actually leaves behind a
heavy nuclear residue that is included in the ER group.

TABLE I. IMF Chmensionless cross sections.

Dimensionless cross sections, oi~p/nA

Particle

H
H

4He

Li
Be
B
C
N
0
F

337 Mev Ar + " 'Ag

20360 +610
1820 +180
612 +61

13300 +400
94 +14
47 +7
37 +6
81 +12
79 +12
43 +6
49 k7

640 MeV Kr+ Cu

17020 +630
1770 +200
740 +120

13500 +1350
187 +4
38 +1.2
41 +1.3
80 +1.9
46 +2.1
54 k2.4
30 +1.6
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As the yield of these IMF's increase with incident energy,
their production generates such heavy nuclei in the ER
class, but with broader angular distributions than calcu-
lated for evaporation of only n, H and He particles [18].
At higher energies, or in any situation where there is no
distinct valley in 0, there will be no clear separation
between the ER and FF groups. For the reactions and
energies studied here the IMF's of Z & 12 to 20 will be
included in the KR group, which retains a rather clear
distinction &om the FF group. The fragments of Z & 12
will generally be classified as a part of the FF group.
However, such distinctions may not be completely clear
and may be decided essentially by the taste of the exper-
imenters.

In conclusion, a coherent picture emerges that the
dominant pathway for the production of these IMF's is a
binary fissionlike breakup following fusion of target and
projectile. This view is supported by several observa-
tions: (1) the average IMF energies are essentially con-
stant with varying bombarding energy; (2) for a given
bombarding energy, the mean energies are nearly invari-
ant with c.m. angle; (3) dimensionless cross sections for
inclusive IMF's show broad agreement for matched en-
trance channels; and (4) backward peaking of the angu-
lar distributions with respect to the light reaction part-
ner follows 1/sine, , the classical limit for the binary
emission of a fragment &om a rapidly rotating system.
Coincidence ineasurements in Ref. [4] also indicate only
a very small presence of ternary breakup processes.
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