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Sum rules in the proton-neutron interacting boson model:
Generalized treatment and specific applications
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A detailed study of sum rules for EO, E2 and M1 and M3 transitions within the framework of the
proton-neutron interacting boson model (IBM-2) is carried out. Both the non-energy-weighted as
well as linear energy-weighted sum rules are derived for rather general IBM-2 Hamiltonians. Special
attention is given to the M1 sum rule for which a large amount of data exists. We also show how
these more general sum rule results reduce to simple answers when considering the limit of U(5),
SU(3), and O(6) dynamical symmetries. Finally, a relation between the Ml and M3 sum rules is
pointed out.

PACS number(s): 21.60.Fw, 23.20.Js

I. INTRODUCTION

Sum rules provide useful tools for measuring quantita-
tively the degree of collectiveness of a given excited state.
The controversy about the real nature of a so-called 1+
"scissors" excitation at low energy, first discovered by
Bohle et aL in Darmstadt [1],and in particular of its de-
gree of collectivity, originated from the outcome of sub-
sequent experiments using (e, e') and (p, p') [2, 3], where
considerable fragmentation of low-lying Ml strength was
observed.

Several microscopic theoretical studies [4—10] aimed at
reproducing this fragmentation, and although all finer
details could not always be reproduced in a quantitative
way, a quite coherent picture was obtained recently start-
ing for the summed strength and its systematics over a
wider range of nuclei [11—14]. Also, qualitatively, some
properties were observed that indicated a possible col-
lective nature of the Ml strength, e.g. , its smooth vari-
ation with proton (neutron) number Z (N) [15 which
was also reached from microscopic calculations [11], as
well as a strong correlation with nuclear deformation [6,
13, 14, 16—20]. Moreover, a striking similarity was ob-
served [17, 18] for the rare-earth region in the behavior
of the summed low-lying Ml strength and the electric
quadrupole transition strength to the first excited 2+
state versus the collective parameter P, introduced by
Casten et al. [21], which indicates a measure of the in-
teraction energy of the deformation-driving quadrupole
proton-neutron force versus the interaction energy of the
like nuclear pairing force and hence, is a unifying param-
eter for describing deformation dependent properties.

The recent observation of these properties of summed
magnetic dipole strength stimulated the use of sum-rule
techniques in order to study them in more detail. Within
the nuclear shell model [22—24] as well as in the interact-
ing boson model (IBM-2) [13, 14, 24, 25], the correlation
and saturation properties of both B(E2;0& —+ 2& ) and

P«4 M,v B(M1;Oi ~ 1f ) were studied extensively
starting &om a sum-rule approach. These developments

caused a revival of the interest in sum-rule calculations
in general within the IBM-2. It is the aim of the present
paper to describe in detail a number of more technical
aspects and to obtain more general results. Then, we
derive and discuss a few specific expressions with inter-
esting physical implications. We also study the limits of
good F spin and the dynamical symmetries.

II. SUM RULES IN THE IBM-2

The most commonly used sum rules are the non-
energy-weighted (NEW) and the linear energy-weighted
(EW) sum rules. Although we have studied higher-order
EW sum rules as well, we will restrict ourselves here to
the former ones, since these results are becoming very
complex and lack transparency to allow for an easy phys-
ical interpretation.

In calculating the EW and NEW sum rules, we start
from the well-known expression [26]

) B(S'A;0+, +Ay) = (-Oi+iT(SA)T(SA)i0i+) (1)
f

and

) E(Ay+)B(SA;0+, m AI)
f

(,+i[[H, T(SA)], T(SA)]
'

~0,+), (2)

where H is the Hamiltonian describing the interacting
system, T(SA) is a one-body electromagnetic operator of
multipolarity A, and A:—(2A + 1) i2.

These expressions are model independent, but further
evaluation of the right-hand side demands model assump-
tions for the form of the electromagnetic operators and
of the Hamiltonian. We have chosen to use the proton-
neutron interacting boson model (IBM-2) in order to
evaluate the above sum rules. This choice is motivated

0556-2813/94/49(1)/156(20)/$06. 00 49 156 1994 The American Physical Society



49 SUM RULES IN THE PROTON-NEUTRON INTERACTING. . . 157

by the observation that the M1 excitations, which were
the first cases to be discussed in this context —and more
in particular the summed Ml strength is equally well
described by this model as by the more complex micro-
scopic models [7,ll, 12] whereas the analytic calculations,
although still elaborate, give rise to relatively simple ex-
pressions with a straigthforward physical interpretation
[13,14]. For reasons of completeness, we first briefiy in-
troduce the model.

A. Basic model IBM-2 assumptions

In the IBM, the valence nucleons (particles or holes)
are treated in pairs as 8(L = 0) or d(L = 2) bosons, rely-
ing on the pairing and collective, quadrupole properties
of the nuclear energy spectra. In this way, a substantial
truncation of the configuration space, compared to the
usual shell-model space, is introduced, which makes the
model extremely useful in regions far away from closed
shells, such as the well-deformed rare-earth and actinide
nuclei. The single-boson states then span a U(6) ba-
sis, and the group-theoretical analysis highly simplifies
the calculations and even enables analytic treatment in a
large number of cases, known as dynamical symmetries.

In the IBM-2, the charge degree of &eedom is taken
into account, giving rise to proton and neutron bosons.
Reduction of the product group U (6) U„(6) then
gives rise to two classes of states: totally symmetric
boson states and mixed-symmetry states, for which the
wave function is antisymmetric under the interchange of
charge or spatial (+spin) coordinates, only. It is within
the latter class that the low-lying 1+ states are to be
found.

An alternative way to include the charge degree of free-
dom is to introduce an additional quantum number, F
spin, which is analogous in its mathematical properties to
spin and isospin. The totally symmetric states then cor-
respond to F = F =

2 (N is the total boson number),
while the mixed-symmetry states have F, & F ( F
[with F, = (N„—N„)/2].

Many review articles [27—30] and several textbooks [31,
32] give a detailed account of the IBM-2 model. There-
fore, we will restrict ourselves to a short description of
the Hamiltonian and electromagnetic operators used in
the calculations.

B. The Hamiltonian

The more general IBM-2 Hamiltonian is given by

M» ~ = (2(d»8 —d s ) (d»8~ —d~s»)

—2 ) (g(d dt)( ) (d„d„)(")
I(:=1,3

(4)

the Majorana term, accounting for the symmetry energy.
For the purposes of the present paper, it is more con-
venient to rewrite the Majorana operator in a recoupled
form:

M „=$3 (sts)„. (dtd)( ) + (Sts) (dtd)( ) V 5

—(std)~'~ (dt's)~ ~ —(std)~'~ (d+s)~'~)

+) ) (—2(&)(2k+1)
L I =1,3

&((dtd)( ) . (dtd)(1') (5

It is common to use the parameter choice (i —(2 —(3 ——

1, such that the operator reduces to the F-spin invariant
form

N (N
M = — —+1 —F

2 2

or, alternatively,

M „=n, ng. + n, ng —(std)( ) (dts)( )

(Std)(2) . (dts)(3) + 4(dtd)(0) . (dtd)(0)

C. Electromagnetic operators

The electromagnetic operators for which we have de-
rived and studied the corresponding sum rules are

T(EO) =o( (dtd)( ) + p (sts)

—) (dtd)( ) . (dtd)
L=1

When fitting experimental spectra of vibrational over
transitional towards well-deformed rotational nuclei, in
the rare-earth region, some anharmonicity terms are in-
cluded as well [33],but since those have zero or negligible
contribution to the sum rules, we do not consider them
for the present analytic treatment, in order not to com-
plicate the expressions unnecessarily.

PII =.„.n„. + n&. + ~..Q. . Q. + ~..Q. . Q.
+d(;„„Q„.Q„+ AM „ (3)

+~„(dtd)(0) + ~.(sts). (7)

with ng = (dt . d)p (p = vr, v) the d-boson number
operator,

Q = (std + dts)( ) + y(dtd)( ) (p = m, v)

T(M1) = / (g L +g I )—
with L~—: ~10(dtd)~( ), the angular momentum op-
erator in boson space and g~ the boson gyromagnetic
factors,

the quadrupole operator, and T(E2) = e Q + e„Q„
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with Q~ the quadrupole operator and e~ the effective
charge, and

and, hence, one finally obtains

T(EO) = a' nd + a' ng

T(M3) 0 (dtd)( ) n (dtd)( )

7r
The above allows us to write the EO, Ml, and M3 oper-
ators using a single form as

One can rewrite the EO operator, making use of the boson
number operators N = n, + nd, in the following way:

1T(EO)=a nd, + p n,.
5 1.+ av nd„+ pvno.

( 1.
-w~ In~. + a-

I

+ a~Pm +m + vyvNv

The last two terms will not contribute to EO transitions

T(SA) = A" (dtd)(" + A" (dtd)(")

and calculate a general sum-rule expression for multipo-
larity A, which can be extended in a straightforward way
to higher multipolarities A ) 3. Due to its particular
form, the E2 operator has to be studied separately and
will be treated in Sec. V.

III. NON-ENERGY-WEIGHTED SUM RULES
FOR EO, M1, AND M3 TRANSITIONS

The calculation of the NEW sum rule is quite straight-
forward and only in very few specific cases, recoupling
can lead towards a simplified expression. One obtains

) B(SA;0+, m A ) = (A.") (0+iI(dtd) " (dtd)(") Ioi+) + (A") (Oi+I(dtd)(") (dtd)(" Io+)
f

+2A" A" (0+, I(d d)(" (dtd)(" Io,+)

and, using the general recoupling formula

(14)

bt b~ . bt b~, = 2~+1 bt b~ ' b~, b

('2A+1) .+
I ~ I

n~ 4~. 4).
(2%i + 1)

with A, indicating the charge character (vr or v boson) and angular momentum (s or d boson). This leads to the final
expression

+$ (22+ 2) ( 20) ((0~+
~

(d~d~)" (dd)I" ~0+) (A )

+ (0~+
~

(d'dt)I„'I (dd)&'I ~0~+) (A„') + (0+,
~

(dtd()I'I (d d )I"& ~0~+)2A» A~)

A. The EO sum rule

The NEW sum rule is given by

) B(E0;0+i m of ) = —(0,+I (a' nz + a'„nz ) Io+, ).
f

For an E-spin invariant system, with the ground state a
pure F = F „=(N + N„)/2 totally symmetric boson
state, we can use the relationship

I

and obtain [27]

2

) B(Eo;o+ ~ 0~+) = —
I
a.'

5 ~

x (o+ In'„Io+)

with ng =—nd +nd .

B. M1 sum rule

(19)

(Fm~, P, IO N —0 N~ IF~~„,F,) = 0, (18)

where O~ is a one-body operator acting in the 2r(v) space

The NEW sum rule has been worked out recently by
Ginocchio I'34) in the limit of good F spin. He thereby
obtained the result
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) B(M1;0~ -+ ly) = —(g —g„) (0~ lnglo~ )
f

Calculating the NEW sum rule, in the more general case, we obtain

2) B(M1;0~+ -+ 11+) = —(0~+~ (g„I„+g I„~ 0+)

f

g' (o'l(d'd)" (d'd)"' loi)+g' (oi l(d'd)" . (d'd)" loi)

(2o)

+2g g„(0~+I (dtd)~ l (d d)~ Io+) (21)

Making use of the recoupling formula (15), we can extract an ng dependence as follows:

) B(M1;0,+ m ly) = —g (0+, lng. I
0,+) + g„(0+, lng„lo+, ) + —g r~ + g' I(;„„+2g g„)(, „2' 2'f

(22)

with

PP go 1 P P 1

——(0& lng, lo~+)h~~ (p, p' = vr, v)

=) ( ) (0'i(g'0',
i (40') hagi)

or

T(M1) =
I (g + g„)(L + L„)16~ (,

+(g -g )(L —L ) I

4x

"(N„L —N L„) I

)

(24)

(25)

(23)

It is now also possible to rewrite the Ml operator as
follows:

The total angular momentum operator L = L + L„
gives zero contribution to the transition rrratrix element,
so one obtains for the NEW sum rule the following ex-
pressions, respectively:

) B(M1;0~+ ~ 1~+) = —(g. —g„)'((0+iln~. + n~. loi+)) + —(g- - g-)' (~-+ K- —2~--)
f

(26)

2) B(M1;0&+ ~ 1&+) = — "
„N( ~0l+ng lo+~) + N (0~+lng„lo~+)

f
45 (g —g„)2 2+—

2
N K + N Kvv 2N NvKvrv

27r
(27)

Comparing expressions (22), (26), and (27), one finds, equating terms in g2, g2, and g g„ the interesting results

1= ——(0~+lng Io+, ) —r. „,

1
(ox In&. los )5

from which we obtain the quite simplified expression for the NEW sum rule as

(28)

) B(M1;0+~ m 1~+) = ——(g —g„)
f

= ——(g- —g-)' (oi IL-. L-loi) (29)

or, alternatively, using Eqs. (23) and (28),
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).B(M1 oi ~ 1y) = —(g- —9-)'(oiILp Lpiol) (l =~ ~)
f

(30)

Hence, the summed Ml strength becomes proportional to the expectation value of the magnitude of the m(v) total
angular momentum.

In order to compare this general result with the results obtained by Ginnocchio [34], we have to assume good F
spin. Then, we can apply relation (18) to Eq. (27) and obtain the result

45
(N K +Nr„„—2NN„K, „)

27r

(g. —g.)' N, (0', l, lo+, ) (31)

Comparing this result with Ginnochio's sum rule, we
obtain other equalities in the r~~ values, i.e.,

v. „=—— "
(0+, lng10+, )5NN —l

Pv=
5 N N 1 ( i I

"~l i) (&= )
1 Np(Np —1)

(32)

and finally, a relationship between the expectation value
of the angular momentum operator and the d-boson num-
ber operator results

in the IBM language, is connected with the d-boson num-
ber expectation value [34, 39].

When plotting the excess of the experimental value
of the mean-square radius over the liquid-drop model
predictions versus (Oi ng10i ) [Figs. 2(a) and 2(b)], we

do not find a linear relationship though. Starting from
Eq. (20), the ng matrix element is connected to the nu-

clear radius expectation value (r ) and one can thus de-
rive the relationship

) B (Ml;0+, m ly+) = —(g —g„)'
f

(01 IL L 101) = (01 IL L 101)
= —(0+Ii. i„lo+)

x (r ) —p'N (34)

(with p' = np). For the variation over rather small spans

Since for realistic cases, e.g. , the Nd, Sm, and Gd nu-

clei, the Hamiltonian is not F-spin invariant [33], we

investigate the sensitivity of the sum-rule result to the
F-spin purity of the states. For realistic choices of the
parameters, for this series of isotopes [33],we carried out
numerical IBM-2 calculations using the program NPBOS

[35—37] as a function of the F-spin purity in the ground
state. Inspecting the results of Fig. 1, although we ob-
serve that the F-spin purity of the ground state remains
very high, the deviation of the summed Ml strength from
the corresponding pure F-spin limit increases rapidly.
Still, the proportionality of the K~~ term with (Oi Ing10i )
in the limit of good F spin [Eqs. (32)], suggests that
this deviation may be resolved by a scaling factor. In-
deed, plotting the right-hand side of Eq. (20) versus the
left-hand side, we obtain a straight line, however, with a
proportionality factor of 0.92 instead of 1 [see Fig. 2(a)].
Therefore, it is physically meaningful to use the summed
B(Ml) strength from the ground state as a measure for
the expectation value of the d-boson number, which is
intimately linked with the nuclear mean-square radius in
the ground state [24]. Indeed, the experimental finding
that the radius increases more rapidly compared to the
liquid-drop model prediction when approaching midshell,
suggests a dependence on nuclear deformation [38] which,

I

80—
~ Nd

Sm
Gd

~O

~ 60—
D

)
LU
O—40—
X
CQ

20—

I

98.5
I

99
F-spin purity (%j

99.5 100

FIG. 1. The procentual deviation between the calculated
NEW M1 sum rule and the summed M1 strength constrain-
ing to good I" spin for the 0+ ground state, as a function of
the E-spin purity in the 0+ ground state. The IBM-2 Hamil-
tonian parameters for Nd, Sm, and Gd nuclei are taken from
Scholten 133].
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N Z~2
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+ e-
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X
1
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X

1
CQ

0
0

0
3—(0)] nd iQ))

FIG. 2. (a) Relation between the theoretical summed Ml
strength (NEW) (in units yiv) and the expectation value of

1(0+, ]nq[01 ) for the Nd (~), Sm (L), and Gd (*) nuclei
and this for the %=86, 88, 90, and 92 nuclei (left-hand scale).
(b) Variation of the experimental charge radii [40] (in units
fm ) for the nuclei ' Nd (0), ' Sm (E) as a func-
tion of the d-boson number ground-state expectation value

(01 [ng~01+) (right-hand scale).

of nuclei for a given isotope and in the light of earlier EO
studies in the rare-earth region [38] indicating small val-

ues of p' compared with a', the p'N term might well be
neglected. Using now the summed Ml strength value as
taken from [17],except for the 1 Nd data point [18) and
the isotopic shifts from a review article by Otten 40], the
final results are drawn in Fig. 3. Thereby relation (34)
is corroborated to hold rather well for the transitional
and deformed Nd, Sm, and Dy nuclei. Approaching the
N = 82 closed shell, clear deviations from a straight line

I

01
0.0

1

O. 5

5( &r2&) (fm jN-1

appear signaling some deficiencies in the simple relation-
ship of Eq. (34).

C. The M3 sum rule

For the magnetic octupole transitions, the NEW sum
rule becomes

FIG. 3. Relation between the experimental summed M1
strength p& B (Ml; 01+ -+ 1&+j (E (4 MeV) [open symbols

f 142,146—150Nd (Q) 144,148—154Sm (Q) and 160,162Dy (P)]
and the variation in the quantity h (~ (r )) (fm ) which is

related to the isotopic shift b(r ) The d.ata on Ml strength
are taken from [17] with the exception for Nd where the
data point is obtained from [18]. Values for the radii are taken
from compilation by Otten [40].

) B(M3.0+ -+ 3+) =(n ) (0+, ](d d)( . (d d)~ ) ]0+) + (n„) (01](dtd)( ) (d d)( ) ]01)
f

+20 0 (0+](d d)( . (d d)( ) ]0+, ) (35)

In contrast to the Ml sum rule where nearly all
strength is contained within the lowest mixed-symmetry
1+ state, here some strength also shows up in the sym-
metric 3+ state belonging to the p band and in the mixed-
symmetric 3+ member of the 2+ band. Prom numer-
ical calculations, for the Nd, Sm, and Gd nuclei, one
6nds that the &agmentation becomes important only for
the strongly deformed nuclei Nd, Sm, and Gd.
Thereby, we can make use of microscopically determined
values for the O~ (p = ~, v) parameter in the M3 opera-
tor. The NEW sum rule is plotted in Fig. 4(a). We ob-
serve a deviating behavior for the Gd nuclei which might
well be due to the much lower value of 0 pointing to-
wards shell effects at Z = 64. For the other isotopes, the
systematics remains remarkably similar to those for the
NEW Ml sum rule. Nuclear deformation clearly is an
important factor for the M3 strength too.

The magnetic M3 strength has also been studied
within the shell model for medium-light nuclei [41] ob-

taining a larger &agmentation of M3 strength compared
to the Ml transition strength. Within the If/&2 model
space, a NEW sum rule has been calculated. For strongly
deformed nuclei, studies have been carried out within the
two-rotor model (TRM) and schematic random phase ap-
proximation (RPA) [42—44] and within the quasiparticle
phonon nuclear model [45]. From the TRM, one obtains
a strength which is proportional to the B(M1) also with
a b variation. This would suggest a very small strength,
except for the strongly deformed nuclei.

IV. ENERGY-WEIGHTED SUM RULES FOR Eo,
M1, AND M3 TRANSITIONS

For the energy-weighted (EW) sum rule, one has to
evaluate the right-hand side of Eq. (2) which involves
cornmutators of products of group generators, coupled
to a specific total angular momentum. The Hamiltonian
contains one- and two-body terms only, so one obtains
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(o) (b)

N
NZ

05—
P)
X
CQ

0
0 2 3

I I I

5 6 7 8

2—
(U

X
N
N Z

1

CQ
X

uJ

0
0 2 3 5 6 7 8

FIG. 4. (a) The NEW M3 sum rule for the Nd (0), Sm (E), and Gd (*)nuclei (86 & N & 92) using the IBM-2 Hamiltonian of
Scholten [33]. (b) The EW M3 sum rule for the Nd ( ), Sm (A), and Gd (*) nuclei (86 & N & 92) using the IBM-2 Hamitonian
of Scholten [33].

commutators of the following type:
- (o)

Ap(A), Bp (A'), Bp (A')

and
~ (o)

Ap(A) C'(A), Bp (A'), Bp (A') (36)

(A)
where one has p, p', p", p"' = vr, v; and A(A), B(A), and C(A) are operators of the type b& b~,

These nested commutators have to be worked out "gradually, " using properties of commutators of coupled operators,
listed in Appendix A and the basic commutator

K3

(a )=
»» (bk»+»)(2b»+1) (

—1)"' b' b „' b», », (b» b»),
(I S)

I)k +k, 1 2 3 $ bt bAlA4 A3 A2
3 2 1 K3

TABLE I. Frequently used commutators for the evaluation of the EW sum rules, following

Eq. (37). We use the notation T~ = (d(d) (p—:7r, v).
(A)

P

=0

PAP

- (I, )
T(kb Z(k~) —j I,

"' "3"'
( I)ks ( I)k»+k~ 7("~)$»

p ) pl 222 P PP

(2)
- (&l)

(s d), T, ' = (—I)"' ~ (s d) 6 „,b
P

(k )
(kl)

(2) 2
- (k)

(2)- (&)

(dt )
(2)

(dt )
(~)

(dtd, '"' T(k» =~,~, (—I)k+" +' ' ' ' (d'd, )' ',-, (I,) kg k2 k3 — (k, ) PAP
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A number of &equently used commutators, derived in
this way, are now listed in Table I.

Combining all of these results, one Gnally gives the im-

portant double commutators that are needed to evaluate
the EO, M1, and M3 EW sum rules

Q . Q„,T(SA), T(SA)

and

(40)

- (o)

ng, , T(SA), T(SA) = 0 (38)
M „,T(SA), T(SA) (41)

Q~ Qp, T(SA), T(SA) A. SO sum rule

= (st,") qs ()s, (dtd), (dtd), (00)
~ e

For the EW EO sum rule, we obtain, using the general
relations (38)—(41)

y (2)) B(EO;Ot+ t 04+)E, (04+) = —) ) ss ss (0ts~~n'4 (std+dts
~

()s
pf p=&,v p~=~, v

2 ( i (2) „ ( (2) ( (2)
std + dts

) Qp + 2n' n',
(
std —dts

(

std —dls (0

- (2) (g) - (2)
+—(n' —n') (0+t~ (std) (dts) + (std) . (dts) (Ot+) (42)

The Majorana contribution is only present within the isovector channel of the EO operator (n' —a'„g 0).
In the F-spin invariant limit (with e = e „="z" ——K, (; = 1 for i = 1, 2, 3), the EW sum rule becomes

) B(EO;Oi m 0~)E (Of ) =
f

) . & . (ns + ns )'(ol( ("d) ("d
i

+ (d") (d")', 'i0+)
p=n', v p =m, v

+
I

———
i
(n- —n )'

(os'�

(std) (d"). + (stdl (d"). igt )

——(04(( n' (s d+ d 4) +n'„(s d+d s) ( ( y„(d d) +y„(d d) ((04),

where a separation into an isoscalar and isovector contribution becomes clear. For the latter, the expectation value
involves an operator that replaces a vr(a)d boson by a v(s)d boson and vice versa. For the former, the s d exchange
keeps the balance equal for x and v bosons.

B. M1 sum rule

The EW magnetic dipole sum rule has been worked out already within the nulcear shell model, properly [22, 23] as
well as in the IBM-2 [13, 14, 24, 25]. In the present paper, we start &om the more general results, described earlier,
and stress a few aspects that have only been very brieBy addressed in the former papers.

The general expression for the EW sum rule, after filling out all coefficients, reduces to a rather simple and
transparent expression, e.g. ,

) B(M1;0+, -+ lf)E (1&+) = —d(: „(g —g„) (0+, ~Q
. Q ~0+, )

f

+—(g —g )'4((s(gt((std) (dts) + (std) (d s) )Ot+)

+ (t(gts( (dtd) . (dtd) (Ot+) + ( 0(t + ggs) (0+t( (dtd) (dtd) (0+t)

+2(s(ot+~ (d'd) . (d'd) ~ot+)+ —(4dt+(s) (0+~ (d'd) (d'd) ~ots)) (44)

which for the common choice of the Majorana parameters (z ——(2 ——$z
——1, i.e., an E-spin invariant Majorana

interaction, reduces to
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) B(M1;Oi m ly)E (1I ) = tc (g —g ) (Oi ~Q Q ~oi )
f

+—(g —g )' A (0+) (eid) (dte) + (etd) (dte) ~0+)

+) (0;I (d'd
I (d'd) lgr')I (45)

2
&(g- —g-)' ~ "(oi lndloi)+& (46)

with

The erst term on the right-hand side follows from the
contribution of the quadrupole interaction and is pro-
portional to the expectation value of the proton-neutron
quadrupole force in the ground state [22]. The latter is
a measure of the quadrupole deformation energy which
can also be related to the corresponding binding energy
in a quadrupole deformed mean field such as the Nilsson
model [23]. This close relationship with nuclear deforma-
tion has become clear from recent experimental studies
[16—18] and a theoretical approach, evaluating the behav-
ior of nuclear deformation and magnetic dipole strength
versus the P factor [21].

A reamining contribution is coming &om the Majorana
interaction. This contribution can amount up to 50'%%uo

of the EW Ml sum rule as obtained numerically for the
Sm, Gd, and Nd nuclei. For the F-spin invariant form
of the Majorana force, however, we can rewrite (45) as
follows, making use of expressions (6), (18), and the fact
that (oi ~M~~)Oi ) = 0 for an F = F „ground state:

Using (44), (45), and (49), we finally obtain the result

) B(M1;Oi+ sly+-)E (1y+)

f

4' ~-(g- -g-)'(oi IQ- 0-loi)

+—A (g —g„) N (0+, ~ng[0+, ) (5o)

or, alternatively,

) B(MI; Or+ t Iya) (E,(lya) —AN)
f

.„(g.—g.)'(0,+lQ. Q. lo,') . (51)

) B( IM; +Ore lya) (E (Iy+) —AN)
f

This result is particularly interesting since for an F-spin
invariant form of the Majorana term, the right-hand side
can be worked out inserting an intermediate set of 2+
states and resulting into [13, 14]

9R= —A(g —g )4m'

k(k+ 1)O' ) ~

' + ' —1 ~T("l —6i'('l O+
1 ~

~ 6 ~
tyv ygv 1

A:=1

{47)

= c) B(E2;O+ ~2+,), (52)
f

where T(E2) = e,e (I) + Q„), an ieoecaiar operator,

T=dd'dd f 9 2& 1V„')
e,ir=~ r. (g ———g) "~ eb

4vr ¹

Making use of the recoupling formula (15) and the prop-

erty ( , OrFF~ (dtd) (did) ~

+ grFF)=
0 for k odd, one obtains

R= ——(g —g ) A{pre) (drd) (drd) ~0~+),

(48)

B= ——(g —g„) A(oi+[I . I ]0, )

Expression (49) is exactly the NEW Ml sum rule (29)
and hence, in the E-spin invariant limit, reduces to (14)
or

and c, a conversion factor )M2N MeV/(eb) to correct for
the dimension mismatch.

We have illustrated this relationship numerically in
Fig. 5 for the Sm, Gd, and Nd nuclei. The efI'ective
charge deduced &om a least-squares Gt to a linear re-
lationship is e g ——0.103. On the same figure, we also
plotted the relation of the NEW B(E2) sum rule and the
EW Ml sum rule. The linearity is maintained, however,
one needs to use a renormalization of the effective charge

(~)e g = 0.155 eel (@ ~N) .

B = —(g —g ) (0+]n„]0+) (49)
C. M3 sum rule

For the M3 transitions, the EW sum rule reads
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( ) t -) (2)
$

-) (2)) B(M8;9,+ -e 8h)R (8h) = — " "
i

889q . (d d) X +489X.' (d'd, l

f

+100' dtd . d~d

0
( )

( ) 49q q 105 (
l 6~ 16vr ( (0 —0„)

(Q Q ) E 98 V

—199 " ",x.x. (d'd) (d'd)

+ 14e (B. —B.)'
~ (ehd) (dhe)"'+ (ehd) (de).' '

1

16m. V

49 2 t'] t- (1) t- i~) ll
4-—x(B —B ) ~

—
4,, (d d) (d d) + —

(
—84h + 84'e)

dtd dtd + —3 dtd . d~d

3 t -) (4) t -) (4) &

+—(4eee+4'e) (d d
i

. (d d
i i

+R

)
tn

X
PV z

4

X
Kl

with

49 (~) r t (~)
R = —X (—2B B ) l

—(4e —(e) (d d) l

d d)4x (2 v

1 () t ()
+—(94'h —17$e) (dhd) . (dhd)

t - (3) t
- (3)

+—(8$h —8eee) (d d) (d d)

(55)

Note the similarities with the M1 EW sum rule for the
leading terms of the quadrupole proton-neutron force and
the Majorana contribution. Still, for multipolarity A = 3,
many additional terms come in, especially the like nu-
cleon quadrupole force seems to give an important con-
tribution.

Results for the EW M3 sum rule in the rare-earth re-
gion are given in Fig. 4(b).

V. SUM RULES FOR THE E2 OPERATOR

0
50 100

I I

150 200
P 8 t E 2) f(e2 b2)

I

250 300

A. Non-energy-weighted E2 sum rule

The NEW E2 sum rule can be derived as

FIG. 5. Illustration of the EW M1 sum rule relationship
starting from the IBM-2 calculations of B(E2;08+ —9 21+) and
B(MI; 01 -+ 11 ) reduced transition probabilities for the Nd

( ), Sm (D), and Gd (8) nuclei, as discussed in the text.
The 6t, incorporating the Majorana term and the energy-
weighting with E (1& ) —ANh is given by the dashed line.
The fith using E (1f ) only, also results in an almost linear
relationship (full line) but now with a larger (renormalized)
effective charge of e g 0.16 eb.

) a(Z2;0+ ~2f+)
f

= (oe ~ (e.q„ + e.q„) (e.q„ 4- e.q.) ~oe )

= .'«, Iq- Q-lo,')+ .'&o, IQ- Q-Io', )
+.2e e„(0~ IQ . Q„IO+~) (56)

For e = e = e, one can insert an intermediate set of
states and, applying Eq. (18), assuming further that all
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isoscalar E2 strength is carried by the totally symmetric
boson states (F = F „) Hence, one obtains

2

) B(E2;Oi —+ 2~) = e (Oi IQ . Q Ioi )

(57)

which establishes the relationship of the summed
isoscalar E2 strength (mainly carried by the lowes 2i
state) with the expectation value of the proton-neutron
quadrupole force in the ground state and hence, with nu-
clear deformation (see also Sec. IV B).

B. Energy-weighted E2 sum rule

The EW E2 sum rule for E2 transition involves more
elaborate calculations, due to the complex form of the E2

I

operator. In principle, the method is the same, making
use of the results in Appendix A and Table I.

From numerical calculations for the Nd, Sm, and Gd
nuclei, using a realistic Hamiltonian [33j and values for
the effective charge e = e = 0.1 eb for simplicity, re-
spectively, e = 0.128 eb, e„= 0.057 eb [46, 47], it be-
comes clear that the strength is carried mainly by the
lowest 2~ state, which has the component F = F „ for

98%, and hence one would not expect the Majorana
contribution to be important. Therefore, we leave the
latter out at this stage and include its calculation in Ap-
pendix 8 for reasons of completeness.

For the Hamiltonian, including the d-boson number
operators and the quadrupole interaction, we obtain the
result

) B(E2;0+, m 2~)E (2y) = 5 e eg (0,+I%~ —
gsng Io,+)

f
+5 e'„e,„(0+, lx. —-', ng Io+) + .'~..(

—4+ y'. ) (o+, IQ. Q. lo+, )

- (2)+«.'~.-x- I

1 —-x.'
I (oi I

d'd Q-loi )7 )

+«.'e.. I

&+-X'.
I (Oel(d'd) ('d) IOi)

(3)
+

I

~ —-x'.
I (o'1(d'd) (d'd) io')

(2)
+e I(; (

—4+ y„) (Oi IQ Q Io+i) + 6e r„y„
I

1 ——y„ I (Oi
I I

dtd Q„loi )7 ) ( v

2

ide„e„„
I

1 i —X I (O~ I (dtd) . (did) IOf))

+
I

i —-', *„
I

(o", 1(d d)'
'

(d d)
' '

lo,')

+," .'(—4+x.')+ .'(-4+x'. ) (0;IQ- Q-Io', )

- (2)
+oe. „e'.

I

z ——x'.
I
x (o,+1(dtd q„lo,+)

+e'.
I

~ —-x'.
I x.(oe

I
(d'd) Q. llo, )

+«.„e. „
I

z+ —„.'
l

l
x+ -x'„1(o+, 1(d'd) (d'd) lo, )

( ] ) ~ t
— (i) t

— (i)

+I z —-x'.
l

l

s —-x'„1(o,+I («d) (d'd) lo, )
4 2l ( 4 2') + t- (2) t — (2)

For an F-spin invariant Hamiltonian, with eg = eg = e&g, y = y = y, r, = K,„=v j2 = Kj2, this simplifies

into the following form:
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) B(E2;0~ ~ 2&)E (2&) = eg (e N + e„N„j ~

5 ——(0~ ]ng[0~ ) ~

+—(—4+x') (o,+I I'e'Q +e'.Q-) . (Q-+Q-) I»+)

4-Be
I

4 ——x I x(0~+I
I

e (d~d) +e„(d4dl I

. (Q +Q
I

Ioe+)

2 - (s) (s)
+

I/

4 ——x
I

(0+,
I/ I/

e„(d4d
I/

4- e (d~d
I/ I /0,+) (59)

For an isoscalar E2 operator with e = e„=e, this results even more with, as the final result,

) B(E2;0& -+ 2&)E (2&+) = e &AN
~

5 ——(0& ~ng~0+z)
~

+—(—4+x') (0+I (Q +Q.) (0-+Q-,lllo')

+oe
I

4 —~x'
I x(o;I I (4'4) + (d'4) I

I~Q. + Q.
I

loee)

- ()) - (~)

2 ) (, E v )

+
I

4 ——x I
(0+,

I I (d~d) + (d4d) I
lo+) I) (60)

Note that besides the dependence on terms related to
the quadrupole interaction, the d-boson number operator
also gives rise to a contribution here.

It is interesting to compare the present EW E2 sum-
rule expressions and results with some general results
derived on sum rules. A very general expression was
originally discussed by Lane [48] where for isoscalar E2
transtions [M(E2, )(d) = P,. r2Y2" (r";)] a result

A

) B
i
E2, 0+ m 2y) —0+ ) r 0+i (61)

f =1

) a (zo 0+ ~ oe) - —0+ ) .,* 0+)
f i=1

(62)

quite similar to the original Lane sum rule. Now, the
sum rule depends on the number of protons Z contribut-
ing to the motion of the charged system only, multiplied
with a radial average of the protons in the ground state.
For a charged liquid drop where the mass fiow is de-
scribed by irrotational motion, this classical sum rule
(62) is exhausted by a single mode of the surface oscilla-

(with A the total nucleon number and M the nu-

cleon mass) was derived. The results expresses a
clear dependence on the number of contributing nu-
cleons multiplied with a measure of nuclear deforma-
tion in the ground state. A similar, classical sum
rule was discussed for the electric E2 "multipole op-
erator" (M(E2, p) = e P,. (2 —t (i)) rx, Y2 (r";)) by Bohr
and Mottelson [49] giving as the result

I

tion. In more practical cases, however, the mass trans-
port can be strongly different from irrotational motion
and B(irrot)/B 1/10 indicating that about 10% of the
classical sum rule (62) is obtained.

The IBM-2, using the constraint of only treating va-
lence nucleons outside of the closed shells (inert core),
presents the result that the EW E2 sum rule becomes
proportional to the number of valence pairs N (—:N +
N„). Because of the general Hamiltonians used, expres-
sions (58)—(60) do not look so transparent. In Sec. VI,
for dynamical symmetries of the IBM-2, this EW E2 sum
rule can be evaluated in detail thereby accentuating this
particular boson number dependence. There too, it is
shown that the EW E2 sum rule is largely exhausted by
the 2&+ level, with contributions from 2M in the SU(3)
and O(6) limit, only if e g e„. So, the ratio of the IBM-
2 EW E2 sum rule to the EW E2 sum rules derived
by Lane [48] and for the electric multipole moments [49]
reads N + N /A and N + N /Z, respectively, where
N + N„denotes the number of valence nucleon pairs,
A the total number of nucleons, and Z the total num-
ber of protons. These ratios clearly exhibit the "valence
model" properties of the IBM-2 model. A precise eval-
uation of this ratio, using 64 Gdg2 as an example, with
a boson efFective charge of e = e„= 0.12 eb, N = 12
bosons, using eg = 1 MeV and the main term in Eq. (60)
compared to the value, given by Bohr and Mottelson
for the classical E2 sum rule [Ref. [49], Eq. (6.177)] [us-
ing (r2)~, o „, ——s(1.2A ~ ) fm2], gives the result EW
E2(IBM-2)/EW E2(BM) 10%. Since it is known that
low-lying collective E2 transitions exhaust about 10% of
the EW classical sum rule, it is shown that the collective
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E2 strength within the IBM-2, properly is of the correct
order of magnitude for a valence model space.

In evaluating the EW and NEW E2 sum rules ex-
plictly one needs to obtain good estimates for the effec-
tive charges. The charges as used here e (e ) denote the
boson model proton (neutron) charges which can deviate
numerically quite well from the corresponding fermion
charges.

Within the nuclear shell model, effective charges for
the proton

) B (Ml; Oee m lie) E, (ll+
~

= 0 (66)

For the E2 EW sum rule, the more general expression
(38) only gives contributions coming from the first part
in the single-boson contribution with the result

The EW Ml sum rule [using Eq. (50)] also becomes zero
as well as the contribution originating from the Majorana
term since that term also becomes proportional to (ng).
We thus obtain

( Z)e„'~=
(
1+ —/e~r

eff Z
e„' = —e

(63)
) B (E2;0~+ -+ 2l ) E (2l) = Bee (e N + eN), ,
f

(67)

can be defined taking polarization of the quadrupole dis-
tortions of the nucleus (Z, A) into account [49]. General
used values are e„' 1.5e, e„' 0.5e.

In the IBM-2, bosons are the basic building blocks and
efFective boson properties (effective charges, gyromag-
netic factors, etc.) have been determined by a mapping
procedure. The OAI mapping [50] starts from equat-
ing corresponding E2 matrix elements for the boson and
fermion model space. A rather general outcome gives the
result (in magnitude) e = e = 0.1 eb (dimension eb).
More detailed studies also give the local variations of e
and e in a given mass region [51, 52] where, in general
the proton boson effective is somewhat larger than the
neutron boson effective charge. More recently, a slightly
different point of view on effective boson charges was pre-
sented by Casten et aL [53, 54]. Here, efFective boson
charges are defined as a rate of change in the collective E2
matrix element with changing proton boson number (e )
or with changing neutron boson number (e ). Thereby,
a detailed derivation of e —e„was carried out for the
42 & Z & 98 nuclei [54].

VI. REDUCTION OF RULES IN THE LIMIT
OF U(5), SU(3), AND O(B) DYNAMICAL

SY'MMETRIES

In the earlier sections, we have taken into account
in the evaluation of both the NEW and EW sum rules
rather general IBM-2 Hamiltonians. Reducing those for
the particular choice of dynamical symmetries, the more
complicated expressions should reduce to some better
known expression derived before by Van Isacker et al.
[27].

Starting from the B(E2;0+i —i 2i+) and B(E2;0+i m
2+M )

expressions, as derived by Van Isacker et al [27], .and the
corresponding energy eigenvalues (neglecting the Majo-
rana part for the 2M state) for these 2i and 2M states,
it is easily observed that this EW E2 sum rule indeed
holds.

B. The SU (3) limit

Here, we start from the simplified SU(3) IBM-2 Hamil-
tonian:

0= " + . + . +AM

3Kmv ~(2) 3&vrv ~(2)
SU(3) g2 SO(3) (68)

with the corresponding eigenvalues

E = "
(A + p + Ap+ 3(A+ p))—
(x 5 (x

+~
~

—-Z
~ ~

—+F+1
~

r (2

16
" L(L+1)

(69)

=N 2N+3

4 N(% —1)
(70)

since we shall also evaluate the EW sum rules. In Table
II we just give a few energy eigenvalues needed in that
respect. We also give the expectation values in the SU(3)
ground state

A. The U(5) limit

In the U(5) limit, the IBM-2 Hamiltonian is taken to
be

TABLE II. Energy eigenvalues for the 0~, 1M, 2~, and
levels in the exact SU(3) limit, corresponding to the

Hamiltonian of Eq. (68).

0 = «n„+&M

) B( 1M; , 0~+1+)e=0 (65)

Since no d bosons are present in the exact U(5) ground
state, the NEW sum rule reduces trivially to 0, or

State
0+

1
2+

1

M

Energy eigenvalue
20 „N(N+ -)

N, „(—N)+AN
r (N —B)+AN
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Substitution of the expectation value of (n~) in Ginoc-
chio's NEW Ml sum rule of Eq. (20) leads to the result

) B (Ml;0+1 -e 1+eI = B (Ml;0+1 -e 1+~)
f

3 2 8NN„
4~

" 2N —1

with

s r „(4N2+4N —3) —AN

I~ ~ „(4N2+ N) —AN

(72)

(73)

(71)

which is the value derived by Van Isacker et al. [27].
Starting now from the results given in Eqs. (70) and the
energy eigenvalues given in Table II, one can deduce from
the EW Ml sum rule of Eq. (50) the Ml strength

For Z = 1, this would be identical with the result of
Eq. (71). The deviation can be explained by the fact
that in deriving Eq. (50), we assumed that besides hav-
ing good F spin, the i2&+) states also had maximal F
spin which is clearly not the case (i.e., the i2~) state).
Without this constraint the EW Ml would have become

) B (Ml;01+ e 11+) = —(g —g )
—e (q q ) +, (0«)

f
(74)

N N„(4N+1)
2N —1

(75)

The (Q Q„) matrix element can be evaluated in the
SU(3) limit by summing over the intermediate 2i and 2~
states. The corresponding reduced E2 matrix elements

(Oi iiQ~ii2i ) and (Oi ] Q~i]2~) have been evaluated by
Van Isacker et al. [27 . Thereby the expectation value

(Q Q„) becomes

Substitution of this expectation value (75) in the sum
rule of Eq. (74) leads to the result that Z = 1.

We have studied the dependence of Z (using K „=
0.08 MeV and A = 0.15 MeV) in Fig. 6 and indeed, Z 1
is a rather good approximation. The deviation becomes
largest for N=3 but is never larger than 10%.

Concerning the E2 sum rule (EW) and using the SU(3)

values y = + 2, y„= + 2 with no single-boson

terms, the sum rule of Eq. (59) reduces into

) B
i
B2; 0+ w 2+ B, (21+) =

f

«(0,+1 (q„+q„'iI I q +q.
I

)0+, )+ —e„.

x(gi i (e„I +e„L ) . (e L„+e„L) ig&) (76)

The second term on the right-hand side (rhs) can be simplified using Ginocchio s Ml sum rule [34] with, as a final
result,

) B E + + +
i

s ~M Fgg ~ 2« ")
) N

x(gi((q„-lq„) (q. +q„)(0e)1 e (e —e„) &B (0«) (77)

This result is an EW E2 sum rule for the SU(3) limit
in which the Majorana force term is not taken into ac-
count. A substitution of the energy eigenvalues (Table II)
without the Majorana part and the expectation values of
Eqs. (70) leads to the results

B (E2;0+i ~ 2iir) = (e —e„) N N„
N(2N —1)

(79)

B (Z2; 0+ ~ 2+) = (..N. + e„N„)'
N (78)

which are identical to the results of Van Isacker et al.
[27].
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C. The O(6) limit

Here, the nd d-boson number expectation value has
been derived in the O(6) limit with, as a result [27, 28],

1.12

1.10-
00

(8o)

and so, the NEW Ml sum rule of Eq. (20) becomes

B (Ml;0+, m 1M) = —(g —g„)

D. Same general sum-rule relations

(81)

1.02-

00 oi
0 2 8 10 12 14

BOSON NUMBER N~

By neglecting the rest term in the EW M3 sum rule B
[see Eq. 54], this EW M3 sum rule is mainly determined

through the quadrupole-quadrupole Q Q„ term and the
boson number contributions coming from the Majorana
term. The final result becomes

FIG. 6. The Z factor of Eq. (73) indicating the deviation
of the B(M1;0,+ m 1M) value from the exact SU(3) limit
result and this as a function of boson number N.

) B (M3 0,+ m 3&) E, (3&) (ll —B„) —e (0~+~Q „Q ~0, )+1 (X (0,+~ne ~0~+) +N„(0+~0 ~g+e))

f

(82)

Using the same type of approximation in the Ml EW sum rule, one obtains the approximate result

) B (Ml; 0~+ e ll+) E, (ll+) —(g —g„)
f

—K-(0'IQ- 0- I0')+& (N- {0'In~. I0') + N- {o'ln .I

o') )

(83)

and so, one obtains the interesting ratio

Qf B(M1)E(lf)(6(g —g)
Qf B(M3)E (3f+) (7(& —& ))

In Sec. IVB, we have already pointed out the important and close relationship between the EW Ml sum rule and
the NEW E2 sum rule and this particular relation was illustrated in Fig. 5.

In neglecting the rest term R in the Ml EW sum rule and putting e = e = e,g also with (g —g„) = 1pN,
one derives the rather interesting Ml-E2 relationship:

) B (E20~ -+ 2&, e = e„=ee) = —(8 —2 —3„)) B (M10~+ -+ 1&+) E (I&+)
eR' f f

+ed (5N —6{0i Ing[0i )) + —
(
—8+ y + y )

x (N {0+In lo+) +N„{0+In/ lo+)) (85)

VII. CONCLUSION

In the present work, we have derived both the non-
energy-weighted (NEW) and the linear energy-weighted
(EW) sum rules within the framework of the proton-
neutron interacting boson model (IBM-2) and this, for
the electric monopole and quadrupole as well as for the
magnetic dipole and octupole transitions. In all cases,
we have taken a rather general IBM-2 Hamiltonian and
treated, in particular, the efFects originating &om the
Majorana operator which are of importance in the study
of the mixed-symmetry states.

The Ml NEW sum rule has been studied before by

I

Ginocchio [34], however, with the constraint to good I"
spin. Here, we extend to calculations in the more general
case and point out that the NEW Ml strength is pro-
portional to a very good degree (as tested numerically in
transitional and deformed Nd, Sm, Gd nuclei) with the d-

boson number ground-state expectation value. Thereby
we show that an intimate relation exists between the
NEW Ml summed strength and the nuclear monopole
properties (nuclear isotopic shifts with application to the
Nd, Sm, and Gd nuclei). A number of rather general
results are discussed relating to the NEW Ml sum rule,
too.
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The EW sum rules involve the evaluation of double
commutators and some of the technical points needed to
arrive at the most concise, final results are amply dis-
cussed and elaborated on in Appendices A and B. Here,
we discuss in particular the EW Ml sum rule for which
we present a relation to the NEW E2 sum rule, even
including the Majorna term. Even though the efFect of
the latter term is non-negligible, it is shown that the ef-
fect can be incorporated into the renormalization of the
electric boson charge thereby keeping the almost linear
relationship between the EW Ml sum rule and the NEW
E2 sum rule.

We discuss the evaluation of the E2 sum rules in a sep-
arate section, because of the more complicated nature of
this operator, compared to the EO, Ml, and M3 opera-
tors. Finally, we show that by choosing particularly sim-
ple IBM-2 Hamiltonians, i.e. , taking U(5), SU(3), and
O(6) dynamical symmetry situations, the more general
results, derived in Secs. III—V, reduce to very simple re-
sults concerning both the EW and NEW sum rules which
now contain just a few contributions and can be evalu-
ated fully analytically. We also indicate a relationship
between the EW M 1 and M3 sum rules.
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APPENDIX A

The calculations of the basic three terms originating
from the IBM-2 Hamiltonian [Eq. (3)] and contributing,
in general, to the energy-weighted (EW) sum rule for
the EO, Ml, and M3 operators, i.e., the Qp . Qp (p =
vr, v), Q Q„, and the Majorana M „ terms turns down
to the evaluation of the double commutators

q~ q~ I
~'d)

I
d'&) (A1)

q. .q. , (d)l)
'"',

(d)I)
' '

dtd dtd

(A2)

(A3)

motivation to study sum rules in a broader context. They
are indebted to R. F. Casten, S. Kuyacak, O. Scholten,
J. Wood, L. Zamick, W. Ziegler, H. Wortche, and W.
Nazarewicz at various stages of this study. The authors
wish to thank the NFWO and IIKW for financial support
which made this research possible. This work was also
supported by a NATO Research Grant No. CRG92/0011.

The authors are grateful to A. Richter for many stim-
ulating discussions in the early phases and for the extra

I

We have to make use of the following important, general
results:

(A.)- (A:)

T(") T',"' dtd
p pl ()

+ (-1)" T("), (dtd 8T(,")
2k+1 i

P '
E pL

( (~) "'i ) ( ))L+L f (L)
LL

f() (g)g)'
L

II
(A4)

Calling now

g- (i)
X, bpp —— T, , dd"(&) "(&) f

II (A5)

the more complicated commutator

- (o)

T T, , d d
W

(A6)

reduces into the result

) ( 1)", ( 1)"+ +"2L+ 1 (A)

L
2k+- 1 II I II

(o)
-(w)it3T IP

- (i)
Xp 8 Tp, , id dp p' „, PP PP

( ( (a). ( )

L( )) +I
( )) L+L+ f'( Ll(g)Ag AL)g'(L)

III p

— (~) '"'
T,(") g X(", dtd

)
/pl pll /pl pill (A7)
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We now give a number of detailed, intermediate results needed to calculate the EW sum rule for the EO, M1, and
M3 operators.

First, the result for (A6) [or (A7)j for the quadrupole operator Q~ . Q~ becomes

2

= ) (
—1)"+

Q, (did), (did)
L

)
(o)

(8) Q

(L)
+2 Q, (d'd) 45 Q, (d»d)

(. (2) (o)

+ (
—1)"+

Q 45 Q, (did), (did) (A8)

Starting from the explicit value of the double commutator

Q, (d.' )d, (d'd) = 5»» ('d+ dss)

2

+»s(22+ 1)»(5(2I + 1) ( 2( —1)» ((—1)ss» —1) (did)

the total contribution for the first and third terms on the rhs of Eq. (A8) becomes

2(-1)"„v2&+1
&

-
&

(2) „(1 ), 222
5

8td+ dts + 4g, 2A+ |—] "
A22

(A9)

(A10)

We have made use of the following equality in obtaining the second term of (A10), i.e. ,

) (2I 1) (1 —
(
—1) +")

( )
= ——

(
—1)» („) (All)

The second term on the rhs of Eq. (A8) leads to the result (using similar methods)

2 ((—1) sld —dls) ((—1)"sld —dls)

+4»I22+ 1» ( ) (1 —
(
—1)") ((—1)"sld —dls) (did)

2

+20»I22+ 12 ) (
—1) ( (1 —

(
—1) +

) (dtd) (dtd)
L

(A12)

For the contribution from the Q Q term from the IBM-2 Hamiltonian to the EW EO, Ml, M3 sum rule one
needs to evaluate the double commutator

Q Q„,A" (did) + A," (did), A" (did)
(p) (0)

dtd

= (A ) Q Q, (did), (did)
R

(~) p
- (o)

+( = )+A'. A„" Q. (Q')' d'd, (d'd)'
'

R

(A13)

We now evaluate the terms in (A") and in A A, respectively, with the following results.

(1) (A") term:

(2)
(
—1)»I22 + I —(»id + dl + 2X.

I

——
(
—1)"(2 2 2) I (d'd) Q. (A14)
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(2) A" A„" term:

/24+ 1 q
- t (2) ( q

- (2)(-1)"std —dts
i
(-1)"std —dts

5 7r

tt'22 t. 1 (1 ( 1) \

I I (dtd) (std +dts)

-2.422+2 (1 —(—1)")( I (std+dts) (dtd)

2
( - (L) - (L)

+102 2 422+1 ) (—1) l
1 —(—2)"+s (dtd) (dtd)

The contribution, coming kom the Majorana term, to the double commutator gives the terms

(A15)

M „,A" dtd + A„dtd, A~ dt

= (A"„) M , (dtd) , (dtd)
(~) (z). (')

+ (s = s) + A"A„" M„„(dtd) , (dtd) + (s = s)

(A16)

Since the Majorana term in the expansion given in
Eq. (5), contains terms with various structure, i.e., the

A, ns term (term I), the quadrupole (std)(2) (dts)(2) term

(term II) and the sum over multipoles (dtd)(~) (dtd)(~)
(term III), we give the following separate contributions.

(1) (A") term: (a) Term I,
x dtd"' dtd'" (A23)

I

(c) Term III,

2(—1)"s'22+1) B(L) {

——(—1)"s
I 122 j {

vanishing contribution.

(b) Term II,

-Ls(-1)', { ("") (d").

std . dts

(A17)

(A18)

Combining these various contributions, originating
from the EW and thus &om the double commutator eval-
uation, the various EO, M1, and M3 EW expressions,
discussed in Sec. IV can be derived in a straightforward
wag.

APPENDIX 8
(c) Term III,

2(—1) s s+222) B(L) {

——(—1)"s

~ dtd"' dtd"', A19

with

For the E2 operator, the results derived from the
single-boson and the quadrupole K Q Q + r„„Q
Q„+r „Q Q„ IBM-2 terms, are given in Eqs. (58)—(60).

Here, we discuss the contribution from the Majorana
term to the E2 EVV sum rule. First of all, we start from
the general expression

T(E2)=e Q +e Q

B{L)=) (—2(s)(20+1) I220)
k=1,3

(2) A"A„" term: (a) Term I,

vanishing contribution.

(A20)

(A21)

and evaluate

- (o)
H, T(E2),T(E2)

This becomes, written out in some more detail,

(B2)

(b) Term II

Ls(—1)"
{ (std) (dts)"

e H, Q, Q +(2r = v)+2e e„ H, Q, Q-

() t () These two speci6c contributions lead to the expression
(for p = 2L, Ld)
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and

H, Qp, Qp
R

()
H, 'd+ dt, std+ dts

P P
R (o)

+ H, dtd, dts + std
P P

(o}
std + dt dtd

P P

dtd, dtd (B4)

- (o)

H, Q, Q
, - (o)

+ H, std +dts, dtd

H, dd, dd gK gV

(2) — (2)
H, td+ dt td+ dt

C

(2) (2) '"
+ H, dtd, std+dts X„+

S

(B5)

—5(, m„~ ~.— n„-
5

(B6)

(b) Contribution in 2e e

(B7)

Again, calling the various types of terms in the Majo-
rana force (see Appendix A), term I, term II, and term
III, respectively, we have the following various separate
contributions.

(1) Term I, n, n, ; (a) Contribution in e (similar for
e„with vr —v)

(similar ior e2 with 7r —v)

(s'd) (shd) + (dhs)' ' (d' s)' '

—
~

8+ —g'
i i (shd) (dhs)

) ~

+ (dhs) (s'd)

+y dtd std+ dt, (B8)

(2) Term II, quadrupole term: (a) Contribution in e2

I

(b) Contribution in 2e e„

52
I

—5 (N —lls ) (N —lid ) + ((N —lid ) lid + (N lld ) l14 )

" ((std) (dts) + (std) (dhs)
~

— ) (dkd) (dtd) (B9)

(3) Term III, multipole sum: (1) Contribution in e2 (similar for e2 with x = v)

2 1 (2) t (2)
—(84l + 75's) (N —ns ) ns + —y (55l —85's) (s d+ d s) (d d)

+ ) B(L) ——ht'
~

—
(
—1) ht5 ( ) ~

(dtd) (dhd)
L

(b) Contribution in 2e„e„

(B10)

(85l + 14$s)
~ ( td) . (dt ) + (dt )

.
( td)

j f t
—

t (2)
t

— (2) t —
t (2) t — (2) )——(—5(l + 8(s)

~ ht„(s d+d s) (d d) + y (s d+ d ) (d d)

221 222

2
y~y~) (). ——

22L +(—1) 6& 22L
122 )

223 222
+(& —

L + (
—1)~14 ( 2 2 L ~

,"', )-
x dtd . dtd (B11)
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