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Fine structure of cluster decays
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Within the one level R-matrix approach, expressions are derived for the hindrance factors of
cluster radioactive decays in which a particles or other light nuclei are emitted. The interior wave
functions are supposed to be given by the shell model with efFective residual interactions [e.g. , the
large scale shell model code OXBASH in the Michigan State University version for nearly spherical
nuclei, or the enlarged superfiuid model (ESM) recently proposed for deformed nuclei]. The exterior
wave functions are calculated from a cluster-nucleus double-folding model potential obtained with
the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases
of n decay of Am and Cm, C decay of Ra, and Si decay of Cm. Good agreement
with the experimental data is obtained.

PACS number(s): 21.60.Cs, 23.60.+e, 23.70.+j, 21.10.Jx

I. INTRODUCTION

Recently Hourani and co-workers [1] experimentally
discovered the fine structure of the C radioactivity
[2—5]. The theoretical studies of alpha [9] (see also the
review papers [6—8] and the references therein) and heavy
cluster (e.g. , C) decay (see review papers [10—12, 5] and
references therein) have very much in common. The the-
oretical models of heavy cluster decay are based, essen-
tially, on Gamov's theory [13] which was the first success
of quantum mechanics when applied to the Q.-decay phe-
nomenon. The differences in approaches are related to
the way of calculating the potential barrier defined by the
(nuclear plus Coulomb) interaction potential acting be-
tween the emitted cluster and the residual nucleus. The
decay energy always is taken to be equal to the experi-
mental energy release of the decay [14]. All these theoret-
ical treatments fit to a law for favored cluster transitions,
analogous to the Geiger-Nuttal [15] law for favored n
decay, which emerges directly from the simplest JWKB
expression of the penetrability determined by the square
well plus Coulomb interaction potential.

The unfavored transitions do not follow the Geiger-
Nuttal law, because of the large variations of the reduced
widths [6—8, 20] which have a key role in the understand-
ing of the decay process and require a precise knowledge
of the structures of the initial and final quantum states.
From such transitions we can learn much about the struc-
ture of atomic nuclei. In describing these transitions al-
rnost all the nowadays nuclear models fail, and it does
not matter whether they are models for the structure of
nuclear states or reaction mechanisms, or whether they
are specific models, for the decay mechanism [6, 7, 23, 21,
22, 11,5, 12].
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The theoretical study of 0, decay has provided a basic
test for our understanding of several fundamental quan-
turn phenomena, such as tunneling through the potential
barrier, the clusterization process [16, 17], and weak in-
teraction models [18, 19]. However, in spite of the eKort
invested, a detailed description of the o. particle emission
is not yet available.

By contrast to the case of the p or P decay, where
the changes in the nuclear structure are small and may
be treated within perturbation theory, o. decay repre-
sents the simplest case of a series including phenomena
like the heavy cluster decays [2, 4, 5] or fission, when the
transition has dramatic effects, generating in fact two
new nuclei. While the fine structure of a decay has been
more or less understood [6, 7], few studies [24, 26, 25, 27,
28] of the fine structure of heavy cluster decay are avail-
able. In this case one should understand the mechanisms
of heavy cluster decay, which in our opinion should be
closer to o. decay mechanism, then to the fission one.

It is the aim of this paper to calculate the hindrance
factors for several o.-, C-, and Si-cluster decays. The
calculations will be performed within the one level A-
matrix approximation analogously to the calculations
done in Ref. [9] for the n decay of some isO excited states.
The cluster residual nucleus scattering wave functions
are generated by the Coulomb potential plus the realistic
M3Y double folding potential [43,34, 21, 22], in which one
uses an effective interaction derived &om the G-matrix
elements based on the Reid soft-core WX potential [44]
in the form assuming only the one pion exchange poten-
tial (OPEP) between the states with odd relative angular
momentum [45]. The Pauli antisymmetrization kernel is
used as proposed in Refs. [21, 22, 9].

Several favored and weak-hindered o. transitions from
the ground state of Am to some states of "Np and
from the ground state of Cm to some states of Pu
are calculated by using for describing the initial and final
nuclear states the enlarged superfiuid model (ESM) [35,
36].

The situation is not as simple as previous one in the
case of C decay of Ra and Th isotopes.
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In the past few years, a wealth of new spectroscopic
information has been obtained for the neutron-deficient
Ra and Th isotopes. In this transitional region between
spherical nuclei near the N = 126 shell closure and the
well-deformed heavier isotopes unusual phenomena are
observed, in particular the occurrence of a sequence of
a very low-lying negative-parity states, strong E1 transi-
tions and the existence of parity mixed doublets in several
odd-A nuclei.

These phenomena have been described in the &ame-
work of two diferent models. The molecular cluster
model [64, 65] takes the possibility of o. clustering in the
light actinides and treat the excitations in the framework
of the interacting boson model as oscillations of the n-like
bosons with respect to the residual core.

Alternatively, Leander, Sheline et at. [66] predicted re-
flection asymmetric ground-state deformations for a lim-
ited region of nuclei around Th within a mean field in-
cluding both the even and odd parity multipoles. In this
model, the observed positive- and negative-parity states
are regarded as a single rotational band of an octupole
deformed core [67]. A doubling of all states with respect
to their parities was predicted and the measured energies,
electromagnetic transitions, spins, parities, and magnetic
moments for ground state and some excited states of a
series of Ra and Th isotopes were nicely reproduced [66].

Nuclei with strong octupole correlations, leading to
reflection-asymmetric shapes, have particularly low-lying
negative-parity states. From the systematics of the
lowest negative parity excitations [66], one learns that
the nuclei with strongest octupole correlations are the
neutron-deficient nuclei around 224Th (with negative par-
ity excitations of the order of 100 keV [70]) and the
neutron-rich nuclei around l4sBa (with the energy of the
lowest 1 states of about 750 keV). The tendency toward
maximal octupole coupling occurs just above the closed
shells, i.e., for nuclei with Z or N = 34, 56, 88, 134, where

(N/j) intruder orbitals interact with (N —1, l —3, j—3),
natural parity states through the octupole component of
the mean field.

The experimentally observed [1] transitions from the
ground state of Ra to some excited states of Pb
are estimated and discussed in comparison with previous
works [24, 26, 25, 27, 28]. As a nuclear structure model
for the 2 Ra we use a hybrid model discussed in detail
latter.

The enlarged superfiuid model of atomic nucleus [35]
is used for predictions of several hindrance factors in the
decay Cm -+ Si + Pb.

The main parameter of the B-matrix approach, the
channel radius, will be chosen according to a new proce-
dure developed in Ref. [9] eliminating in a large extent
the ambiguities when using the matching of the internal
and scattering radial wave functions for a definite decay
channel.

[15] width divided by the width of the radioactive tran-
sition we are interested in [6]

B
logMF~lv(Q) = A+.

The theoretical hindrance factor (HFql„u) is defined

by Eq. (1) in which the widths are replaced by their
theoretical expressions. In the case of heavy deformed
nuclei [7]:

Po (Q)po po

El Pl(Q)~i' El F~~l'

The factor pl2 is the reduced width [20, 7, 6] and P~(Q) is

the penetrability. Within the JWKB approximation I'I
has the expression

2
Pl = 2R,q&(&,) exp

~

—— q&(r) dr
h R )

(4)

in which "ro" and "B," stand for the outer and inner
turning points, respectively, and

(yCuul+uucl Q) (5)

where V&
"'+""' is the sum of the Coulomb and nuclear

one-body potential acting between the a cluster and the
daughter nucleus when studying the radial part of the
Schrodinger equation.

Thus

2
Fl = exp —

[ql o (r) —ql (r )]dr
& R,

(6)

Usually [6, 11, 12] the Coulomb part of this potential is
replaced by pointlike Coulomb potential while the nu-
clear part by a Saxon-Woods one. Within these simple
prescriptions in the case of o. decay the F~ function has
the approximate expression [57]

Fl = exp —2.027t(l+1)Z 2A (7)

1'aber(Q)

1'(Q)

where Q stands for the energy release of the studied decay
and [15]

II. HINDRANCE FACTORS
III. REDUCED WIDTHS

The experimental hindrance factor (HF,„z) of any clus-
ter decay is defined as a ratio between the Geiger-Nuttal

In the case of axially deformed nuclei the reduced
widths (see Ref. [29], Eq. (2)) can be written as
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1
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(8)

where MLITT functions are the probability amplitudes to find the cluster a at the channel surface (r = R,). The
presence of two terms is due to the two terms in the nuclear wave function of the axially deformed nucleus

[XKwDMK(ei) + ( 1) &X—KwDM —K(e)]'
/16+2(1+ hjcp)

The amplitude of the reduced width is related to the
f;„i function defined in Ref. [9] as

(I,K,. vr, m If Kf n'f ) I ~
~L K (~&)

6 fI,K, w, mjIKjmj;L K(R
int

(10)

f;„t function is practically equal to the initial decaying
state wave function projected onto the channel spin func-
tion [e g , the fu. n.ction R gL' ' ' I I I(R) introduced
in Ref. [7]].

If the fragments would remain distinct in the internal
region, then 4&+' ' could be represented as a cluster-
like wave function [38], i.e. , by an antisymmetrized prod-
uct between a surface spin [20] function 4, and a radial
function f;„i depending on the relative distance. But as
the fragments lose their identity, f;„t should be extracted
from the shell model state C»+' ' by projection onto the
channel c.

Until now, one can say there are known two difer-
ent ways of extracting f;„t from the initial state wave
function. These ways assume two diferent decay mecha-
nisms. The most known one simply assumes the cluster
already formed with some probability in the structure of
the model wave function describing the initial state [9].
The usual shell model with residual interactions in some
specific conditions defines structures containing strong
nucleon correlations, like superfluid Cooper pairs [35, 60,
36] or alpha condensates [62]. It may be useful also to
construct models containing both fermions and o. clus-
ters [39, 40], however, such models could be fruitful in

the case when the shell model with residual interactions
fails in describing other processes or observables.

Another mechanism has been proposed recently [49].
This mechanism starts from an initial many-body
Hartree-Fock configuration, i.e., a fermionic system with-
out residual interactions between the fermions. Then by
successive shape changes from this initial configuration
(8p) the system may arrive to the final touching configu-
ration (8 ). One is considered a large amplitude collec-
tive motion along a path in the space of deformations,
and describe it in terms of single coordinate, with the
determinants ordered according to the value of that co-
ordinate. This path is so chosen that at every step the

I

system is deformed enough to put an integral number
of particles above the spherical Fermi surface. The so-
lution of this problem in the overlapping region is given
by a linear superposition of Hartree-Fock determinants
4q(bg) [C = gz ai, 4k(8q)], describing the minima be
tween crossing of two single particle Fermi levels. The
number of the deformation steps (k = 0, 1, , n) is equal
to the number of level crossings. The deformation is adi-
abatic, so that level crossings do not lead to excitations,
but simply bring the system from one local minimum to
the next one. The mixing is assumed to be due to a
part of the residual interactions (mainly pairing interac-
tion). The rest of the residual interactions may describe
excitations at every deformation step. In such a way we

may follow a particular contribution of a single particle
orbital in the structure of the ground and low-lying ex-
cited states at every deformation step judging in this way
about the fine structure of the cluster decay.

At this point one could calculate the f;„t,which should
be proportional to the amplitude (a„ i) of the next
to the last configuration in the ground state. Here, of
course, we assumed the high degree of orthogonality of
the CI, wave functions and a large overlap of the chan-
nel state with the wave function of the last configuration

(4„),which is not completely true. In other words, this
kind of f;„q describes the amount of cluster configuration,
in the initial nuclear system due to the large amplitude
collective motion, which may be unimportant (and ne-

glected) when describing other properties or processes
involving that nuclear system.

In terms of a complete orthonormal set of radial oscil-
lator wave functions 7Z~L the projected function f;„,will

be defined by the sum

f;„,(r) = ) e~j~ r7ZIVL(r, a, ),
N

where

e~, ' ' = {&[0;„,(@~' ' '); t&LM&NL)
~
(~'~+.' ').t)

(12)

is the spectroscopic amplitude for the cluster a and A
stands for the antisymmetrization operator. The basis
functions BNI. are chosen as the radial eigenstates for
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Q2

2mp Are&Re

which are known as reduced widths [20].
Using this function, the boundary parameter B, [20, 9]

may be simply estimated as

int
(14)

with the prime denoting the derivative with respect to
p = kr, k = /2moA„gE, /h, and E, the decay
energy in the center-of-mass frame.

When the internal and the external wave functions for
the resonance energy are joined at the channel surface, a
functional relation appears between the phase shift, the
boundary parameter, and the reduced widths defined by

(15)

Therefore the explicit formula for the calculus of the
width using this approach is [50]

a particle having the reduced mass A„q ——aA/(a + A)
placed in an harmonic oscillator potential. The oscilla-
tor constant is a„= QA„~as, with no ——g &, mo
the nucleon mass, and u the oscillator &equency for the
shell model potential of the initial nucleus. The radial
function f; t has a key role in the R-matrix calculation
because its square at the channel radius gives the forma-
tion probability of the fragments

Pp —2Pp2. (17)

The coefficients 0~ * ' can be calculated by using one
of the above procedures. In the following we shall use the
procedure obtained by projecting the initial shell model
wave function onto the cluster channel c as is done in the
most of the R-matrix calculations [7]. Within this pro-
cedure the coeKcients 8&, * ' are complicated because it
is difficult to perform separate integrals (even in the case
of n decay), over the intrinsic coordinates of the frag-
ments, but it was shown [51] that a simpler form may
be obtained assuming that all centers of mass of the nu-
clei involved in the reaction have an harmonic oscillator
motion with the same frequency. In this case, by intro-
ducing a complete set of a-body shell model wave func-
tions

I @p), the integral defining 8 may be expressed in
terms of the overlap integrals between states de6ning the
mother (I 4~+ )), the daughter (I 4'~)), and the cluster
systems (I @p)) represented in the same basis of oscilla-
tor states, the so-called cluster overlap [42], and overlap
integrals between the states de6ning the cluster systems
(@p) and the outgoing clusters (Q;„, which may have an-
other oscillator frequency), the so-called intrinsic overlap
integrals:

2
~++PS—P(S—B)

P~+(s B—)~ 4 "c

Here the overdot denotes the derivative with respect to
the energy, B = pG'/G, P = p/(F + G2), 8 = P .
(FF'+ GG'), p = kr, and tang = F/G = (S —B)/P.
In particular, if at the channel radius G has a maximum
(B = 0) and, as in our case,

I
S I« P, this formula takes

the simple well-known form

(18)

The first factor (+&+ )N+~/2 comes from the Moshinsky transformation for nonequal masses [53].
This approximation more or less good in the case of n decay [9] it is expected to be not very good in the case of

heavy cluster decay, where the motion of the nucleons entering the mother, the daughter, and the cluster systems
could be completely different at least concerning the oscillator frequency and the other global parameters that describe
these systems.

The intrinsic functions of the nuclei a, A, and A + a (g,.„„,@~, and 4'~+ ) are expressed in terms of harmonic
oscillator wave functions, with the oscillator constant u chosen to fit the density radius [45, 52]. The amplitude of
the spectroscopic factor may be written as

N+I /2

x(4~~
I

@p~ )(@@~ I
4@~ )(4/i~ 4'p- l)4~+' ')(4p- RNI (R, Qaao)YIM I alp- ), (19)

i.e., the cluster overlap from Eq. (18) is
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while the intrinsic overlap Rom Eq. (18) is

(y;.tzN~(ao ~~~0)v~M
I ep) = (y;:t&»(&-, &~~0)&&M I

@p- )

=).(0;„~ I @p: )(@p: &NI(+ V a&0)+EM
I @p ) (21)

The two functions
I

«Ilp~ ); I
@&~ ) and

I

4'p ); I

«I«po ), respectively, differ in oscillator frequency only.
~A+a ~a

The first group of functions (I @p~ ); I
@&~ )) are totally antisymmetrized A-nucleon single particle wave

functions given by an average shell model (with no residual interaction) field.
The second group of functions (I «II@ ) and

I
4po )) are totally antisymmetrized a-nucleon (e.g. , in the C case,

caP a ~A+a
6 protons and 8 neutrons) single particle wave functions given by an average shell model (with no residual interaction)
field. They are given in terms of generalized coefficients of fractional parentage and, after a sequence of Moshinsky

[78] transformations and orthogonal transformations for rearranging angular momenta, in terms of products of a
[Q„~ (r~ )] spatial harmonic oscillator wave functions and a spin function of a particles. a —1 of these harmonic
oscillator wave functions are functions of Jacobi coordinates (pI, ). In the ~ C case the Jacobi coordinates are (see
Fig. 1)

r2

r5 —r6

r9 —r10
pv = ~ Ps

ry + r2 —r3 —r4
2

r5 + r6 —r7 —r8
2

r3 —r4
P3 = ~ P3 =

r7 —r8
Ps = ~ Ps =

r11 r12 r9 + rlo r11 r8
2

(22)

r13 r14
P10

i=1 ri i=5

- —4 P,'. r, + 8 g,', r;
/168

12 14r' Q 0 r' —2 E'=13 r
2~3

and one of them is a function of R = ~14R, where

R
14

(23)

is the center-of-mass coordinate of the cluster (here C).
Each relative oscillator wave function [g„~ (pA, )] is obtained by a Moshinsky transformation in which a

two particle ({rqrz I
«II)) oscillator wave function is expressed in terms of a complete set of oscillator wave functions

((pi, Rq
I C)), which are functions of the corresponding Jacobi and center-of-mass coordinates and in addition they

have the same frequency as the original ({rqr2 I @)) wave function [54].

The indices u1 from the functions
I
4p~ ) are the shell model oscillator frequencies her =, —,[42].

~rn A3 A3
The overlap integral ((4'~~ I 4&~ )) is a function of 2(a —1) Moshinsky brackets, recoupling coefBcients of angular

momenta and products of single particle overlap integrals defined by

U„( = (nlm(r, ldp) I
n'lrn(r, (d )) =—1 4I'(n + 1)I'(n' + 1) (1 —A l "

I' n+ l + -', I' n' + I + -', ) q1+ & y

1 (A+ 1)
!xF n —n'; n ——n' —l ——;I—

2 (A —1) (24)

where

Here

m~u)p(~)

(25)

(26)

The intrinsic overlap integral for the C decay dier
from other cluster decays in using diferent models for
the structure of the involved nuclei and in addition the
overlap integrals (20) and (21) may contain more factors
analogous to U„~ = (g ~ (r&u ) I @„& (r~ )) given in
Eq. (24).

In the present calculation the wave functions 4A+
and «I«~ are given by the shell model OXBASH [42] or
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il p3ll-
pi

where the Pauli kernel [21, 22] K~(r, r') comes from the
accurate antisymmetrization and normalization of the
cluster-residual nucleus relative motion wave function,
such that the F~(r) wave function does not contain spu-
rious states. Its expression is

p&2
1

K (r, r') = dzPj(z)K(r, r', z).
0

(28)

II ll
p4 - ps

i II

2Q

Here Pj(z) is the 1th order Legendre polynomial, z =
~",~ and

b(r —r') —K(r, r', z) = (r
~

1 —K
~

r')

= (&(b(r —R )g;,Pg) ] A(Q;, P~b(r' —R ))).

9
W ~ W

ps

FIG. 1. The center of mass and intrinsic coordinates of
the C nucleus relative to the residual Pb nucleus.

enlarged superfluid model (ESM) [35] and corresponds
to the ground state of the initial nucleus and ground or
excited states of the daughter nucleus, respectively.

The cluster overlap (4'~@p ~)C'~+~) is obtained by
assuming a wave function 4'p constructed in the same
model space as 4~+ and 4~. The last factor (g,„~
xX~1,(+aR, ao) YIM(O ) ~

4'p) is calculated by ex-
panding 4p in terms of products of two proton and two
neutron single particle wave functions. The expansion co-
efficients are products of two nucleon &actional parentage
coefficients. This last factor is expressed in terms of over-
lap integrals, which for n decay are known as Mang's [7]
overlap integrals. In the case of C decay these overlap
integrals are calculated by Florescu et al. [55, 56].

IV. NUMERICAL CALCULATIONS

As it is known, the major difficulty encountered in such
calculation is a strong dependence on the channel ra-
dius, with large variations around the nodes of G, where
the boundary parameter B [20, 9] becomes infinite and
changes the sign. According to the previous suggestions
[9, 49, 50] the channel radius should be chosen in the re-
gion of the last peak of the regular scattering wave func-
tion Fl, inside the barrier. More precisely it considered
the points where FI, decreases to one-half of the peak
value [50], or accounting for the antisymmetrization ef-
fects, the point corresponding to the peak [49].

The antisyrnmetrization between the particle a and the
residual nucleus afFects the radial scattering wave func-
tions, changing the function Fl, in

(29)

If assuming for the A-nucleus ground-state wave func-
tion a Slater determinant we obtain

b(r —r') —K(r, r', z) = (r ] 1 —K
~

r')

= ( (r —R )0;:t [ Q [ 0;:gb(r' —R ))
a

= (b(r —R )Q;, (1 —P;) Q;,b(r' —R ))

(30)

with Q = Q = Qt which projects out of the Fermi sea of
the daughter nucleus. Using this approximation and ex
panding the ground state of the cluster nucleus in terms
of Gaussian wave functions:

the kernel corresponds to a sum of terms corresponding
to an exchange of s nucleons:

(32)

The expansion of g;, in terms of Gaussian wave func-
tions is supported by the specific structure of g, ~. For
o; decay the ground state of the He may be described
by Eq. (31) with one term only. An expansion like that
given in Eq. (31) may be still valid in the case of ~4C
also, where 4 nucleons are in the 18' single particle state
and the rest of 10 nucleons are, mainly, in the 1ps and
1pj. states. Then, after the Moshinsky transformations,
the oscillator relative wave functions @„~ (pa) areP ii &ig ~il
mainly in the s state and we do not loose much neglecting
the other contributions.

In the case of a particle:

K = 2K' + 2K —K» —K —4K~ + 2K'
+2K„» —K»„„ (33)

F~(r) = F~(r) — dr'KI, (r, r')F~(r'),
0

(27)
Moreover if the proton and neutron systems have the
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same properties

4

K = 4K) —6K2 + 4Ks —K4 ——) a, K„
s=l

(34)

written in the Slater approximation [63]

(& I
&

I
*') = p(*,*') = —,'p(R)p (s), (36)

where 8 stands for the number of the exchanged nucleons.
The general expression of the K, kernel is

K, (R, R')

where

3
psi(s) = ji(4s) = ji(kzs)

kF8

Here

(37)

= (h(R —R )P I
P; I P h(R' —R')), (35)

Is=r —r (38)
~ 4 ~

i=1

where P, projects onto the orbitals inside the Fermi sea
of the daughter nucleus and may be taken as the non-
local one fermion density operator for this nucleus. For
medium and heavy nuclei this density operator can be

I

and the K, operator can be written in the factorized form

K, (R, R') = K+(R+)K, (R ),

where

9

K+(R+) = —
I I

—e4~'"+
8 &vs) po h ~ ~

i=1
dR, e-~' ~'=l R'

p(R;) h R+ ——) R,
i=1 i=1

(40)

B.-(R ) = ('—')'.p'"'f-
h h h

i=1
~I h ~

i=s+1
ds, e 4P ~*=4" jq(k~s, ) h(s, )h

4
1R ——) s, (4l)

Here po is the equilibrium density of the nuclear matter.
For nuclear matter, for example, K+(R+) = l. After
some calculations we have

9

K.+(R+) = —
I8 Ev(s)

x dR;pi(R, )f, R+ ——) R,
)

S S

V, (B) = f dR;p;(B;)v i R —) R;
i=1 i=1

(47)

for K . The interaction f, has the "norm" (volume in-

tg l) (~&) l 'l, dth q di

which for the particular case s = 4 (exchange of 4 nucle-
ons) becomes a h distribution.

The spherical s-folding integral is defined as

K.-(R ) = e~'"'-

~ h h

i=1

with

ds;Pz(s, )b
1R ——) s;
4

(42)

(43)

The reduction of the numbers of integrals to one unit
is equivalent to perform a double folding integral with a
zero range interaction:

s —1 s —1

V.(B) = f dR;p (B.)LTp „R. —) R;., (48)
i=1 i=1

p, (R) = —e (""p(R),
Po

(44) Ur„(x) = f r,dr d(rr,p)v(r ) (rxd—r, —rr). (49)

2 2 ~

p&(s) = —e ' ' j).(k») (45)

3f~) ' ' (64 p') '
p — g 4 —s

(27r)s q P ) (, 4 —s y
(46)

We recognize that the above integrals are typical 8-
folding integrals (s = 1,2,3,4) with a specific finite range
interaction f, for K+ and with zero range interaction

It is straightforward to generalize this procedure for
heavy cluster kernels.

This solution is very close in the case of heavy nuclei to
that given by the procedure developed by Kukulin, Neu-
datchin, and Smirnov (see Ref. [48] especially Eq. (35)
of this reference). Numerical calculations shows that for
all the states investigated the corrected function Fg has
only one dominant maximum in the internal region, at
a radius r),„„,) [9] very close to the previous proposed
channel radii [49, 50]. For small radii Fg almost van-
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ishes, while near the maximum and at larger distances it
becomes identical with Fg.

Clearly, the variations determined by different choices
of the channel radius or of the interaction are large when
calculating the absolute widths.

The kernel correction to the position of the last maxi-
mum is small, showing that the radius range considered
is far enough to neglect the antisymmetrization effects on
the scattering states, and is appropriate for the choice of
the channel surface.

Further agreement with the data might be expected, if
a more precise de6nition of the channel radius would be
available. In fact, we know that in the internal region the
relative wave function should be f;„, rather than FL„and
only near the barrier this become inaccurate and must be
replaced by the asymptotic solution Gl. . Thus it appears
natural to 6x the channel radius near the last maximum
of f;„, instead of Fl„when both the internal and the
scattering wave functions should be accurate, and such
that B, = B. When this condition is ful6lled, it becomes
possible to extend continuously iGI. in the internal region
by f'; ' = vf;„t, with v =[iGI,(r, )/f;„, (r, ) [.

We solved this problem, analogously to the procedure
proposed in Ref. [9],by fixing the channel radius r, at the
last maximum rf " of f;„t and changing by a factor the

nuclear folding potential V„(r) to (1+c)V„(r) in order
to have at r " the furthest maximum of the irregularf
scattering solution G inside the Coulomb barrier. Such
matching was preferred in order to have a simpler formula
for the width (i.e. , B, = B = 0). The radius r " is a
little larger than rg„„,~ [9].

In this work, however, we are interested in calculating
the hindrance factors (HF), i.e., quantities which have a
weaker dependence on the channel radius than the widths
themselves.

Before treating the neutron-deficient Ra and Th iso-

topes we wish to analyze some examples of well-treated
cases of the fine structure of cluster decay. These exam-
ples could be the cases of the favored and weak unfavored
alpha decays of 24iAm and z4sCm ground states. There
are three a transitions from z4 Am(g. s.) and two a tran-
sitions from 2 Cm(g. s.) with F & 10 only. Three are the
a transitions from 24iAm(g. s.) leading to the first two

states of the rotational band built on the [523]z (0.06
MeV) single quasiparticle state and the a transition lead-

ing to the [523]2 Qzp (0.7219 MeV) P vibrational state
of 2~~Np daughter nucleus. The other two transitions are
the a transitions from 24sCm(g. s.) leading to the first two

states of the rotational band built on the [622]2 (0.286
MeV) single quasiparticle state of 2s Pu daughter nu-
cleus. All the other measured hindrance factors (HF,„P)
are much greater. From these data we may learn that,
first, the structure of the Am ground state is the same
as the structure of the [523]2 (0.06 MeV) single quasi-
particle state of Np daughter nucleus and, secondly,
that the structure of the Cm ground state is the same
as the structure of the [622] 2 (0.286 MeV) single quasi-
particle state of Pu daughter nucleus. Such transitions
between odd-A nuclei are called favored, analogously to
the ground state to ground state o. transitions between
doubly even-A nuclei.

In these cases, within ESM [35], the pairing super-
fiuidity dominates (see also Ref. [6]). In addition, we
are dealing with a more or less clean structure of the
mother and daughter states, which is described by a su-
perposition of single quasiparticle states and a strong
coupled single quasiparticle states with multipole (espe-
cially quadrupole) phonon states (see Tables I—III). These
structures are in agreement with those predicted by the
quasiparticle-phonon model [32, 33].

By using ESM [35] we calculated the hindrance factors
(HFEsM) for the favored and some unfavored a decays
from Am to ground and some excited states Np
nucleus(see Tables IV—VII) and decays from 24sCm to
ground and some excited states 2sPPu nucleus(see Tables
VIII and IX).

In these calculations the used ESM parameters are G„
= 0.143 MeV, G„= 0.103 MeV, G4 ——0.268 keV. The
parameters of the average field are taken from Refs. [31,
60]. The used deformation parameters are P2p = 0.20
and P4p

——0.06 for Np; P2p
——0.23 and P4p

——0.08
for 2ssPu; P2p ——0.24 and P4p

——0.06 for Am and P2p
= 0.22 and P4p ——0.08 for 24sCm. The used particle-
hole quadrupole and octupole parameters (see Ref. [35])
are K„"" = ez" ——0.667 keVfm, K„"~ = e~~ = 0.062
kevfm-4, KAP = K'oy = O.oil kevfm-6 KAP = K'P

0.001 keVfm 6. The used particle-particle quadrupole
parameter (see Ref. [35]) are G„"i' = G2" = 15 eVfm 4.
The rest of the terms in Eq. (6) of Ref. [37] not mentioned

TABLE I. The calculated, within ESM [35], structure of some ground and excited states entering
the a decay: Am(2 [523])(g.s.) -+ Np.

Nucleus
241A

237N P
237N P

237N P

237N P

5 5
2 2 0.06 0.07

5 5
2 2 0.721 0.758

1 5
2 2 0.281 0.358

I K E,„p (MeV) E,h, (MeV)

0 0
5+ 5 0 0

Structure

as.a% [523] -', + 1.1% [523] —',
+

(g Q„
so.a% [642] — + 3.1% [642] -', S Q,.
ao.a% [523] -', + 0.69% [512] —',

3.04% [523] & Qpp + 1.5% [642] & Qsp

0.91% [523] &
+ 0.09% [512] & +

98.04% [523] &
S Qpp + 0.05% [642] & S 'Qpp

S1% [530] -' + 4.09%%up [530] -' Q o +
6.04% [523] -', S Qpp + 0.05% [642] —',

+
Qpp
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TABLE II. The calculated, within ESM [35], structure of some ground and excited states en-
tering the o decay: Cm(g. s.) —+ Pu.

Nucleus
243'

239p

239p

1+
2 2
5+ 5
2 2

286.

I K E,„~ (MeV)
5+ 5 02 2

E,h, o (MeV)

310.

Structure

97% [622] — + 1.1% [633] + 0.1% [602] +
2.3% [752] 2 Is Qss + 1.3% [734] z S Qs2

95.9%%uo [631] — + 3.1 '%%uo [631] — S Q2p

95 % [622] — + 2.1'%%uo [633] +
0.3'%%uo [752] 2 I3 Qso + 2.3% [734] —, Ia Q32

Neutrons

[622]—

[501]—

[631]-,'

[633]—

[620] -'

[624]-,'
[61s]-',

[615]—

[oo6] —",

[74s]-,'
[7s4]-',

[725]—",

[64o]-,'

[642]-,'

[624]-,'

[622]—

[501]s

[631]-',

[633]-',

[620] —,
'

[624] r

[61s]-,'

[615]2

[606]—'

[74s]-,"

[734] —,
'

[725]—

[620]-'

[622]-',

[613]—

-0.240

-0.175

+0.101

-0.141

-0.270

-0.703

-0.316

-0.274

-0.24?

-0.194

-0.374

-0.26?

-0.128

-0.136

+0.114

Protons

+0.113

+0.138

+0.798

+0.460

+0.129

+0.209

+0.101

+0.102

+0.135

+0.490

+0.162

+0.104

-0.111

-0.101

+0.109

TABLE III. The calculated, within ESM [35], structure
of P-vibrational state of Pu.

above have been neglected.
The expressions of the reduced widths within the su-

perfluid model [60, 35, 30] are given in Ref. [29].
In these calculations we use the Coulomb potential

plus the realistic M3Y double folding potential [43], in
which one uses an effective interaction derived from the
G-matrix elements based on the Reid soft-core NN po-
tential [44] in the form assuming only OPEP force be-
tween the states with odd relative angular momentum
[45]. This potential is obtained numerically, and then is
interpolated by cubic spline functions to improve the ac-
curacy of the numerical integration. The radial scattering
wave functions are calculated at the experimental reso-
nance energies using the Numerov algorithm. At a dis-
tance of 15 fm the nuclear folding potential V„has prac-
tically no contribution, and the regular solution is nor-
malized to have the asymptotic behavior of the Coulomb
functions [46]. The value of the irregular solution at
this distance is obtained from the Wronskian relation
I"IGI, —FI,G'I ——1 and then the whole irregular solution
is obtained integrating backward to the origin. However,
at small distances the fragments interact strongly, and
this asymptotic solution should be gradually replaced by
the "internal" wave function supposed to describe the
compound system before decay.

When the internal (f;„q) and the external (iG) wave
functions for the resonance energy are joined at the chan-
nel surface, we have to fulfill the condition

Gl

G „
[615]—

[624]-,'

[633]-,'
[642]-',

[651]—

[5o5]—",

[514]—

[512]-',

[523]-',

[521]-',

[53o] —,
'

[4o2]-',

[615]—

[624] -',

[633]-',

[642]-',

[651]—

[505]—

[514]—

[512]-',

[523]—

[521]-',

[53o]-,'

[4o2]-,'

-0.205

-0.313

-0.537

-0.239

-0.205

-0.415

-0.528

-0.289

-0.978

-0.484

-0.255

-0.355

+0.118

+0.168

+0.431

+0.062

+0.457

+0.168

+0.239

+0.157

+0.999

+0.392

+0. 744

+0. 233

When this condition is fu16lled, it becomes possible to

Ey (keV)

59.4
102.96
158.52
226.0
304.8
395.2

5
2
7
2
9
2ll
2
13
2
15
2

HF exp

1.3
4.7
20
750
1560
1460

HFMpR

1.06
4.69
13

447
775
1739

HFEsM

1.15
4.75

15
480
825
1795

TABLE IV. The calculated, within ESM [35], hindrance
factors for favored cr transitions from Am(g. s.) to the mem-

bers of the rotational band of Np([523] —,E = 59.4 keV).
These results are compared with the calculated hindrance fac-
tors (HF) by Mang, Poggenburg, and Rasmussen [8] and ex-
perimental data [57, 58].
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TABLE V. The calculated, within ESM [35], hindrance
factors for weak unfavored n transitions from Am(g. s.) to
the members of the rotational band of Np([523]-, E
721.9 keV). These results are compared with the calculated
hindrance factors (HF) by Mang, Poggenburg, snd Rasmussen
[8] and experimental data [57, 58].

TABLE IX. The calculated, within ESM [35], hindrance
factors for unfavored n transitions from Cm(g. s.) to the
members of the rotational band of Pu([631]— g.s.). These
results are compared with the calculated hindrance factors
(HF) by Mang, Poggenburg, snd Rasmussen [8] and experi-
mental data [57, 58].

Ey (keV)

721.9
755.8
799.8

5
2
'r

29—
2
11
2
13
2
15
2

HF exp

10
47

HFMPR

1

4

13
447
775
1739

9
40
125

4280
8205
17095

0

7.861
57.276
75.706
163.76

194

HFESM Ef (keV) f
1+
23+
25+
27+
29+
211+
2

HF exp

1840
540
1430
177

4090
475

HFMPR

6750
422

551
120
131
799

HFEsM

4393
822
913
315
451
1135

Ey (keV)

0.0
33.2
75.9
130.0

f
5+
2
y+
29+
211+
213+
2
15+
2

HF exp

690
760

2160
4300

HFMPR

879
1259
2521
5986

402392
21539

HFEsM

975
1405
2425

6428
452703
23095

TABLE VII. The calculated, within ESM [35], hindrance
factors for unfavored o. transitions from Am(g. s.) to the
members of the rotational band of "Np([530]-, E = 281
keV). These results are compared with the calculated hin-
drance factors (HF) by Mang, Poggenburg, and Rasmussen

[8] and experimental data [57, 58].

TABLE VI. The calculated, within ESM [35], hindrance
factors for unfavored o. transitions from Am(g. s.) to the
members of the rotational band of Np(g. s.). These results
are compared with the calculated hindrance factors (HF) by
Mang, Poggenburg, and Rasmussen [8] snd experimental data
[57, 58].

extend continuously GL, in the internal region by f;"~ '
= vf;„q, with v = Gg(r, )/f; t(r )

To solve this problem we adopted the method of fix-

ing the channel radius r, at the last maximum rf of

f; q (B, = 0), and changing the nuclear folding potential
V (r) to (I + s)V„(r) in order to obtain the pole for a
given a transition as proposed in Ref. [47]. No poles
belonging to the new class mentioned in Ref. [47] were
found in our cases.

The hindrance factors for the favored and some weak
unfavored o. decays of Am to the members of two rota-
tional bands built on the intrinsic excited states of Np,

namely, 2; 0.06 MeV and ~; 722 MeV states are with

1000

HF

Ey (keV)

281.35
267.54

357
327
485
438

1
2
3
2
5
2
T
29—
2
11
2

HFexp

12700
2870
2190
1980
1450

HFMPR

125216
3338
2915
1277
4175
1374

HFEsM

158355
4405
3252
1828
4527
1522

100

10

Am ~
a + 37Np

TABLE VIII. The calculated, within ESM [35],hindrance
factors for favored cr transitions from Cm(g. s.) to the mem-
bers of the rotational band of Pu ([622]2, E = 286 keV).
These results are compared with the calculated hindrance fac-
tors (HF) by Mang, Poggenburg, snd Rasmussen [8] and ex-
perimental data [57, 58].

o theo- -band
-- 7-exp- -band

theo-g. s.-band
-- ~ -- exp-g. s.-band

I I I I I I I I I I I

Eg (keV)

285.460
330.125
387.42

462

r'f
5+
27+
29+
211+
213+
2
15+
2

HFexp

1.29
5.1
16

340

HFMPR

1.75
4.98
12
72
63
75

HFEsM

1.95
5.22

15
98
102
113

7 9 11 13 15 17 19 21 23
2 2 2 2 2 2 2 2

SPIN (5)

FIG. 2. The calculated within ESM hindrance factors
for the favored o. transition Am (— [523])(g.s.)

Np(2 [523]) (60 keV) and unfavored o transition from

Am(2 [523))(g.s.) to the members of the rotational bands
of Np( — [523], 60 keV) single quasiparticle and Np (2
[523) Qs 722 keV) P vibrational states.
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more attention discussed and compared with the experi-
mental data (see Fig. 2) [57, 58].

The explanation of small (close to unity) hindrance
factors (HF), is based on the picture that the cluster (in
this case an a particle) is built &om the fermions just
situated at the Fermi surface, where strong pairing corre-
lations (or other collective, a and/or heavier cluster con-
densates [62, 35]) occur and, in addition, we may neglect
the differences in structure of the parent and daughter
states.

Let us analyze the ground state of the Am nucleus.

It is mainly a single quasiparticle [523] z state. The cor-
responding Nilsson-like state does not participate in the
n decay. Thus this state can be found in the structure of
the daughter nucleus excited states. For instance, in the
structure of the state lying at 60 keV excitation energy
the contribution of the single quasiparticle [523]2 is al-
most 90%%up and in the structure of the state lying at 722

keV excitation energy the contribution of the [523] 2

Q2p p vibrational state is almost 98%. Due to the fact
that the a decay is a highly collective process we may

neglect the diKerences in description of 24~Am([523]2 )

~ n + 2 Np([523] 2 single quasiparticle state; E = 60

keV) and 2 Am([523]2 ) m u + 2s~Np([523]2s Q2p

P vibrational state; E = 722 keV), because [60, 61] the
P-vibrational state and the ground state are twin states.
The situation is completely different when studying the
transition [6] 24~Am ([523]2 ) m n + 2s7Np ([642]s )
between the ground states. The initial and final sin-

gle quasiparticle states are completely different in struc-
ture and in order to build an o. cluster it is necessary to
break up a Cooper pair. This process leads to the large
() 1000) hindrance factors (HF) (see Tables VI, VII, and
IX).

The 22sRa nucleus belongs [68] to the well-known re-

gion of nuclei with Z = 88 and N —134, with strong
octupole correlations in the ground and low-lying excited
states, where the 1j15 intruder orbital interacts strongly
with the 2g9 natural parity orbital. This situation is also

2

determined by the fact that the energy distance between
these orbitals coupled by the octupole field decreases with
increasing the mass number. At the same time both the
number and the magnitude of the matrix elements in-

crease. This explains, for example, why the octupole
coupling is stronger in the Ra-Th region than in other
nuclear regions.

The hindrance factors for both the o. and C decays
of the ground state of Ra are very difficult to calcu-
late at the moment, due to the not accurately known
structure of the mother and daughter nuclei. Studying
the experimental hindrance factor for a decays to Rn
ground and low-lying excited states [59] we learn that
=10 transitions have small (( 100) hindrance factors
(HF) and from these transitions five have HF,„~ & 10.
The corresponding excited states have a very different
structure and this tells us that the structure of the ground
state of Ra is not simple, as in the Am case, and it
may contain many more or less equal components of sin-

gle quasiparticle or quasiparticle-phonon structure. An

analogous situation one finds, when studying the struc-
ture of the ground and low-lying excited states of Rn
nucleus. This situation contradicts the somewhat has-
tened conclusions of the recent contributions [24, 26, 25,
27, 28], to the fine structure of C decay. In the remarks
of these authors one can understand that the hindrance
factors are determined by the mother nucleus single-
particle amplitudes and moreover, by the amplitude of
the spherical orbital (a)& ——(N/j

~

Nn, AO)) in the
Nilsson-like orbital only. They do not analyze the effect
of the residual interactions at least such like the pairing
and/or multipole (especially octupole) correlations in the
initial and final states. Of course, the hindrance factors
increase when the products of the initial and final states
amplitudes aN&. decrease [24], however, this may be a
small component in a complex structure and in addition
the rest of the factors occurring in every term of the spec-
troscopic factor may act constructively or destructively.

To understand this situation we construct a very sim-

ple model, which proves to deserve attention by itself and
to suggest the highly nontrivial behavior of the realistic
model.

Assume, for a moment, that the structure of the
ground state of the Ra nucleus consists of a spherical
core and above the core there exists a deformed single
particle orbital only. In this case the spectroscopic factor
in the expression of the hindrance factor (HF)

HF(I, K,n, —+Iy Ky y )
l K, —Kf

/)00+ (g.s. )-+00+ (g.s.)+
p

~ p /)( i i i f f f)g

may be factorized according to

g(K; K,a; -+Kf Kf n y )
Nl K, —Kf

where Cq, , Cq& are the corresponding quasiparticle
amplitude in the complex structures (see Eq. (5)
from Ref. [29]) of the initial and final states, a~&
are the corresponding Nilsson-like amplitudes (yg

a/& ~N/jO)) and /), *&,'„, ( quantities, act as
spectroscopic amplitudes between many-body spherical
states. If considering a single j~"~ shell, the main part
of the 0, 'h '„., &

quantities are the coefficients of frac-

tional parentages (j( ) J,. *;j( )0+ ~)j( ), J, *) entering
the expansion of a totally antisymmetrized wave func-
tion and of given quantum numbers (spin, parity, ...) de-
scribing the motion on n particles in terms of prod-
ucts of two antisymmetrized wave functions that de-
scribe n —a and a, respectively, particles. These spec-
troscopic factors may be calculated within the restricted
Kuo-Herling [42, 41] model space including four neutron
orbitals (Nliz&~2, 2gp~2, 3dsg2, 1j~s~2) and four proton or-
bitals (P1hpy2, 2fqg2, 2fsy2, 3ps~2) above the shell closure
at Z = 82 N = 126. The main quality of this calcula-
tion is to account for all possible configurations. Within
this model space the structure of parent and daughter
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nuclei consists in an inert Pb core, and some active
nucleons (15 for 323Ra and one for sPb). By using a
diagonal interaction only we may produce the necessary
wave functions of a given spin and parity (I j ('&)~')). The
realistic interaction and a larger model space [41] neces-
sary for realistic estimations of the spectroscopic factors
are impossible to be used even when using the most mod-
ern computer due to the unrealistic necessary computer
time and space. To calculate, for example, within this
simple model the hindrance factor for the favored C
transition, i.e., Ra(g.s.) ~ C + Pb ( 2, E

I(11+)22$R ~(11+)209pbl
779 keV) one needs to compute 8, &„,, &

This simple model determines essentially one dominant
term in the spectroscopic amplitude. The real spectro-
scopic amplitude is a sum of many terms analogous to the
above one and in addition the spherical spectroscopic am-

I

plitude 8, '& '„., I should be replaced by a spectroscopic
amplitude corresponding to a deformed core, which in
reality is not as simple as for the spherical case. When
having many terms in the sum cancellation effects may
occur also.

Now assuming only one of these factors to be responsi-
ble for the entire hindrance factors, especially in the case
of a large number of transferred nucleons, e.g. , the case
of C decay, we think, it is a crude approximation.

For instance, when calculating the ratio (see Refs. [24,
26, 25, 27, 28]):

t'9 & .+ „+(11) HF(2+-+ —+,779 kev)
(58)

experimentally equal to 200 [1], one can say that, the

spherical spectroscopic amplitudes 8~&2~"'"

and HN2& ~"" ' '" have been considered level inde-
pendent quantities and moreover, they were considered
equal constant quantities. In addition the initial and fi-

nal levels have been considered single quasiparticle lev-
22$ 22$ 209

els C =1, C R~s =1, C. , = l, and
1&11~2 ' 2g9 m2 ' li11 ~2

2
209pbC s

——1. The final nuclear states have been as-
2g9 ~2

2

sumed spherical single particle states az,. (2o@Pb) = 1
S

and a&s, ( Pb) = 1. The only quantities used for estz-
2

mating the above ratio [R( ~~ )] were the Nilsson-like coef-

ficients a~,. ( Ra) and a~, ( Ra). This prescriptions
2

according to our formula for the hindrance factors (HF)
may give in the calculations of Ref. [24] R( s

) ( 100
while in the calculations of Ref. [28] R( s

) 1.
According to the predictions of Sheline and Ragnars-

son [24) the ground state of the Ra is mainly a single
quasiparticle state determined by the Nilsson-like orbital
0 =

&
with a dominant contribution ( 52'%%uo) emerg-

ing from the positive parity single neutron orbital liqqg2
and small admixtures from other positive parity neigh-
boring 2gzy3 ( 4'%%uo), 2gsyz ( 1.5%), orbitals and an
intruder negative parity 1jqsy3 ( 1.5'%%uo) orbital.

Another structure has been obtained in Refs. [69, 25],
namely, the contributions of different spherical orbitals in
the the Ra ground-state Nilsson-like orbital are lizzy2

(—18%) 2gry2 (—4'%%uo), Sds/2 (—16%), 2gsy2 ( 42%),
and 1j,s)2 (= 1.5'%%up).

It is not clear, however, in these calculations, what
is the weight of a single quasiparticle and what are the
weights of the more complex structure when the quasi-
particle is coupled strongly with the octupole phonon, for
instance. Moreover, it is not clear whether other phonon
contributions may occur. In the next proposed for study
case we shall see that these weights are essential in de-
termining the hindrance factors.

We estimated the ratio R(~~) by using a single quasi-
particle dominance in the structure of the initial and
final states and the Nilsson-like coefBcients from Ref.
[24]. We calculated, however, the spectroscopic ampli-

udes 0, h,'„,
&

as mentioned in Sec. III, by using the
shell model with no residual interactions for the initial
and final states and considering the intrinsic overlap in-
tegrals level independent quantities. The only different

quantities in the expression of 8, h,'„., &
were the clus-

ter overlaps. Our estimation gives a large value for the
above ratio [R(~z) 1000], showing how important are
all quantities entering the hindrance factors for cluster
decay. In these calculations we used the OXBASH code
[42] and the REWIL [79] interaction within the ZBM [80]
valence model space for the ground state of C and then
we eliminate the spurious states due to the center-of-
mass motion. The Q,„~ wave function has been expressed
in terms of the phenomenological wave functions of three
alpha clusters and two valence neutrons, which are func-
tions of the relative Jacobi coordinates (see Fig. 1) [56].

The most discussed ratio [24, 26, 25, 27, 28],

( 15~
HF(k+m ~ +,1423 kev

R
I

—
I

=
(11) HF(', +~", +,~&@ k~v)

(54)

within the prescriptions above mentioned is approxi-
mately 50, i.e., not very hindered.

A few more comments may be in order here. First of
all our hybrid model with a spherical core and only one
deformed orbital, when calculating the spectroscopic am-
plitudes is not to be taken too seriously for very complex
structures. This should not be true even for structures
close to single quasiparticle states, because the assump-
tion of a spherical core is not realistic. On the other
hand, when having realistic structures for both the ini-
tial and final states, calculations within shell models like
OXBASH are practically impossible for nowadays comput-
ers. Therefore simple schemes as presented above would
be useful.

There may be another explanation of the measured low

HF [1] for the transition to the 2, E = 1423 keV level

in Pb, namely, through a possible large parity mix-
ing, let say some percentage, present in the Ra parity
mixed doublet due to the strong octupole correlations.
The 2 ground state of Ra together with the first 2
excited state determines a 50 KeV parity mixed doublet

[71, 72, 19, 74]. The first z excited state of 333Ra is

mainly a single quasiparticle state built on the Nilsson-

like single particle deformed orbital 2 emerging from
the neutron 1j&5y2 spherical orbital.
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The necessary large parity admixture, in spite of pre-
dicted [66] strong octupole correlations, is not easy to
be obtained. There are, however, evidences in this nu-
clear region [75—77] of large parity admixtures. Thus,
the problem of parjty mjxjng jn 3Ra could be an jn-
teresting problem not &om the weak interaction point
of view only. We may study the coupling between the
positive and negative parity bands in order to find new
insights concerning the structure of the nuclear states in
the Ra-Th region.

Unfortunately it is not possible to evaluate the hin-
drance factors (HF) for the heavy cluster decays &om
the ground states of the nuclei in the Rn-Pa region be-
fore constructing an appropriate model for the states of
these nuclei.

A better case for predictions could be the decay: 24 Cm
(g.s.) ~ s Si + 2 Pb (ground and some excited states).
From Table II we learn that within the ESM [35] the
structure of the Cm ground state contains contribu-
tions &om three single quasiparticle states, namely, 97'%%up

[622], l.1%% [633],and 0.1% [602] emerging &om 2gs, li 11,
and 3ds, respectively. According to Eq. (51) we can de-

fine the following ratios between the hindrance factors
&HF):

which are equal to

and

RI —
I

&9)

-' [622]
Q, 6 I &:,:&(s22ju2, M(2[622] ~ 2g. ) I'

2
5~11 -' [633]Xi+i I &:,:.&[s33]ai; M(2[633] ~ »-) I'

114 (56)

-' [62']
Ef +i

I &:,:&[622]&2s, M(-,'[622] ~ 2g )
-' [6OZ]

C[so2jQ g M( [602] m 3d )
2

4150. (57)

(11&

RI —
I

HF ( 2 ~ 2
+,779 keV)

F(2 ~z,1567 keV)

HF(-

(55) The quantities M replaces essentially the cluster over-
lap for the specific transition. For instance, the product

as& M(2[602] ~ 3ds) stands for the quantity
2

LM
U~V~ h ) ) A, (vi .vi4

I qqus w2o)(sq (&i &i4
I qq~s ~2o)

V1 ' ' 'V14 ta 3' ''M20

(58)

TABLE X. The calculated, within ESM [35), hindrance
factors for favored and unfavored Si transitions from

Cm(g. s.) to the excited states of Pb.

Ef (kev)

779
1423
1567
2032

9+
211+
2
15
25+
21+
2

HFthea

800
10

-3x10
10

analogous to the quasiparticle contribution in the matrix
element &om Eq. (12) of Ref. [29] entering the n-decay
rate of axially deformed odd-A nuclei.

-', [622]The necessary used Nllsson-ljI e coemcjents are a2g

= 0.62, a1,. ——0.67, and a3& ——0.31 very close to the
52[633] 2 [602]

values reported in Ref. [31]. By comparing the lifetimes
for s4Si decays &om 24sCm and 242Cm: Ti [2 Cm (g.s)

Si + Pb (g.s.)] = 10 sec [81] and Ti [ Cm

(g.s.) -+ Si + 2osPb (g.s.)] = 102s'24 sec [11] we can
find the F for the first transition, namely, F[ Cm (g.s.)
m s4Si + Pb (g.s.)] is equal to the product of the
ratio of lifetimes times the ratio of the penetrabilities

I

corresponding to the Cm and Cm cluster decays,
respectively. A direct calculation leads to HF 7. Thus
the hindrance factors corresponding to the cluster transi-
tion to the 779 keV and 1567 keV levels in Pb will be
= 800 and 30000, respectively (see Table X). The tran-

sitions to the 2, 1423 keV and 2, 2032 keV levels in

Pb are estimated within the octupole or higher order
contributions to the structure of Cm ground state.

V. CONCLUSIONS

As examples of the cluster decay fine structure we
analyzed the particular cases of o. decays from Am
and Cm, C decay from Ra, and. Si decay from

Cm. Good agreement with the experimental data is
obtained in the case of o. decay of Am and Cm.

Assuming for the structure of the ground state of the
Ra nucleus a hybrid model, with a spherical core and

above the core only one deformed single particle orbital,
we could factorize the spectroscopic amplitude for the

C decay into three factors; first one is the single quasi-
particle weight into the structure of the ground state of
the Ra nucleus, the second one is the Nilsson-like am-
plitude of a spherical orbital into the deformed Nilsson-
like orbital, and the last one is the spectroscopic am-
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plitude of the ~4C decay from a sphencal configuration.
This last factor can be calculated by using an analogous
recipe as given in Ref. [9) for the case of a decay. It may
have large variations due to selection rules and internal
structure of the core, when calculating its cluster overlap
factor.

Our estimates of the hindrance factor dier in magni-
tude from previous estimations [24, 26, 25, 27, 28]. We
overestimate the experimental hindrance factor corre-
sponding to the ground state of Pb, but we are closer
to the experimental hindrance factor corresponding to
the z (1423 keV) state, when normalizing to the hin-

drance factor corresponding to the z (779 keV) state.

If the hindrance factor corresponding to the ~, 1423
keV state in Pb could be explained by the large parity
admixture of the 2 first excited state in the ground state
of Ra then the problem of parity nonconservation in
the Ra parity mixed doublet becomes an interesting
problem.

Additional experimental work on the C fine structure
decay of Ra with higher resolution would be very valu-
able. This might allow the resolution of (1) the groups

populating the 2 and 2 states in 2osPb and (2) the

groups leaving from ground 2 and excited s (50 keV)
states of Ra nucleus, in order to determine more con-

clusively the hindrance factor for populating the
state in Pb.

Predictions have been done for the hindrance factors

corresponding to the 4sCm (g.s.) ~ Si + 2 Pb(g.s.,
779 keV and 1567 keV excited states).
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