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Influence of nuclear structure on the characteristics af light pionic at+ms
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An extended version of the standard pion-nucleus optical potential is presented using the
momentum-space formulation of the multiple scattering theory. This potential is used for studying
the in6uence of nonlocal effects and nuclear structure on the characteristics of light pionic atoms.
A method is suggested to treat the long-range two-nucleon correlations involved in the second-order
optical potential. Particularly, the spin-orbital Fermi motion correction to the 6rst-order optical po-
tential, the center-of-mass correlations, and the spin-isospin corrections to the second-order optical
potential are discussed in some detail. The results are presented in comparison with the experimental
data for the 1s and 2p levels of light pionic atoms up to Ca.

PACS number(s): 25.80.—e, 36.10.Gv

I. INTRODUCTION

During the last decade special attention has been paid
to solve a bulk of problems that arose in the description
of vr-atomic characteristics. The theoretical calculations
based on the standard pion-nucleus optical potential de-
veloped by Ericson and Ericson [1] were found not to
reproduce the newly measured data obtained by using
very precise experimental techniques [2,3]. A lot of work
has been done to refine the Ericson-Ericson potential and
its parameter set without signi6cant improvement of the
situation [4—8]. The principal importance of finite-range
eKects associated with pion nonlocal interaction in nu-

clear interior was shown recently [9],but the authors have
not attempted to reproduce the experimental data fully.
There was also an interesting phenomenological exten-
sion of the optical potential [10]; however, the physical
content of the model appears to be dubious [11]. Thus
the problems persist and many "anomalous phenomena"
have not been solved up to now.

At the same time the alternative theoretical ap-
proaches were presented trying to bring the calculated
results into better agreement with experiment. They are
based mostly on the fundamental ideas taken from physi-
cal models which were successfully tested in related fields

and deploy the relativistic description of both the nuclear
structure and pion-nucleus dynamics in a more realistic
fashion. Here we mention only two of them, the mean-
field approach developed by Birbrair et at. [12] and the
extended version of the 4-hole model adopted for pionic
atoms by Oset and co-workers [13,14]. The last work [14]
goes even beyond the standard 4-hole model and treats
the 4 and nucleon pole on the same footing.

Unfortunately, all the aforementioned models presume
a many-body character of the nucleus and their use is
to some extent doubtful in the case of very light nuclei.
Further, the models do not involve more subtle effects
caused by nuclear structure of individual nuclei and the
dependence on the nuclear mass number A enters the op-
tical potential in a very simple way. To be more specific,
we note that the pion-nucleus optical potential has been

expressed only as a function of the nuclear density and
its powers. On the other hand, the new very precise ex-
perimental data for pionic atoms [15—17] and also for vr

scattering on polarized nuclei [18] can hardly be repro-
duced by means of such a simpli6ed theoretical input. In
our opinion, other nuclear ingredients are needed to enter
the potential as well.

In this paper we present a detailed analysis of the char-
acteristics of light pionic atoms (A ( 44). Our aim is just
to emphasize the signi6cance of nuclear structure effects
in the pion-nucleus interaction. We show that a more
careful construction of the optical potential results in a
better description of the experimental data. Of course,
we do not intend to solve all the problems accummulated
so far and especially the well known anomaly associated
with the small absorption widths of the 3d levels [19] is
not touched in the present paper.

In the following section we start with the optical poten-
tial in momentum space formulated in the framework of
Galileo-invariant; multiple scattering theory. Performing
the angle transformation from vrN to m-nucleus center-
of-mass system (CMS) frame the first-order optical po-
tential receives also a spin-dependent contribution due
to nucleonic Fermi motion. The corresponding term is
omitted in the majority of existing calculations. It is re-
pulsive, reflects the nuclear spin-orbital interaction, and
can play an important role particularly for nuclei with
half-6lled valence shells.

Further, the first-order optical potential is extended
by a phenomenological term standing for pion annihila-
tion and reemission. We assume that the pion absorption
takes place on noninteracting nucleon pairs immersed in
a nuclear environment. This is an analog of the impulse
approximation, which is usually used in constructing the
first-order optical potential. Kinematical and dynamical
consequences of such an assumption are carefully studied.
We end up with an expression which receives contribution
from two-nucleon long-range correlation function and re-
duces to the conventional p term only in the limiting
case.

Having constructed the optical potential we study the
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role of the long-range recoil correlations and of the spin-
orbital (cr ~ l) term in Sec. III. The results are presented
for the 18 and 2p levels of light pionic atoms in com-
parison with the available experimental data. We also
discuss in detail the role of the spin-isospin corrections
to the second-order optical potential and their inBuence
on the characteristics of light pionic atoms. Some con-
clusions and outlooks are summarized in the last section.

II. THE OPTICAL MODEL

A. First-order optical potential

To construct the pion-nucleus optical potential we use
the standard multiple scattering procedure formulated by
Watson many years ago [20). Here we follow Ref. [21] and
analyze in detail the first-order optical potential describ-
ing the pion-nucleus strong interaction. Presuming the
validity of closure and impulse approximations it can be
obtained in the form

(&'
I
U'"(E)

I &)

Here the reduced masses are defined as

mM
m+M

mM~
m+ M~

1 p A 2

2MMA —1 (4)

in Eq. (3c). Then the potential matrix U(r) is evaluated
for the effective nucleon momenta [23]

A —1
p = -—+ (O' - 0)A 2A

with p, M, and M~ standing for the mass of pion, nu-
cleon, and nucleus, respectively. The correction e~ rep-
resents the nucleon-core binding energy and momentum
v is the average of relative nucleon-core momentum in
the initial and final states. The integration over dsv in
Eq. (1) reflects the Fermi motion of nucleons within the
nucleus. In practical calculations we use approximations
that lead to a more static picture of the x-N subsystem
propagation. First, we set

a (4'4) e' '(t'4)
(2z)s

~ ~

x Sp[p(&' &)(qf'It(e) I q')]

where the transferred momentum

q=Q —Q=qf —q;,

p(g'; g) is the nuclear density matrix normalized to 1, and
the symbolic notation

sp [p(g'0) (qf It(e) Iq')]

) 4: .(4')(qf ~.'~.' It(e) I q* ~.~.)
CT )T )Oz )TzI I
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is used for the summation over the target nucleon spin
and isospin projections. In the pion-nucleus CMS kame
(A-c.m. ) the final (initial) pion momentnm and reac-
tion energy are denoted by Q' (Q) and E, respectively.
The transformation of kinematic variables kom A-c.m. to
pion-nucleon CMS frame (2-c.m. ) is performed by means
of the following formulas [22]:

qf = ~'- —(~'+ ~) + —v —= q'+ —v (3a)] A —1 p P, ( P
2A M M M

q.- = 9 — —(9'+ 9) + —= q. + — (3b)
A —1 p P

2A M M M

P A

in the initial and final states, respectively. Thus only
the terms up to order of Q &

retain in our calcula-
tions. Using this approximation one avoids, without any
serious loss of accuracy, the numerical averaging over the
nucleonic Fermi motion normally needed in Eq. (1).

For the pion-nucleon scattering matrix we take the
parametrization

2x
(qf It(e) Iq*) = ——(fo(~) + ~ o ' [q' x qf] f~(e))

P

fs(e) = aso + asst ~,
(6)

2K
('qf I t(e) I q;) = ——fo(~) + t o . [qo x qo] fl(t )

where t is the pion isospin operator, o and w stand for
spin and isospin Pauli matrices of target nucleon, re-
spectively, and as' = as'(cos8) (S = 0, 1; T = 0, 1)
are usual combinations of the pion-nucleon partial am-
plitudes f&~&(qf, q, ; e) taken from Ref. [24]. Here cos8 =
qy q;, L is the ~N orbital momentum, I =

2 or 2 is
the isospin of the xN system, and the total angular mo-
mentum j = L + 2. The separable potential model is
used to define the ofF-shell extrapolation of the ampli-
tudes f&~&(qf, q;; e). It has already been mentioned [25]
that our off-shell prescription of the mlV amplitudes f&~&

can be put into close correspondence with the finite-range
model by Kalbermann et aL [9].

Splitting the mN t matrix into three parts

]. p A

2M JHA —1
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the first-order optical potential can be decomposed into
corresponding terms ive'" l~+l = —((7) —V) )

e'" ~+
2

U (E) = — V~ (E) + V~ (E) + V~ (E) . (8)

Using the formula

in the expression for the last component, the Wigner-
Eckart theorem for V~, we obtain in the limit

I

v I:0

(Q'
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(9a)
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(oil J [P' Ilo)
(9b)

(Q'l&~" (E) IQ) = „~'A(~oi ', fi(~) (~ ~) I ~o) (9c)

after some simple manipulations (see [21] as well). Here
we denoted

M lqo x qol

) IQx Q'I

and the nuclear form factor

p'(q) = f d (a' ' ' p(i;i) = f d "~' 'p(~) . (lo)

l—:lg = -i [g x V'(],

Y2(f) 8 s
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Before concluding this section we brie8y summarize
the main features of the optical potential U( l(E). It
is constructed fully microscopically and no free param-
eter enters Eqs. (9). The term VN (E) is expressed in(1)

the factorized form as a coherent sum of free AN ampli-
tudes and is proportional to the Fourier transform of nu-
clear density, which we assume to have the same form for
both protons and neutrons. At variance with the classical
first-order optical potential introduced in the coordinate
space by Ericson and Ericson [1] the potential V)v (E)
contains the finite-range effects of the vrN interaction and
the kinematics of the transformation from 2-c.m. to A-
c.m. is treated in a natural, very precise way. On the

We hope there is no confusion due to the same symbols
used here for the nuclear density matrix as a function of
nucleon-core relative distances (', (e and its diagonal ma-
trix elements p(r), in which r corresponds to the position
of nucleon with respect to the nuclear center of mass. In
Eqs. (9) J (s) and 7 ( 2 v) are the nuclear (nucleon) spin
and isospin operators, respectively. Further, ji(q'() are
the spherical Bessel functions with q' =

& q and

other hand, note that the Lorentz-Lorenz renormaliza-
tion is not considered in our approach. Nevertheless, the
pionic atom data are not very sensitive to the nonlinear-
ity of the optical potential and one can always absorb the
Lorentz-Lorenz effect into the phenomenological second-
order term discussed below. Another point worth men-
tioning is the mixing of amplitudes with different I in
our potential when they are transformed &om 2-c.m. to
A-c.m. and decomposed into vr-nucleus partial waves (see
Ref. [26] for more details). However, the real effect due

to the nonequivalence Q Q P qf q, is not too significant
in the calculations, as well.

The V~ I(E) and VN (E) terms depend strongly on
the shell structure of the nucleus exhibiting the char-
acteristic features of individual nuclei in this way. The
second term of our potential (8) is proportional to the
nuclear spin and represents a negligible correction of the
order of 1/A to the previous one. It also does not con-
tribute to the 8-wave characteristics of pionic atoms with
J = 0, 2. For these reasons we have not included the

term V~~ l(E) in the present calculations keeping only

V~ (E) and V)v (E) in our first-order optical potential.
The last contribution to the potential U~ ~ is the Fermi

motion spin-orbital term V~ (E). It has its origin in the
spin-Hip part of the elementary mN amplitude and arises
due to its transformation &om 2-c.m. to A-c.m. also re-
jecting the nucleonic Fermi motion. One can easily see
that the (cr ~ l) term contributes to the potential U( )

even in the case of spin zero nuclei. Provided that admix-
tures of higher configurations are neglected, the matrix

elements of V~ (E) are evaluated in the nuclear ground
state and are equal to zero for magic nuclei ( He, 0,

Ca, . . .) reaching its maximal magnitude for nuclei with

half-filled valence shells. Of course, V~ ) (E) is by a fac-

tor of ~M "&" smaller than the leading term in Eq. (8),
where v„ is the number of valence nucleons (holes) and

stands for their orbital momentum. Nevertheless, the
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contributions &om a given nuclear subshell add construc-

tively to the small isoscalar part of V~ (E), so the (o ~ I)
correction can grow to be rather important for subshells
with higher /„and deformed nuclei in the middle of a va-
lence shell. Unfortunately, the actual contribution of the

V~ (E) term to the ~-atomic characteristics is difficult
to estimate as their A dependence is not simple.

For a purpose of comparison with the common coordi-
nate space formulation we also present the Fourier trans-
form of Eq. (9c). Omitting the correction factor +&~

connected with the CMS motion it can be rewritten in
the form

to the energy of the z-atomic 2p level. The same holds
also for the ls level, because the momenta squared are
negative in the case of pion-nucleus bound state.

Unfortunately, the proper investigation of eHects
caused by the (cr ~ I) term was missed in the literature for
a long time supposing that its contribution to the lead-

ing part V~ (E) of the pion-nucleus optical potential is

negligible. Including the V~~ (E) term in our recent cal-
culations [30] we have demonstrated the vital role of this
correction in accounting for the very precise data mea-
sured for the 2p levels of pionic atoms in the region of
"deformed" s-d shell nuclei. Here we would like to show
an improved evaluation of the (cr ~ I) term making use
of the realistic shell-model wave functions and put our
results into the context of a more complete analysis.

+(n„—p„)aug] (o ~ I)„ B. Second-order optical potential and nuclear
correlations

where the sum extends over all valence subshells with
radial density distributions p„(r) normalized to 1. The
occupation numbers of protons (neutrons) are denoted
by p (n ) and (cr ~ I)„= l„or (I„+1)—for angular
momentum j = l 6 2. Almost the same expression for
the term in question was obtained recently by Birbrair
and Gridnev [27] in the framework of relativistic mean-
field approach but it differs from that published earlier
by Friedman and Gal [4]. The last one is probably in
error.

In order to avoid a possible confusion, we recall the
reader that Birbrair and Gridnev obtained another spin
term [pg(r) in their notation], which is of "relativistic"
origin [27]. The term pI, (r) does not vanish for spin sat-
urated nuclei and depends critically on the off-mass-shell
extrapolation of the mN amplitude [28]. Further, the
term pg(r) was claimed to be responsible for the anoma-
lous pion-nucleus repulsion in the 8 wave. However, the
formalism used in Ref. [28] for obtaining pg(r) was seri-
ously questioned by Koch and Oset recently [29]. Partic-
ularly, the authors of Ref. [29] have proven that within
the relativistic impulse approximation and for spin satu-
rated systems there is no contribution &om the spin-Hip
part of the elementary xN amplitude. In our opinion,
this result seems to be irrefutable. Of course, pg(r) does
not have any counterpart in our optical potential.

It is readily seen from Eq. (11) that the potential

V~ (r) is an oscillating function of the relative pion-
nucleus distance and its volume integral vanishes. Since
the pion-nucleus wave function in the relative 8 state is
almost constant inside the nucleus, the contribution of
the Fermi motion term to the 18-level energy shifts is
expected to be smaller than that to the 2p-level shifts.
Further, the coefficients agT are real, thus our correc-
tion V~~ (E) will affect mainly energy shifts leaving
the level widths almost intact. Finally, the angular be-
havior of the (cr ~ I) term is controlled by q2 = Q' + Q
—2qQ'Pq(cos8). If the positive sign of the matrix ele-
ment of the spin-orbital operator (see Sec. IIC below),
aqo ) 0, and the coefficient at Pq(cos 8) are combined, we

can conclude that V~~ ~(E) yields a repulsive correction

Processes associated with pion annihilation are beyond
the scope of the nonrelativistic multiple scattering theo-
ries and are usually taken into account on a phenomeno-
logical level. The leading mechanism involves at least
two nucleons (mNN: NN: n'NN) and its con-
tribution to the pion-nucleus optical potential is usually
postulated as the famous pz term [31]

(Q'lV~ (E) lQ) = A(A —1) dBO+ Q' Q

[~0(qs)]'

where Bo and Co are phenomenological parameters,
which characterize pion interaction with nucleon pair in
s and p wave, respectively. Further, G(q) is the Fourier
transform of the nuclear density squared,

G(g) = f d re'e' p (r)

and d = 1 + m/2M is a kinematical transformation fac-
tor commonly used in the coordinate-space calculations.
In this section we show that the pz term (12) can easily
be generalized to include the long-range nuclear correla-
tions. Such a modi6cation turns out to be essential in
the case of the lightest nuclei.

Let us start with the second-order optical potential
assumed in the form

&Q'I&'"'(E) IQ) = A(A —1) (ol t; (E) lo), (14)

where

t'~~(E) = t ~~(E)
(E) lo)(ol a (E) lo)(ol t.~(E) (i5)

is the short-range part of the full vrNN scattering matrix
t ~~(E) and G~(E) stands for the Green's function of
the ~-nucleus system. The second-order contribution of
the first-order optical potential was subtracted in (15)
to avoid the double counting. Due to the momentum
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mismatch b, = 360 MeV/c in the pion annihilation ~AN
; NN, the scattering matrix t'~~(E) is expected to

vanish for internucleon separations larger than r = 0.3
fm.

Introducing further the Jacobi coordinates r, R,

~A —1 where r = r) —r2 and

R = (rs + r4 + . + r~)/(A —2) —(rg + r2)/2,

we have

(O'~Uiiii(E))Q) = fd vd r'd rd R'd Rd q'd qe' '
(2x)

x e'"'( ) e '" '
p2 (R', r'; r, R) (q2'q'

i

t' &&(z) i q2 q) e'"' (16)

where

A —1

pq( R'r'; pR) = f d (| (0~~ d& z, . . . , dp, R', p')

j=3
= q20+ v, (17b)

and

x(r, R,)„.. . ,(„,i O) 1 m A A —2
z = E — v — (Q'+Q) . (17c)

W

A. —2 m m

2A 2dM 2dM

I m—= q2,0+ 2gMv ~ (17a)

In what follows, the motion of the two-nucleon sub-
system is treated in the effective momentum approxima-
tion, i.e. , we set v=o in Eqs. (17) in analogy with the
derivation of the 6rst-order optical potential. Now the
second-order optical potential reads as

(Q'i& ' (E) iQ) = ', ' d'r'd'rd'Rd'rt'd' e'"~'&x(z- &~

(2m)

~ I
x e '" '

p2 (R, r'; r, R) (q2, 0q I

t' ~~ (zo) i q2, 0 g) e'"' .

Further, let us write the two-nucleon density in the form

p2 (R, r'; r, R) = p2 (r', r) p2 (R, r'; r, R), (19)

where p2(r', r) reflects the NN correlations associated with the short-range NN repulsion and pi&(R,r';r, R) stands
for the long-range part of the two-nucleon density as provided, e.g. , by the shell model. In designing the ansatz of
Eq. (19) we were inspired, of course, by the Jastrow model. We also assume that within the region r (r') ( 0.3 fm

the shell-model density is a slowly warying function of r and r'. Therefore, we take pi2(R, r', r, R) pi2(R, O; 0, R) in

evaluating Eq. (18). Then the resulting expression is

where

(&'I+i@ (E) IQ) = A(A 1) Bo+ t 0 q2, 0 q2, 0
»(q2, 0) ~0(q2, 0) g (

[ (& )1'
(2o)

Go(q) = j d R ' ~' pi2(R, O;O, R) (21)

and we have used the parametrization

»,z +z»(~2, 0)»(e.o)~ ( o+ oq, o q, o)
i (+ )~

=
( )

d d d p'd rj *"'p'( ', )(q' q'it' ( )iq ri)

(22)
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for a phenomenological construct, which combines the
short-range part of the xNN amplitude and the short-
range part of the two-nucleon density. The angular trans-
formation was taken into account using the appropriate
formulas (17) in the scalar product q2 s qz, s. The param-
eters Bo, Co are related to those, introduced in Eq. (12)
by the relations Bp dBp, Cp dCp. [Here the sign =
means equality for Gs(q): G(q) and A: oo.] In
comparison with the p term in Eq. (12), our model also
receives a contribution from the nuclear recoil and Pauli
principle correlations via the function Go(q).

CMS completions

Let us further investigate the role of nuclear recoil cor-
relations in more detail. At first, it is instructive to
rewrite Eq. (21) as

Go(q) =, d'p1d'S» b(p1+p2 q) D(p»p2)
(2z )

where D(p1, p2) is the diagonal in nucleon momenta p1
and p2 two-nucleon density

F (q) =e

to evaluate the CMS corrections present in Eq. (25). Here
a denotes the harmonic oscillator constant.

The long-range correlations involve the center-of-mass
correlations and those due to the Pauli exclusion prin-
ciple. The range of these correlations is of the order of
nuclear radius (= 1.2A ~s fm) and the reverse Fermi mo-
menta ( 0.7 fm), respectively. In the region of pion-
nucleus interaction at very low energies the CMS corre-
lations prevail the other ones and we expect the role of
Pauli principle correlations to be suppressed in the case of
pionic atoms. If one retains only the CMS correlations,
for which the function C( )(p1, p2) vanishes, the two-
nucleon density matrix of Eq. (25) is made up merely of
the nuclear form factors. Then one can obtain a simple
formula

Gs(q) = d pF(p) F(q —p) e (~'~ ~ ) . (26)

Constraining the center-of-mass motion to one point in
space, F, (q) = 1, our model converges to the common
p2 term

A ( A

D(p1, p2) = d'p, ~1 ) p; 1

Gp(q)
1 d'p F(p) F(q —p) = G(q) .

(2s )

(0sh. m. 1 P1& P2~ t PA)

X {PA»P2& P110sh.m. ) (24)

This is just what one expects in the limit A: oo. It is
also instructive to express Eq. (26) in terms of nuclear
densities as

and
1

O,h ) stands for the nuclear ground-state wave
function in the shell model. Following the prescription of
Feshbach et al. [32], the two-nucleon density matrix can
be rewritten as

S( A )' -sss 2, . ..+.,
Go(q) = l, l

e ~ d'r, d'r2 e'+
(2na2$

- " "' p(r ) p(r ) (27)

1
D(P1, P2) =

(P1 + P2)

C(M)( ) + F(M)( )F(M)(p )

(25)

&om which the nonlocality due to the nuclear recoil eHect
is easily seen.

K Spin-isospin comections

where the correlation function C™(p1,p2) and form
factor F( ) (p) = F(p)F, (p) are model quantities cal-
culated using an independent particle model and F(p) is
the nuclear form factor of Eq. (10) as extracted from the
electron scattering measurements. The center-of-mass
motion is assuxned to be in the lowest harmonic oscil-
lator state, so we will use the form

The standard second-order optical potential (12) is
constructed omitting the spin and isospin structure of
the elementary pion-two nucleon amplitude. Correspond-
ingly, the parametrization adopted in Eq. (22) refiects
only the spin-isospin independent part of the full vrNN
amplitude. In fact, this can be written in the more gen-
eral form [50]

f gg = (Bp+B,(o* cr~)+B2(r'. T~)+ B p+Bs, (cr'. o')] [(t.r')+ (t. r&)]

+B,(~'. &~)(r*.T') + B„+B»(~ ~~)] [(t T')(t. T&) + (t.T&)(t. r')]

~fpwavep rt])b(ra' —rrjh (r —''r '
(28)
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where the superscripts i and j distinguish the two inter-
acting nucleons. Imaginary part of the parameters B
can either be extracted &om the available mN% data [1]
or calculated xnaking use of some simple model predic-
tions [50]. Of course, the parametrization of the xNN
amplitude used here is not quite general, because spin-
vector and spin-tensor terxns cannot be completely ruled
out. The analysis of such terms could be a subject of
further work.

To get the second-order optical potential one has to av-
erage the m'NN amplitude over the nuclear ground-state
wave functions, e.g. , via Eq. (22). In the early work of
Ericson and Ericson [1] the authors replaced the delta
function b(r' —r~) in Eq. (28) by the unity operator and
averaged the remaining spin-isospin part over the nuclear
ground state. Within their formulation the 8-wave pa-
rameter 80 is to be replaced by an effective equivalent

Bp = Bp+ ABO(A)

clear matrix elements of f NN T. herefore, the antisym-
metry of the nuclear wave function is not properly taken
into account in their formalism.

The recent approach by Germond and Lombard is
much more convincing [50]. They studied the imagi-
nary part of the 8-wave pion-nucleus optical potential and
elaborated the two-particle spin-isospin operators pre-
serving the delta function in Eq. (28). Nevertheless, the
analysis was restricted on situations, where the nucleus
ground-state wave function is time-reversal invariant. In
their approach the "corrected" parameter Bp+ turns out
to be A independent.

Following the line drawn by Germond and Lombard
we evaluated the matrix elements g„of the spin-isospin
operators, which are multiplied by corresponding B„sin
Eq. (28), e.g. ,

go=) (@0Ib(r' —r')b~ r —
II @o)=A(A—1)Gp(q),

( r' + r' )
2 )

in the second-order optical potential. The lengthy ex-
pression for the A-dependent correction can be found in
Appendix B of Ref. [1]. It vanishes for heavier nuclei
but cannot be neglected in the region of the lightest nu-

clei with A & 10. The resulting formulas were further
exploited by Tauscher and Schneider [42], who studied
the infiuence of the corresponding 1/A corrections to the
pion-nucleus optical potential. Another drawback of the
formalism used in Refs. [1,42] is the independent treat-
ment of spin and isospin variables in evaluating the nu-

g1 = ).(~0 I
(~'.~') b(r*-r') b

I

r —
II ~0) «'t' r'+ r& )

)

In our approach, the antisymmetry of the nuclear wave

function was fully taken into account, A
I 40) = —

I 40),
as well as the fact that b(r' —r~) projects out of the

nuclear wave function its part symmetric with respect to
the transposition of the coordinates r' and r~. Using the
identities

) (@0 I f NN I
@0) = ) (@0 I fmNN(1 —&) I@'0)

iwj &/2

1 (= -) (@oi &-NNI 1 —-(1+&' &')(1+&' &')
I 1@0&

we arrive at

g1+g3 = —2go,

g31 = —3gso,

(31a)

(31b)

) (@0 I fn NN I @0) Bp go + (B30 3B31)g30 (32)

where only the s-wave part has been kept in consider-
ation. The resulting formula for the effective isoscalar
parameter Bp+,

g4 ———3gp . (31c) efF 4
+0 —+0 +1 +2 384 +50

3
(33)

In addition, neglecting the isotensor term inherent in the
combination (t . r')(t . 7~) + (t r~)(t 7'), we have

g5o = —g3,3 (31d)

g51 — g4 — 4gp
3 (31e)

Assuming further the same symmetry structure of the
nuclear wave function in both the spin and isospin spaces
(i.e., gz ——g1) one can combine the expressions (31) to
get

is the same as that obtained recently by Germond and
Lombard. However, the present derivation is not re-
stncted only to the 0+ nuclei and its validity appears
to be much more general. The He and H nuclei repre-
sent the important examples to that our formalism can
be fully applied. In fact, even if the spin and isospin
structure of a nucleus were different, one could still make
some conclusions from the relations (31), the validity of
which is quite general.

C. Nuclear structure input

Here we give some details of our calculation procedure.
At first, in constructing the optical potential V~(E) we



49 INFLUENCE OF NUCLEAR STRUCTURE ON THE. . . 1461

TABLE I. The nuclear charge radii adopted to Sx the parameters b of harmonic oscillator density
distributions.

Nucleus He He Li Li Be B B g t N O O~ [fin] 1.88 1.673 2.49 2.39 2.519 2.45 2.42 2.45 2.44 2.54 2.71 2.784

Here, po is the normalization factor and the parameters
are

A —1 2 2(A —1) (R2 ( 2))
A 5A —11

s(A —4) forA) 4,
0 forA &4, (34b)

where R,h (r„) denotes the nuclear (proton) charge radius
and r„= 0.81 fm. The values of R,i, were taken from
Ref. [34] and are presented in Table I. Finally, using the
corresponding formula for the nuclear form factor and
Eqs. (13) and (26), the functions G(q) and Go(q) can
readily be expressed in an analytical form.

For heavier nuclei (A ) 18) we use the symmetrized
Fermi density [35)

,( ), h(s)
cosh (&) + cosh (&)

(35a)

which is known to describe well the electron scattering

TABLE II. The nuclear charge radii and parameters of the
symmetrized Fermi density.

Nucleus
lgF

QON

e
23N

Mg
Al
Mg

32S
35C1
40C
44C

c [fm]
2.629
2.773
2.882
2.875
2.984
3.260
3.134
3.291
3.630
3.690
3.757

b [fm]
0.507
0.521
0.471
0.498
0.484
0.397
0.477
0.520
0.457
0.487
0.481

R,h [fm]
2.891
3.004
2.951
3.007
3.039
3.035
3.114
3.300
3.384
3.479
3.510

introduced the relativistic kinematics in the standard
way [25]. Further, the strong-interaction optical poten-
tial (Q'

] V~(E) ] Q) was supplemented with the elec-
tromagnetic terms (Coulomb potential, finite size, and
vacuum polarization corrections) and incorporated into
the Lippmann-Schwinger equation to be solved relativis-
tically in the momentum space. Using the matching pro-
cedure of Vincent and Phatak [33] we calculate the com-
plex energies of the bound pion-nucleus system looking
for zeros of the corresponding Jost function. The method
was described in detail in our previous paper [25].

In the present calculations we use the harmonic oscil-
lator density for all nuclei up to isO. Taking into account
the center-of-mass motion and the finite size of proton,
we parametrize the nuclear density as

( ~2)
p(r) = ps ~

1+a—
~

eb')

data in a broad interval of transferred momenta. The
parameters 6 and c were 6tted to reproduce the nuclear
charge form factors

g
2

&"(q) =&(q)&N(q), +~(q) = 1+
0.71GeV2

- —2

making use of the constraint

R2„—(r„) = — 7(~b) + 3c2 (35b)

The values we use in our analysis are given in Table II.
The nuclear densities (35a) lead to analytical expressions
for F(q) and G(q). This speeds up the numerical calcu-
lations to some extent.

To evaluate the matrix elements needed in Eq. (9c)
we use the harmonic oscillator model to construct the
nuclear distributions p (r). Since only the valence sub-
shells with l„)0 contribute to the sum in Eq. (11) and

p„(r) has the same form for both the j„=l„+ i and

j = l —
2 subshells we can separate the radial integra-

tion in all cases we are interested in and write the matrix
elements in the form

((~ &)(t.~) ) =). ~. +(—1) p. (~ ~ &). . (37)

Because the nuclear subshells with j = l + i tend
to be occupied first, the term ((o ~ l)(t ~ 7)0) is always
positive. The isovector term may be negative but not
the complete matrix element of Eq. (Qc) in which the
isoscalar part prevails. The corresponding values we have
used in our analysis are given in Table III. They were ob-

TABLE III. The angular part of the isoscalar and isovector
matrix elements of the spin-orbital operator.

Nucleus
10B
12+
14N
18O

Mg
Al

28S.
32S
35n
44'

((~.l)(t ~)')
3.87 (6.00)
3.59 (8.00)
3.70 (4.00)
2.44 (4.00)
8.60 (16.0)
13.20 (22.0)
14.40 (24.0)
14.72 (24.0)
9.00 (15.0)
12.00 (12.0)

((n ~ l)(t r)')
0.00
0.00
0.00
2.44
0.00
1.20
0.00
0.00

—1.80
12.00

I (~')(t ~)']~0) =1(q')((~ ~)(t ~)'),
Q T

(36)

where I(q') stands for radial integral and the angular
part is defined by
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tained using Cohen-Kurath wave functions [36] for p-shell
nuclei and the wave function from Ref. [37] in the case
of O. The occupation numbers of protons and neutrons
beyond the 0 core were calculated by Brown et aL [38]
for even-even nuclei. We use the numbers given in Table
3 and extrapolate the values of our elements (37) for the
odd nuclei Al and Cl, as well. In the brackets we
present the values that one obtains if the simple model
of closed nuclear subshells is adopted [30), in which the
j„=1„+z states are occupied first.

III. RESULTS AND DISCUSSION

Bp ——(—0.096+ i 0.048) m

Cp ——(—0.152+ i 0.076) m
(38a)

Using our momentum-space code PIAToM [25], we have
calculated the characteristics (strong-interaction energy
shifts 4E~ and absorption widths I'~ns) of light pio-
nic atoms. Our parameters Bo (Bo) and Co (Co) were
fixed to reproduce the experimental data of m-atoms 0
[39,42] (1s and 2p levels) and 4oCa [40,41] (2p level). We
have found

the long-range center-of-mass correlations in6uence sig-
nificantly only the characteristics of very light (A & 10)
pionic atoms yielding a negligible eKect for heavier pi-
onic atoms. The most important point is that the char-
acteristics of the pionic atom He are quite well repro-
duced in our present calculations, the fact which cannot
be achieved by applying any version of the standard opti-
cal potential. On the other hand, the worse description of
the He data does not represent a crucial problem in the
analysis. In fact, the open channel of charge exchange re-
action in the virtual state may give an additional contri-
bution to the calculated shift and width in this case [48].
Inclusion of such processes stands beyond the framework
of the formalism presented here and can be a subject of
further investigations.

The description of the 1s-level characteristics is gen-
erally rather good and similar to the results of other
analyses. Particularly, the isospin dependence of the
strong-interaction shifts b,E~(ls) is nicely reproduced
in our model. One should notice that this achievement is
not a result of the fitting procedure, because the isospin
structure of our optical potential fully re6ects the isospin
structure of the elementary xN amplitude. The complex
analyses of light pionic atoms are not numerous in the

Bo ——(—0.110+ i 0.055) m

Co = (—0.151+ i0.077) m
(38b)

when the calculations were performed using the second-
order potential of Eqs. (12) and (20), respectively. These
values have been used in all the calculations to be dis-
cussed below.

In the present analysis we have included all the avail-
able data up to 24Mg where the pionic 18 level had been
measured and most of those measured for the 2p level in
the region we are interested in (A ( 44). The selection
of experimental data was performed involving those col-
lected in the article of Tauscher and Schneider [42] and
those published later [15—17,39—41,43—47]. When more
data were available for one x-atomic level, we always took
the weigh average of them. For the sake of completeness
it should be mentioned that we have slightly increased
(to be 1—2'%%up of the corresponding magnitude) the error
bars of some shifts AE~ with respect to those published
in original papers. We proceed so to take into account
the uncertainties in extracting the electromagnetic cor-
rections from measured transition energies.

In Figs. 1 and 2, the results of our calculations are pre-
sented in comparison with the experimental data. Figure
1 visualizes the in6uence of the recoil correlations on the
characteristics of the m-atomic 1s levels. The presented
results were obtained exploiting the standard optical po-
tential, the phenomenological part of which is defined
by Eqs. (12) and (38a) and using the potential with the
improved second-order part parametrized by means of
Eqs. (20) and (38b). The correction V~ (E) was omit-
ted on this stage of our calculations. As we expected,

& rg=r/2

g
Q

5

3
&I

g r; &yz-
1 0 5 10 15 20 25

MASS NUMBER

- (

Q

3

K

4

0 5
I I I I I I I I I I I I & I I & I I

1'0 15 20 25
MASS N UMBER

FIG. 1. The calculated characteristics of the pionic 18 lev-
els are connected by the full and dashed lines (or denoted
by full and empty circles) that correspond to the use of the
optical potential with the second-order term proportional to
G(q) and Go(q), respectively. Our results are presented in
comparison with the available experimental data. (a) The
strong-interaction shifts. The data for nuclei with diferent
isospin are displayed separately. In the case of pionic He,
the shift is presented with the opposite sign. (b) The absorp-
tion widths.
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literature, thus the systematic comparison with them is
difBcult. Many years ago Tauscher and Schneider stud-
ied the ls-level characteristics and incorporated the spin-
isospin 1/A corrections in an attempt to explain the dis-
crepancy that one observes between the calculated and
measured data of very light pionic atoms. Unfortunately,
their approach was based on the formula given by Ericson
and Ericson [1) which has been found to be inaccurate.
We will come back to that point at the end of this section.
Here we mention that a slightly better description of the
shifts DEN(la) can be achieved if the A2 dependence
[instead of the A(A —1) factor) is assumed in the second-
order optical potential [49]. It would push the theoretical
results up in the region A & 10 and bring the calculated
characteristics of the Li 7r atom into close agreement
with the experimental data. On the other hand, the re-
sults obtained for 4He would be quite off then. Moreover,
we do not see any microscopical justi6cation of the A2

factor in question.
Besides the discrepancies observed for 6 & A & 10 in

Fig. 1(a), other problems seem to occur in the description
of the absorption widths in the neighborhood of the ~~C

m-atom and another one is represented by the "anoma-
lously" small experimental width of the 1s level in pionic

Ne. We have no real explanation for these deviations
at present.

The strong-interaction energy shifts and absorption
widths of the pionic 2p levels are shown in Fig. 2. Because

20
(g)

~ &5-

C4
M
a

l4

I

$0 10 ZO 80 40 50
MASS NUMBER

I I I I i I

- (b)

O

C4
CQ

M

0 $0 ZO 30 40 50
MASS NUMBER

FIG. 2. Comparison of the calculated and measured char-
acteristics of the pionic 2p levels. The full (dashed) line con-
nects the results obtained when the (cr ~ l) term was included
(omitted) in our calculations. The dot-dashed line corre-
sponds to the calculations with the (cr ~ l) correction eval-
uated using the simple model of closed nuclear subshells. (a)
The strong-interaction shifts. (b) The absorption widths.
Only the results including the (cr ~ l) term are shown. The
dashed and dot-dashed lines would be guite close to the full
one in this Sgure.

the effects due to the recoil correlations turn out to be
negligible in the region of heavier nuclei, only the results
obtained with the standard pion-nucleus optical poten-
tial are presented and we concentrate our attention to the
role of the (o ~ l) correction. The latter one infiuences the
absorption widths I'Ans(2p) given in Fig. 2(b) to a small
extent (about 1'%%up of their magnitudes). This is the rea-
son why only the results obtained including the (cr ~ l)
term in the optical potential are shown in Fig. 2(b).

As one can see, the 2p-level shifts are afFected by the
Fermi motion correction to relatively large extent. In
the region of deformed s-d shell nuclei (24 & A & 32)
the effect represents some 5 —7% of the total strong-
interaction level shift and brings the theoretical calcula-
tions to much better agreement with experimental data.
It is encouraging to see that the theoretical line follows
the trend observed particularly for the most precise data
taken from the PSI measurement [16]. One gets an even
better description of the 2p-level shifts if the approxi-
mate model of closed nuclear subshells is used to calculate
the matrix elements of Eq. (36) [30]. It is visualized by
the dot-dashed line in Fig. 2(b). However, the succes is

partly fortuitous, since the quantities ((cr ~ l) (t a)+) rep-
resent upper bounds rather than realistic values in this
case. The present model (full line in Fig. 2) does not fit
the experimental data fully; nevertheless, it gives quite a
reasonable description of the observed m-atomic charac-
teristics for the 2p levels. The only real deviation occurs
in the case of 44Ca; however, it can easily be removed
by making the nuclear distributions of protons and neu-
trons different [41]. Generally, the neutron excess and
the difference between the distributions of protons and
neutrons start to play a non-negligible role for heavier
nuclei.

For the sake of completeness, we have also studied the
efFects caused by the (cr ~ l) term to the characteristics
of the pionic 18 level. Incorporating the spin-orbital cor-
rection into the optical potential we have found that the
results obtained for the absorption widths I'~Bs(ls) and
strong-interaction shifts bE~(ls) are afFected only on
the level of 1'Fo or 2/p of their magnitude, respectively
[30]. Such an efFect is mostly under the experimental
precision and can be neglected. The shifts b,E~(2p) ex-
hibit a much larger effect, which is in agreement with the
remarks made in Sec. IIA. We expect the effects due to
the (o ~ L) term to be even more significant for the heav-
ier deformed nuclei having the valence nucleons in the
subshells with higher angular momenta.

In concluding this section we would like to make some
comments on the spin-isospin corrections to the second-
order optical potential, which were often expected to im-
prove the description of light pionic atoms. As we have
already shown, the spin-isospin operators contribute ef-
fectively to the isoscalar part of the vrNN amplitude
and the parametr Bo should be replaced by Bo de-
fined in Eq. (33). The imaginary part of the parameters
B„can be calculated within the framework of a sim-
ple rescattering model developed by Bertsch and Riska
[51]. The analytical expressions relating ImB to the
s-wave vrN scattering lengths were given in Ref. [50].
We have adopted bo ——s(aq + 2as) = —0.0093m and
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Parameter
Value in m

TABLE IV. The imaginary part of the parameters B .

Im Bo Im Bi Im B2 Im B30 Im B3q Im B4 Im Bso Im B5~
0.0323 0.0107 —0.0320 —0.0183 —0.0060 —0.0108 0.0139 0.0047

bq ——s(as —aq) = —0.091m [24] to get the results
shown in Table IV.

The effective isoscalar parameter Im Bz ——0.049m
appears to be in surprisingly good agreement with our
phenomenological value ImBo/d = 0.051m 4 given in
Eq. (38b). On the other hand, Germond and Lombard
obtained a value of Im Bo+ = 0.071m 4. However, their
analysis was based on the d p ', He m reaction, data of
which are less precise than those on the low-energy xN
interaction. Furthermore, the value ImBO obtained by
fitting the x-atomic data varies within some 20'%%uo depend-
ing on the concrete parametrization of the total optical
potential and on the fitting procedure used by different
authors. Thus, the agreement of our fitted ImBo and
calculated Im Bo+ can be rather fortuitous.

Another interesting point worth mentioning is the
strong suppression of the isospin dependence in the
xNN; NN; xNN process. The combination
Im (Bso 3B3$) gives a value proportional to the isoscalar
scattering length bo squared. Since its value almost van-
ishes, the only possible isospin dependence of the absorp-
tion part of the optical potential comes &om the tensor
part of the matrix elements gso and gsq. Observing the
apparent isospin independence of the measured absorp-
tion widths in our Figs. 1(b) and 2(b), one can safely
assume this correction to be practically negligible in the
region of pionic atoms we are restricted to.

At variance with the observation of Tauscher and
Schneider [42] the correct evaluation of the spin-isospin
corrections leads to the effective value of Bo+ that is prac-
tically A independent. The slight variations of Bo~ can
occur due to possible nonequivalence Qq P Q2 and due
to a weak isospin dependence. Unfortunately, these cor-
rections are not large enough to remove the discrepancy
observed between the calculated and measured strong-
interaction shifts in the region of very light pionic atoms.
The origin of it remains obscure.

IV. SUMMARY

We have presented a momentum-space formulation of
pion-nucleus optical potential constructed fully micro-

scopically in the first order. It receives a contribution due
to the nucleonic Fermi motion when the spin-dependent
part of the vrN amplitude is transformed &om the pion-

nucleon to the pion-nucleus center-of-mass frame. It
gives a contribution to the small isoscalar part of the
potential (usually denoted by bo) causing an additional
repulsion. We have shown that the discrepancy between
the experimental data and theoretical results for pi-
onic 2p levels in the region of deformed 8-d shell nuclei
is mostly accounted for by this correction reBecting the
shell structure of the nuclear wave function. We expect
even more pronounced consequences for heavier deformed
nuclei and levels with higher orbital momenta.

Another manifestation of nuclear structure effects is
associated with the nuclear correlations. We have pre-
sented a suitable method to incorporate the long-range
two-particle correlations into the second-order optical po-
tential. It leads to an additional nontrivial A dependence
in the optical potential in comparison with the common

p term. We have studied the inBuence of the CMS cor-
relations on the characteristics of very light pionic atoms.
Our new results for the 4He pionic atom turn out to be
in nice agreement with the experimental data. On the
other hand, the shifts b,E~(1s) and absorption widths
I'ABs(ls) of the surrounding pionic atoms are not repro-
duced quite well. The situation cannot be improved by
means of the spin-isospin corrections to the second-order
optical potential as some earlier analyses seemed to in-
dicate. We do not see any obvious mechanism, which
could account for the other deviations in the region of
very light pionic atoms.

The present formulation of the optical potential is very
suitable for studying the nonlocal features of the pion-
nucleus interaction. The Fermi motion (cr ~ I) correction
and the CMS correlations discussed in this paper repre-
sent only two examples of such effects. Taking them into
account, we were able to reproduce the characteristics of
pionic atoms much better, especially for very light nuclei
and nuclei with nonclosed nuclear shells.
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