
PHYSICAL REVIE%' C VOLUME 49, NUMBER 3 MARCH 1994

Cranking Bohr-Mottelson Hamiltonian applied to
superdeformed bands in A ~ 190 region

Furong Xu and Jjmjn Hu '

Department of Technical Physics, Peking University, Beijing 100871, China
Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100080, China

(Received 11 October 1993)

Level spins and transition energies of 26 superdeformed bands in the A 190 region are studied
with the rotational spectral formula derived from the cranking Bohr-Mottelson Hamiltonian proposed
by us with satisfactory results.
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I. INTRODUCTION quadrupole deformations, the cranking BM Hamiltonian

Intensive investigations have been performed on the
nuclear superdeformed (SD) states and several models
have been proposed for their spin determinations [1—
3]. All of them are empirical or semiempirical models
adapted &om the studies of the normal rotational bands.
Their applications in the superdeformed states are not
well justified and the studies throw little light on the
structure of the SD states. Cheng-I i Wu et aL [4] have
given a critical review of the problem. They have pre-
sented a convincing argument to show that any theoret-
ical spin determination must be model dependent and
that the present status of the nuclear model is not accu-
rate enough to make a spin determination with an error
less than lb. Hence, it is worthwhile to develop more
reliable models which may contribute towards the spin
determination and the nuclear structure studies of the
SD states.

Recently, we have developed a nuclear rotation-
vibration model based on the cranking Bohr-Mottelson
(BM) Hamiltonian [5]. The model has been success-
fully applied to the normal rotational bands of the well-

deformed even-even nuclei. It is a well-founded model
and can be applied to any quadrupole deformed nucleus
with moderate rotation frequencies. The parameters ap-
pearing in the model have clear physical meaning and
the nuclear structure information can be derived. The
essence of the model will be presented in the second sec-
tion, together with necessary modifications for the appli-
cation of the model to the SD bands. Numerical results
and discussions will be given in the third section.
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where ao may be taken as the deformation at the mini-
mum of V(ap, up) for certain value of urp within the range
of the rotational &equencies of the studied SD band,
hence, U'(ap) = 3Bqap&up.

Inserting Eqs. (3) and (4) into Eq. (2), one obtains the
eigenvalue of H',

where E(ap, a2) is the static energy surface, and Bp, Bq,
and B2 are the mass parameters [5].

In our former applications, a simple form for E(ap, a2)
was assumed and the eigenvalue equation easily solved.
For the present case, we shall still assume mainly axisym-
metrical deformation and E(ap, as) separately,

E(ap, a2) = U(ap) + —C2a2 .1 2

2
(3)

Since the SD states are well-known good rotors, it is rea-
sonable to assume that the ap-dependent part of the effec-
tive potential in Eq. (2), V(ap, u) = —28qur ap+ U(ap),
has a deep minimum at a certain value (depending on

u) of ap, around some average value ap, hence it can be
approximated by a Taylor's expansion around ao up to
the second-order terms

II. SKETCH OF THE MODEL

In the cranked shell model [6], the Hamiltonian in the
rotational kame of reference is given by

H' = H(ap, a2) —ru. J,
where H(ap, a2) is the shell model Hamiltonian with the
quadruple deformation parameters ao,a2. With suit-
able approximations, one obtains, for axisymmetrical
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where urp = QCp/Bp, [Cp ——U" (ap)], u~ = QC2/2B2
are the frequencies of the P and p vibrations, np and n~
are the corresponding quantum numbers, Bo, Bq, and B2
are evaluated at the minimal deformations ao, a2 ——0,
and

3, & 3B~2&'
A= —Bqao ~

1—
2 I Bpldp

In the laboratory kame of reference, the energy of the
collective motions is given by

Bi~2& "
+ (n~ + -')h(d~
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and the average projected angular momentum given by
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III. APPLICATION TO SD BANDS
IN THE A ~ 190 RECION

For the SD states, we can, in general, assume np ——

n~ = 0, otherwise they cannot remain as good rotors.
A rough estimation of the various terms in right-hand
side of Eqs. (6) and (7) shows that only the last terms
give the most important contributions in both equations,
and the contributions &om other terms may be less than
1% or 2%. Hence the most important parameters are
the efFective moment of inertia 2A and the efFective P
vibration frequency ur' = QBp/Bi&up. To reduce the
number of parameters, we shall put up ——~~ = u' and
Bp = B2 in the first two terms of Eqs. (6) and (7). The
simplified formulas are
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From the numerical fit, it can be shown that w' is large
(her' ) 2 MeV), hence any excited vibrational state will

not remain a good rotor. On the left-hand side of Eq. (7')
or (7), one may notice the presence of K which may
a8'ect the value of I calculated &om these equations. In
the former papers [1—3], K is usually neglected. However,
for the A 190 region, where level spins are not very

I

large, neglecting K is justified only for K value less than
3. For most of the cases, K values can be determined
only through the detailed microscopic studies. With the
exception of special cases, the effect of K in Eq. (7') is
neglected. For a large K value, this simplification may
lead to underestimation of the spin value by one or two
units.

With the experimentally measured E~, the value of ~1
for a state with spin I can be calculated from

~r = [E,(I+ 2) + E,(I)]/4.

For a given set of the ~1 value, parameters ~' and A
may be determined by fitting Eq. (6') to the observed
transition energies and the spin values calculated &om
Eq. (7'). The level spins are determined by taking the
nearest integers (for even nuclei) or half integers (for odd
nuclei) of the calculated values. With the determined
spins, the energy spectrum can be obtained from Eqs. (6')
and (7') by the least squares fit of the parameters 1d'

and A. The redetermined parameters differ only slightly
from those used in the spin determination, but the fit
of the spectrum is somewhat improved. Since Eqs. (6')
and (7') are more accurate for small ur values, we shall
use transitions 1—9 to determine the parameters, then all
the transition energies are calculated with the parameter
values thus determined.

We investigate 26 SD bands in the A 190 region.
With the exception of Hg and Hg(1) bands, the
determined spins are the same as those given by Becker
et aL [1,2] with the two-parameter Harris expansion and
by Wu et al. [3], so the similar results are not repeated
in this paper. In fact, it can be shown that Eqs. (6) and

(7) reduce to the Harris formula for the range of the ~1
values in the A 190 region.

For most of the investigated SD bands, the spin assign-
ments are unambiguous and the spectra are well repre-
sented by Eqs. (6') and (7'). As is to be expected, the
calculated spin values are insensitive to the number of
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TABLE I. Calculated spin value Iq of the second level in the observed SD band with various
number (No. ) of the experimental transitions included in the Bt. The lowest level spin (exit spin)
is given by Io ——I& —2.

No.

6
7
8
9
10
11
12
13
14
15
16
17

1898 a

Ig

(K neglected)

16.87
16.94
17.10
17.10

Ij
(K = —,')

17.23
17.30
17.45
17.45

191Hg(])b
Ig

(K neglected)

17.19
17.05
16.95
16.93
16.95
16.99
17.08
17.10

Ig
(K= -)

17.54
17.40
17.30
17.28
17.30
17.34
17.43
17.45

192H c

Ig
(K=0)
10.12
10.15
10.15
10.13
10.15
10.19
10.22
10.24
10.27
10.30
10.34
10.38
10.43

193T1(1)d

Ig

(K neglected)

11.55
11.49
11.50
11.46
11.49
11.49
11.52
11.54
11.56

E'(Ip+ 2 ~ Ip) = 366.0 keV, Ref. [
Ez(Ip+2-+ Ip) = 350.6 keV, Ref. [

'E&(Ip+2 ~ Ip) = 214.6 keV, Ref. [
E'(Ip+2 ~ Ip) = 228.1keV, Ref. [

10].
s].
11].
12].

TABLE II. Experimental and calculated transition energies, and assigned spins for Hg, Hg, and Hg(1) bands.
E~(I) is the energy (in keV) of the transition from I+ 2 to I.

exp
E'(I)

189H

calb
Spin
I exp'

1928

E'(I)
cal

Spin
I exp' cal'

'"Hg(1)
Spin
I

E'(I)
calg

Spin
I

366.0
407.7
448.7
488.9
527.8
566.4
604.2
640.6

109.8
153.4
196.8
239.9
282.6
324.8
366.6
407.7
448.3
488.3
527.6
566.2
604.1
641.3

7/2
11/2
15/2
19/2
23/2
27/2
31/2
35/2
39/2
43/2
47/2
51/2
55/2
59/2

214.6
257.7
299.9
341~ 1
381.6
420.8
459.1
496.3
532.4
567.9
602.3
635.8
668.6
700.6
732.1
762.8
793.4

34.2
79.8
125.0
169.8
214.0
257.3
299.9
341.5
382.1
421.5
459.9
497.0
533.0
567.8
601.5
634.0
665.3
695.6
724.8
753.0
780.2

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

350.6
390.5
430.3
469.6
508.1
545.3
582.1
617.8
653.0
687.4
721.8
754.3

104.9
146.6
188.1
229.4
270.4
311.0
351.2
390.9
430.2
469.0
507.2
544.8
581.8
618.2
654.0
689.1
723.6
757.4

7/2
11/2
15/2
19/2
23/2
27/2
31/2
35/2
39/2
43/2
47/2
51/2
55/2
59/2
63/2
67/2
71/2
75/2

97.5
140.6
183.4
225.9
267.9
309.4
350.4
390.8
430.5
469.5
507.8
545.3
582.0
618.0
653.1
687.4
720.9
753.7

3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37

Reference [10].
bK =7/2, A =0.04520h keV ~, her'=3190keV.
'Reference [11].
K = 0, A = 0.04334h keV, h~' = 2211 keV.
Reference [9].
K=7/2, A=0.04734h keV ~, h~'=3340keV.

g~ gegj.ecte(i, Io ——15, 4 = 0.04572fi keV —x h~' = 2900 keV.
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transitions included in the Gt. As a represenative exam-
ple, the result of spin determination of Tl(1) band is
shown in Table I. For issHg and isiHg(1) bands, the cal-
culated spin values are very close to integers. Several al-
ternatives may be taken for the spin assignments of these
bands. One possible explanation is that the two bands
are indeed the SD bands of some even nuclei with inte-
ger spins. Another possibility is that they might be the
bands with large K values. An assignment of.iK = 7/2
which yields exit spin Io ——31/2 is also included in Ta-
ble I. For comparison with a typical case, we have also
listed the spin determination of Hg band in the table.
If we apply the process to less than nine transitions, the
spins approach nicely to integer values. However, if all
17 transitions are included, the spin values become close
to half integers. One of the possible explanations is that,
in the derivation of Eqs. (6) and (7), we have tacitly in-
troduced an average rotational &equency ~0, hence the
accuracy of the formulas may be affected when applied to
a wide range of &equencies. Table II lists the calculated
transition energies for the SD bands of Hg, Hg, and
i@iHg(l). For the last nucleus, different I and K assign-
ments are compared. For the Hg SD band, the agree-
ment between theory and experiment is less satisfactory
for the transitions with large spin values.

For the SD bands in this region, ao 0.55 [7—9].
/2 2

From A = 2BIao (1 —3uII/u' ), the mass parameter
Bi can be determined by taking coo as the &equency of
the medium level of the studied SD band (in fact, the
effect of up is very slight because hu' & 2 MeV for the
SD bands in this region). The values of BI so obtained
are shown in Fig. 1. From u' = /Co/BI, the rigidity pa-
rameter Co can be calculated and plotted in Fig. 2. For
comparison, Figs. 1 and 2 also show the Bi and Co values
of the normally deformed (ND) states of the even-even
nuclei in the rare-earth and actinide regions [5]. From
Fig. 2, it can be seen that the Co values of the SD states
are larger than those of the ND states. It implies that the
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FIG. 2. The Co values of the same bands as in Fig. 1.

SD state has larger rigidity (designated as super-rigidity
in Ref. [3]). No evident odd-even differences are found
for the parameters Bi and Co for the SD bands in the
region. This is in accord with the decrease of the pairing
effect for the large rotational frequency.
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FIG. 1. The fitted Bq values of the SD bands in the A

190 region and the normally deformed (ND) bands of the
even-even nuclei in the rare-earth and actinide regions.

FIG. 3. The effective potential energy V(ao, cu) when I =
0 10 26 40 for Hg.
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As a further demonstration of the validity of the
present model, we have calculated the potential energy
U(az) for ~s Hg with the finite range liquid drop model

[13] and the microscopic corrections derived from the
standard Nilsson potential [14]. With the value of Bq
determined earlier, the effective potential V(ao, w) can
be calculated .In Fig. 3, the V(as, u) curves of ~s2Hg

with I = 0, 10, 26, 40 are plotted. It can be seen that
there is a deep valley near ao 0.52 to produce SD state,
which is close to the experimentally determined deforma-
tion as 0.55 [9]. The spin value may extend to I = 0, as
has been suggested by the authors of Refs. [3,15]. There
is a shallow valley near ap 0.85 for the curve with
I = 26. It may not be deep enough to form a stable

hyperdeformed state. However, our calculation is less
accurate for highly deformed states. From the potential
energy curve, the value of Cs can be obtained as 488 MeV
which is in reasonable agreement with the value |0

——467
MeV obtained &om 6tting the SD band.

The SD bands in the A 150 and 130 regions have
higher rotational &equencies than those in the A 190
region, hence, the higher perturbation terms in V(ap (a!)

may require consideration. This will be discussed in our
future works.
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