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We apply the auxiliary-field Monte Carlo approach to the nuclear shell model in the 1s-0d
configuration space. The Hamiltonian was chosen to have isovector pairing and isoscalar multipole-
multipole interactions, and the calculations were performed within the fixed-particle, canonical
ensemble. The results demonstrate the feasibility of the method for N # Z even-even and odd-odd
N = Z nuclei. In particular, static observables for even-even Ne isotopes and 2>Na compare well with
results obtained from exact diagonalization of the Hamiltonian. Response functions are presented
for 22Ne and compared with exact results, and the viability of cranked calculations for N # Z even-
even nuclei is addressed. We present methods for computing observables in the canonical ensemble
using Fourier extraction, and for determining the nuclear shape.

PACS number(s): 21.60.Cs, 21.60.Ka, 02.70.—¢

I. INTRODUCTION

The shell model is one of the most successful descrip-
tions of many-fermion systems [1]. In this picture, va-
lence particles are spatially confined by a one-body po-
tential and influence each other via a residual two-body
interaction. Mathematically, the shell model can be re-
duced to a matrix-diagonalization problem by computing
the matrix elements of the Hamiltonian between a set of
basis states that span the configuration space of inter-
est. There are several computer programs that imple-
ment this approach (e.g., Ref. [2]), and impressive agree-
ment between theoretical calculations and experimental
data has been achieved for nuclei with 4 < 40 [3,4].

The shell-model approach is limited primarily by the
combinatorial growth in the number of basis states with
both the number of valence particles (IV,) and the size
of the single-particle basis (NV,). Indeed, for nuclei with
A ~ 60, an unrestricted shell-model calculation utilizing
the 0f7/2-0fs/2-1p3/2-1p1/2 orbits would involve approx-
imately 2 x 10° basis states with definite z projection of
angular momentum [5]. Angular momentum and isospin
projection would reduce the size of the basis to about
107. Clearly, a problem of this magnitude lies beyond
the capability of today’s computers.

The traditional approach to circumvent the computa-
tional limitations inherent in the shell model is to impose
what are often severe and ad hoc truncations on the num-
ber of basis states. Unfortunately, because of the strong
character of the residual interaction, calculations of this
nature can be unreliable, and significant renormalizations
of the residual interaction and transition operators are
required.

In two previous papers [6,7], we presented a Monte
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Carlo method that can give an exact treatment of a
nuclear shell-model Hamiltonian, H, even in situations
where the matrix-diagonalization technique is impracti-
cal. It is based on using the imaginary-time propagator
U = exp(—BH) to either perform a thermodynamical
trace (canonical or grand canonical) at a temperature
T = B! or, for large 3, to filter a many-body trial state
to the exact ground state. By applying the Hubbard-
Stratonovich transformation [8], the two-body terms in
U are linearized with the introduction of an auxiliary
field, and the problem is reduced to a multidimensional
integral whose dimensions scale more gently with either
N, or N, [6,7].

In Ref. [6], the Monte Carlo method was demonstrated
with selected results for N = Z even-even nuclei in the
1s-0d and 0f-1p shells, while much of the formalism for
Monte Carlo approaches to the nuclear shell model is
given in detail in Ref. [7]. The purpose of this work is
to further demonstrate the feasibility of the technique by
presenting systematic results for N # Z even-even nuclei,
as well as N = Z odd-odd nuclei in the 1s-0d shell-model
space. In addition, we present a Fourier method for eval-
uating the canonical trace that avoids some of the numer-
ical problems of the activity expansion method presented
in Ref. [7). We also present a method for deducing the
nuclear shape from our calculations.

We begin with a very brief description of the formal-
ism for Monte Carlo techniques in Sec. II; Sec. ITA de-
scribes the new Fourier method for computing the canon-
ical trace. In Sec. III, results obtained for even Ne iso-
topes (including cranking) and 2?Na are given, and in
Sec. IV, a method for deducing the nuclear shape is de-
scribed and applied to these calculations.

II. FORMALISM

In this section, we briefly describe the Monte Carlo
approach to the nuclear shell model utilizing auxiliary
fields, referring the reader to Ref. [7] for more details.
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In this work, we will consider only the thermal formal-
ism, and so consider the partition function

Z = 'i‘rexp(—ﬂI-:T), (1)

where H is a generalized Hamiltonian for the system
(which may include Lagrange multipliers constraining
particle number or the z projection of the angular mo-
mentum), B may be interpreted as an inverse temper-
ature (T = 1/8), and Tr represents either a grand-
canonical trace over all many-body states in the space
(denoted by Tr¢) or a canonical trace with fixed particle
number N, (denoted by Try, ). Given the partition func-
tion in Eq. (1), the thermal observable of an operator o
is

. 1. Ta .
(0) = S [Oexp(-—ﬂH)] . 2)

We restrict ourselves to Hamiltonians that contain at
most two-body terms such that

. 1
H= Zeaalaa + 3 Z Va,ﬂ'y&az.a;;atsa‘y ) (3)
a afyé

where al and a, are the anticommuting creation and
annihilation operators associated with the single-particle
state a defined by the complete set of quantum num-
bers nljmt, (n, I, j, m, and ¢, denote the principal,
orbital angular momentum, total single-particle angular
momentum, z projection of j, and the third component
of the isospin quantum numbers, respectively), and €,
and V,g,s are the single-particle energies and two-body
matrix elements of the residual interaction. Given any
two-body Hamiltonian of the form Eq. (3), it is possible
to find a convenient set of one-body operators O, so that
H may be written as

N R 1 .
H—_—Zea(’)a+§ZVQO§. (4)
a (3
To simplify the imaginary-time propagator U, the
Hubbard-Stratonovich transformation makes use of the
identity

~ A N
e%AO2 - /I_7r_,/da,e—%|A|a'2+aAO , (5)

where s = £1if A > 0 or 4 if A < 0. In general, the Ou
do not commute, and when Eq. (5) is applied to U, the

resulting integral is accurate only to order ﬂVa@i. The

accuracy is improved by dividing U into N; “time slices,”
N . \N

so that U = (exp[—AﬂH]) ‘, and applying Eq. (5) to

each “slice.” For what follows, we introduce 7,, as an

imaginary time in the range (0,3) defined as 7, = nApS,
with AB = 8/N;.

The thermal observable in Eq. (2) can now be written
as

sy _ L DlI6(0)(O)t(0)
O =TT pee)

(6)

where D[o] = [],, , doa(7n) is the volume element,

G(0)= expl~5 A8 Y [Valok(ra)],

o (7)
((o)=Tr[Us(8B,0)]

is a trace over the one-body imaginary-time evolution
operator, and

Tr [Off, (8, 0)]

= Y r~ 3 - (8)
Pr [U, (8, o)]

In these expressions, the one-body evolution operator is

defined as

Uy (rj,m) =U(o(r3)) ... U(0(r:42))U(a(:)),  (9)
with
U(c) = exp [—Aﬂﬁ(a)] , (10)
and

() =) (ea + 3aVaTa)Oa- (11)

In this work, we have chosen the density-decomposition
described in Ref. [7], where the O, are linear combina-
tions of the proton and neutron multipole-density opera-
tors pKM(a,b) = [a} x @p|X¥M. Written in this way, h(o)
can be constructed from operators that act on protons
or neutrons separately, leading to separate proton and
neutron traces; i.e., (4(0) = {z(0){n (o). Of course, N,
and N, then generically represent the number of valence
protons or neutrons and single-particle states.

Equation (6) expresses the expectation value of any
observable as a multidimensional integral whose dimen-
sions are at most N2 - N, so that it must be evaluated
by Monte Carlo techniques. Towards this end, it is nec-
essary to define a positive-definite weight function W (o).
In this work, we chose W (o) = G(0)|¢(o)| so that

sy _ [DIoW(0)(0).%(0)
O = TP e

(12)

with the “sign” ®(o) = ((0)/|{(o)|.- The observable (0)
is then computed by selecting an ensemble {0} chosen
according to distribution W (o), and computing the en-
semble average; i.e.,

A\ Ek<é>0h¢(ak)
©="%e@n (13

The uncertainty in the Monte Carlo result is then related
to the ensemble standard deviation (taking into account
possible correlations between the numerator and denom-
inator [7]). We have chosen the o, using the standard
algorithm of Metropolis et al. [9]. Note that a poten-
tial problem in the Monte Carlo method is that the sign
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should be well determined. If ®(o}) oscillates wildly from
sample to sample, then large errors occur in (O) because
of the poorly determined numerator and denominator in
Eq. (13).

Some remarks about the nature of the operators in
Eq. (6) and their notation are now in order. First, since
ﬁ(a) is only a one-body operator, the evolution operator
U(c) can be represented as a N, x N, matrix U(o) in
the single-particle basis: U(c) = exp[—ABh(o)], where
[R(0)]ap = (alﬁ(a)lﬁ). Likewise, any Slater determi-
nant |t¢s) describing N, particles can be represented by
a matrix with IV, columns and N, rows. Thouless’ theo-
rem then implies that the operation U(c)|¢s) yields only
a single Slater determinant, thus averting the need to
have all Slater determinants stored in order to evaluate
Eq. (2). In what follows, we represent the product of
one-body evolution operators ﬁ”(’l‘j, T;) as

Uo(7j,7) = U(o(73)) - - U(o(re1))U(o(m3)) ,  (14)

with the implicit understanding that U,(3,0) = U,,.
Given the matrix notation for U,(83,0), the grand-
canonical trace is given by

Tre[U,(8,0)] = det(1 + U,) . (15)

The canonical trace for fixed particle number N,,, (x, (o),

can be obtained from an activity expansion by noting
that [7]

det(1 + \U,) = Z AN¢n(o)
N=0
= exp {tr{ln(1 + \U,)|}

N, ne1
= exp (Z (;}T)l——A"tr[UZ]) ,  (16)

n=1

where the symbol “tr” denotes a matrix trace.

A. Fourier method for the canonical trace

A major drawback of the activity expansion for com-
puting the canonical trace is that for NV, = N,/2 (i.e.,
near half filling), (n, (o) involves a sum of terms that
are large in magnitude and have alternating signs. In
practical terms, the activity expansion is unstable in the
midshell region because these terms cancel in the sum
to 10-14 orders of magnitude, and there is a loss of nu-
merical precision in the evaluation of Eq. (7). In actual
calculations, we have found the activity expansion to be
stable only for N, < 4, or, using an equivalent hole for-
malism, for N, > N, — 4.

An alternative procedure for computing the canoni-
cal trace is to use Fourier extraction. Starting from the
grand-canonical trace, and defining ¢, = 27m/N,, we
may write

N,
det [1 + ei¢”eﬂ”U,] = Z ei¢"'N€ﬂ“NCN(0') , (17)
N=0

where p is a parameter introduced to insure numerical
stability throughout the range of particles in the model
space, and is given below. Using the identity

1 &
N 2 € = b, (18)
® m=1
valid for integer K, we find
1 &
CN‘, (O’) — N_ Z e—1¢vae—.B“Nv
& m=1

xdet [1 + eid’"‘eﬂ“UU] . (19)

The expectation values of the one- and two-body density
operators can be computed in a similar fashion:

N,
(akag)on, = N,,Q\l,v(a) mzzle“mmme_mvu“
XNm(0)Yap(@),  (20)
and
— _ 1 SN <iNubon ,—BNo
(aaaﬁa,yag)a,Nv = —m mZ::le e Nm(0)

x [v;"ﬁ(a)v;'s(a) AT (e (0)
+5ﬁw;'is(0)] , (21)

where
Nm (o) = det [1 + ei¢meﬁ“UU] (22)
and
Yap(0) = [(1 + e¥mePhU,)eimePlU, ], . (23)

The observables in Eqgs. (19)—(21) are, of course, in-
dependent of the value of u chosen. However, as the ¢,
vary rapidly with N, a good choice for p is one for which
the sum in Eq. (17) peaks at N = N,. In order to find a
good choice for u, we first find the N, eigenvalues, A; of
U,, where i = 1,...,N,, and | Ay |<| A2 |[< --- (note that
each eigenvalue has the form | \; |= exp[—f¢;]). Thus,
for the valence particles, we define u by

Reey, + Reen, 11
2

= exp[—fp] - (24)

This prescription allows us to use Fourier extraction for
all even-even nuclei in both the sd and fp shells.

At first glance, the Fourier method appears to add sub-
stantial computational effort since the computation of a
determinant scales as N f and it must be computed N,
times in Eq. (19). In fact, the computation of {n, can
be simplified considerably by computing the N, eigenval-
ues, A;, of U,, in terms of which, the factor 7, (o) can
be written as

| AN, AN, +1 |12 = exp | -8
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N,
(o) = [J(1 + i#meBin,). (25)

i=1

In addition, the matrix v7;(0) is given by

'y;"ﬂ(o') = Z‘Pﬂts(l + ei¢meﬂl‘A6)—lei¢mP‘s—al , (26)
s

where P is the transformation matrix associated with the
diagonalization of U,.

III. RESULTS

In Refs. [6,7], results obtained with the Monte Carlo
approach to the nuclear shell model were presented for
even-even N = Z nuclei using a pairing plus multipole-
multipole interaction. We found empirically, and later
proved for the zero-temperature and grand-canonical for-
malisms [7], that under certain conditions the sign ®(o)
in the Monte Carlo sampling is always unity. These con-
ditions are that in the density decomposition, the sign of
V. is given by (—1), where K is the angular momen-
tum rank of the operator O,, and either (i) N=Zor
(ii) the number of protons and neutrons is even. When a
Lagrange multiplier w is used to constrain the z compo-
nent of the angular momentum, J,, (i.e., cranking with
H = H- wfz), the time-reversal symmetry used to
prove these statements is broken, and the sign need not
be unity.

In this section, we further demonstrate the viability
of the Monte Carlo shell-model approach by presenting
calculations for N # Z even-even and N = Z odd-odd
nuclei using the 1s-0d shell-model configuration space.
The interaction was chosen to be of the pairing plus mul-
tipole form similar to that used in Refs. [6,7] (the exact
parameters can be obtained from the authors). In each
of the calculations presented, we used AB = 0.0625 and
approximately 2000 Monte Carlo samples were collected.
The independence of the individual samples was tested
by computing the autocorrelation function for (H),. All
the calculations presented here were performed on the
Intel Touchstone Gamma and Delta systems operated by
Caltech for the Concurrent Supercomputer Consortium.

We begin with a compendium of results for the Ne iso-
topes. We show in Fig. 1 the expectation values (open
symbols) (a) (H), (b) (Q?) (quadrupole moment), (c)
(J?) (angular momentum), and (d) (T?) (isospin) as
functions of 3 for even-even Ne isotopes. Exact calcula-
tions within the canonical ensemble for 20:22Ne using the
eigenvalues obtained from the shell-model code OXBASH
[2] are indicated by the curves in the figure. In addi-
tion, the ground-state observables are plotted using solid
symbols at 8 = 2.5. Generally, we see that the Monte
Carlo procedure is in good agreement with the exact cal-
culations. Shown in Fig. 2 are the results for the same
quantities for the odd-odd N = Z nucleus ?2Na.

In Ref. [7], we described how the strength function,
f(E), for the operator O can be computed using the
maximum entropy (MaxEnt) technique to perform the
inverse Laplace transform on the imaginary-time corre-
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FIG. 1. The results of the Monte Carlo calculation for the
expectation values of (a) (H), (b) (Q?), (c) (J?), and (d) (T?)
as a function of B for *°Ne (circles), **Ne (squares), ?*Ne
(diamonds), and ?®Ne (triangles). Where absent, the error
bars are smaller than the size of the symbols. The solid (**Ne)
and dash-dotted (*’Ne) lines indicate the canonical results
obtained from the eigenvalues of an exact diagonalization.
The ground-state expectation value for each nucleus is plotted
with a solid symbol at 8 = 2.5 (except for J?, for which the
ground-state value is zero for all nuclei).

lation function (O(7)0(0)) = Trje PHe™HOe~"H(). For
demonstration purposes, we display the results for 22Ne
at 8 = 2.0 (16 and 32 time slices) in Fig. 3 for (a) the
isoscalar quadrupole, (Q°(7) - Q°(0)), (b) the isovector
quadrupole, (Q*(7) - Q*(0)), and (c) the isovector angu-
lar momentum, (J*(7) - J1(0)), in Fig. 4. Generally, the
reconstructed strength functions are in good agreement
with the exact results, especially in those cases where
most of the strength is concentrated in a single peak as
for the isoscalar quadrupole. For the situation in which
the strength function is strongly fragmented, as in the
case for the isovector angular momentum, the various
lines can be reconstructed only by using many more time
slices so that sufficient information in the small 7 region
of the imaginary-time response function exits. It is clear
that in this case it is necessary to disentangle several de-
caying exponentials with different slopes.

We may also study rotating nuclei using the crank-
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FIG. 2. Same as Fig. 1 for 22Na.
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FIG. 3. Response functions for >?Ne are shown, along with
MaxEnt (maximum entropy) reconstruction of the strength
functions. The calculated response functions (left) of the
isoscalar quadrupole (top), isovector quadrupole (middle),
and isovector angular momentum (bottom) are shown for
AB = 0.125 (circles), and AB = 0.0625 (triangles). Max-
Ent reconstruction of the strength functions are also given
for AB = 0.125 (dotted line) and AB = 0.0625 (dashed line).
Exact results given as the delta function peaks.

ing Hamiltonian, H' = H — wJ,. This procedure has
also been discussed in Ref. [7], and we indicate here how
cranking affects an N # Z nuclei such as 22Ne. The sys-
tematics for cranking 22Ne are shown in Fig. 4, where
we display (H), (J.), and the sign (®) as a function of
[ and w. We find that the sign decays rapidly as both
the cranking frequency and ( increase. The maximum
J, available to 22Ne is 10, and, therefore, the w = 2 case
can be considered as an extreme limit.

A. Nuclear shapes

It is of particular interest to determine the quadrupole
shape of a nucleus as function of temperature and angu-
lar momentum. It is generally expected that some nuclei
may exhibit a sudden phase transition from a prolate to
spherical shape as the temperature increases [10]. In ad-
dition, as the cranking frequency is increased a transition
to oblate ellipsoids is also expected.

One measure of the quadrupole deformation is the ex-
pectation value of Q2. As is illustrated in the proceeding
section, (Q2) is considerably larger for nuclei that are ex-
pected to exhibit prolate deformations such as 29-22:24Ne,
and is much smaller for spherical nuclei such as 26Ne;

(i) (MeV) w (MeV)

FIG. 4. Cranked results for >’Ne are given as a function
of the cranking frequency w. Calculations were performed
at B8 = 0.5 (circles), 1.0 (squares), 1.5 (diamonds), and 2.0
(triangles).

however, (Q?) suffers from two shortcomings. First, Q2
contains a one-body term proportional to (r%), which is
present even for spherical nuclei, and tends to obscure
the contribution due to the nuclear deformation. In ad-
dition, (Q?) does not distinguish between prolate and
oblate shapes.

In order to obtain a more detailed picture of the defor-
mation, we examine the components of the quadrupole
operator Q, = rzYz“”. Note, however, that due to ro-
tational invariance of the Hamiltonian, the expectation
value of any component Q,, is expected to vanish. On the
other hand, for each Monte Carlo sample, there exists an
intrinsic frame in which it is possible to compute the three
nonzero components Qg, Q%, and Q’_, (the prime is used
to denote the intrinsic frame). The intrinsic quadrupole
moments can then be related to the standard deforma-
tion coordinates 3 and v [11] by

(@) = o/ T (r)ofs cos
3 /4 o .

(@b = o) T sin (27)
3 /4 o .

(@) = ooy T ) D sin,

The task remains to compute the quadrupole mo-
ments in the intrinsic frame for each Monte Carlo sam-
ple. This is accomplished by computing and diagonal-
izing the expectation value of the Cartesian quadrupole
tensor Q;; = 3z;T; — Jijrz for each Monte Carlo sam-
ple. From the three eigenvalues, it is straightforward to
determine the deformation parameters as [12]

(@inde = /25 [VBU@o + (@-a00) — VE@H]

(@) = 1/ 2 [~V3(Qas +(Q)o) = VE@i)o]

<Q133>a = 2\/2?;<Q6>6-

(28)
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FIG. 5. Distribution functions F(8,v) are shown for ?*Ne
at different temperatures T'.

Note that from Eq. (27) one finds Q%, < Q}; < Q},.

To illustrate the intrinsic deformation, we plot in Fig. 5
the distribution function F(83,v) = f(B8,7)B*sin(3y) for
temperatures 7" = 0.5, 1.0, 2.0, and 4.0 MeV. The dis-
tribution function was computed from the set of the 3
and « values from each Monte Carlo sampled, and then

smoothed with a symmetric Gaussian with a width of
0.01. Although the volume element 3%sin(37) tends to
push the function towards 4 = /6, there is a definite
trend from a prolate deformation at low temperature to
a symmetric spherical shape at higher temperatures.

IV. CONCLUSIONS

We have further demonstrated the utility of using path
integral methods in the nuclear shell model. We have
used a realistic pairing plus multipole interaction for sd-
shell nuclei, and have demonstrated systematics in the
neon system. In order to evaluate midshell quantities
in the canonical formalism, we introduced the Fourier
extraction method. We have also indicated how shape
changes in nuclei may be calculated and observed.

In future work (in progress) we will study shape
changes and behavior of the rare-earth nuclei using the
pairing plus multipole interactions. These calculations,
the largest to date, have nearly 100 000 fields over which
to integrate. We also wish to further investigate the ‘mi-
nus sign’ problem inherent in these calculations when cer-
tain interaction schemes are used.
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FIG. 5. Distribution functions F(83,v) are shown for *’Ne
at different temperatures T'.



