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Dependence on the mass number of energy quantities of a A in hypernuclei with the
cosh and the Gaussian potential
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The A binding energies obtained from the (z'+, K+) data are analyzed with the aid of suitable
A-nucleus potentials. Exact and approximate analytic expressions, as functions of the mass number,
for the binding energy and other energy quantities of a A hyperon in hypernuclei in ground and
excited states are proposed and the region of their validity is discussed. The density dependence of
the A-nucleus potential is taken into account in an approximate way and it turns out that its role
is essential for a reliable description of the recent hypernuclear data. The formulas for the ground
state A energy are used to derive approximate expressions for the A binding energy in double A
hypernuclei.

PACS number(s): 21.10.Dr, 13.75.Ev, 21.30.+y

I. INTRODUCTION

The A hyperon separation energy B~ is a fundamental
quantity of the hypernuclear physics and it is defined by
the relation

MHF c:(M«&& + Mp) c B~&

where MH~, M, „,and Mp are the masses of the hy-
pernucleus, its core, and the A hyperon, respectively. In
the "early years" the experimental determination of B~
was mainly performed using nuclear emulsions. In such
experiments the Bp values of ground-state hypernuclei
have been determined exclusively from x mesonic de-
cays. The main reasons for this choice are (a) the energy
release is small allowing energies to be accurately deter-
mined from range xneasurements, (b) neutron emission is
rare, and (c) the vr is readily identified from the appear-
ance of its track [1]. Unfortunately, the data are limited
in a narrow region of mass numbers (A„„(15) where
the mesonic decay is dominant. A study of these data
[1—3] shows that the A hyperon is inhibited by the Pauli
principle and that there is an orderly increase of about 1
MeV/nucleon in Bti with the mass number of light hyper-
nuclei, there being no evidence of the large Buctuations
observed for separation energies of individual nucleons in
ordinary nuclei [1].

Later on, the counter technique was adopted and the
strangeness exchange reaction was used for the produc-
tion of hypernuclei (for excellent reviews see [4]). The
(K, vr ) reactions with low momentum transfer have
given data on substitutional orbits, that is, l~ is the same
with that of the valence neutron orbit. Several target
nuclei were used ( izC, z7A1, 4oCa, V, and Bi) [5,6]
and in some cases the ground-state A energies were mea-
sured. The low intensity of the kaon beam, however, did
not permit clear measurements for hypernuclei with mass
number larger than 32 [4].

More recently the associated production reaction

(or+, K+) has been very useful in producing bound A
single-particle states in a variety of nuclei [7—11]. The en-
ergy levels of this hyperon have been measured by means
of this reaction in nuclear targets ranging &om Be to

Y. The peaks observed in the excitation spectra of the
(ir+, K+) reaction in nuclei can be identified with the var-
ious orbital angular momentum states s, p, d, f, . . of the.
A hyperon. For the case of the izC(m+, K+)&i2C reaction
where the angular distribution was measured, the identi-
fication of observed peaks with 8 and p A single-particle
strength was verified. The basic properties and feasibility
of the (sr+, K+) reaction were theoretically studied firstly
by Dover et al. [12] and then by Bando and Motoba
[13). We recall, that contrary to the (K, vr ) reaction,
it has the feature to excite nonsubstitutional stretched-
spin states preferentially, since it involves a substantial
momentum transfer of q 340 MeV/c (at P = 1040
MeV/c) and gives the possibility for the study of the
medium and heavy hypernuclei.

The usefulness of the new experimental data is that
they provide a much better description of A binding en-
ergies as a function of the mass number A. For the first
time we have A binding energies for a wide range of mass
numbers and in some cases complete sets of bound and
first unbound energy levels for nodeless A orbitals at fixed
A are available [14]. This fact gives the possibility for a
better overall fit of the data for the determination of the
parameters of properly chosen A-nucleus potentials.

It is noted, that the typical experimental resolution
of the above-mentioned experiments is about 3 MeV. It
is expected, however, that much better precision would
be accomplished at PILAC (Pion Linear Accelerator)
[15,16]. Therefore, a better determination of the A spac-
ing (especially of heavy hypernuclei, e.g. , &~~spb) will de-
termine more accurately the depth and the range of the
A-nucleus potential. In addition, one would more strin-
gently test the standard mean-field picture [16].

The experimental data are usually analyzed using
proper phenomenological A-nucleus potentials such as
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the Woods-Saxon potential (see, for example, [14,17—
21]) or by means of self-consistent calculations [14,22—
23] as, for example, the work of Millener et al. [14]
where density-dependent and nonlocal A-nucleus poten-
tials were derived by means of the Skyrme-Hartree-Fock
approximation. This study [14] has shown that the den-
sity dependence or nonlocality of the A-nucleus potential
is quite important for a reliable description of the exper-
imental data.

In this work we propose several approximate analytic
expressions for various energy quantities of a A in hyper-
nuclei as function of the mass number. These expressions
are derived on the basis of the —Vo/cosh2 & (cosh poten-
tial) and the Gaussian potential. The radius parame-
ters of these potentials are taken A dependent, which
is somewhat equivalent to assuming density dependent
potentials.

Nowadays, it is quite straightforward for one to numer-
ically obtain the A energies on the basis of the above-
mentioned methods. However, this does not imply that
analytic expressions are no longer attractive and of no in-
terest. Analytic formulas (approximate or, if possible, ex-
act) for the binding energies and other important energy
quantities of a A hyperon in direct connection with the
mass number are very convenient for practical use and
show explicitly the analytic dependence of these quan-
tities on the mass number. In addition, our approach
ofFers the possibility to study the role of the additional A
dependence which is introduced by the radius parameter
ro(A, ).

The formulas for the ground state Bp may also be used
for the derivation of approximate analytic expressions for
the A binding energy BpA in double A hypernuclei. It
is noted that the study of AA hypernuclei attracts in-
terest because studying the level schemes and binding
energies of such systems one expects to get more infor-
mation about the nature of A-A interaction and explore
better the structure of the baryon-baryon strong interac-
tion. In addition, AA hypernuclei may be used to rule
out the existence of the H dibaryon in a certain mass
region [24,25].

In Sec. II the proposed expressions for the various en-

ergy quantities of a A in A hypernuclei are introduced
and discussed, while in Sec. III the approximate formu-
las for the A binding energy in AA hypernuclei are given.
In Sec. IV the numerical results are reported and com-
mented on, and, finally, Sec. V summarizes the main
results of the paper.

II. ANALYTIC EXPRESSIONS
FOR THE VARIOUS ENERGY QUANTITIES

OF A A HYPERON IN HYPERNUCLEI

In this section we present analytic exact and approx-
imate expressions of various energy quantities of a A in
hypernuclei. First we present approximate expressions
based on a Gaussian A-nucleus potential:

( r' t—
D exp qR') ' (2)

where D & 0 is the depth of the potential and B is
the radius parameter which is taken A dependent [R =
ro(A, )A, ] and parametrized in the spirit of [14,21] (see
also [26]):

rp(A, ) = rp+ roA, ~

A, is the mass number of the host nucleus. For this po-
tential model the eigenvalue problem is treated numeri-
cally. It turns out, however, that approximate solutions
for the eigenenergies may also be used [27,28] with rea-
sonable accuracy. In [28] large coupling expansions of the
eigenenergies, wave functions, and Regge trajectories of
any even power potential

V(r) = —g ) N2~r ~

j=o

have been obtained. These general expansions are then
used to obtain eigenenergy expansions and Regge trajec-
tories for various potentials. In the case of the Gauss
potential, N2~ has the form

(5)

while combining (1) and (3), gz and a are written as
follows:

g = D, a = 1/R.

Then for large coupling constants g~ the following ex-
pressions for the eigenenergies hold [27,28]:

(K + g ) = ga(2l + q) ——[3(q + 1) + 4(3q —1)l+ 8l ]

[q(1lq + 1) + 2(33q —6q + 1)I + 24(5q —1)I + 64l ]3.2 g
~4

[4(85q + 2q —423) + l(2720q —71q + 32q+ 2796)

+32l (252q —12q+ 64) + 256l (41q —9) + 4096l ] + O(1/gs), (7)

where q=4n+3 with n=0, 1,2,..., and 2pE ~/h2 = Kz, p, being the A-core reduced mass. Note, that in (7) g is defined
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as 2pD/h2=g2. Using formula (6) for a one can write an expression for the A energy in any state nl as a function of
the core mass number:

with

E i = —D(1 —ce (2l + q)A, + c e 2 [3(q + 1) + 4(3q —1)l + 8l ]A,
+c e 3 2 [9(llq + 1) + 2(33q —6q+ 1)l + 24(5q —l)l + 64l ]A,
+c e 3 2 [4(85q + 2q —423) + l(2720q —71q + 32q+ 2796)

+32l (252q —12q+ 64) + 256l (41q —9) + 4096l ]A, ~ }

n2

(21JDrp r

(8)

(9)

and

~ = 1+PA.-2~', p = rp jrp.

With the aid of formula (8) one can also calculate the "energy level spacing" of two neighboring level (Al = 1):

6„"'i+' ——D(ce '[2(l+1) + q —2l —9]A, '~ + c e 2 [4(3q —1)(l+1)—4(3q —1)l+ (l+. 1) —8l ]A,

+c e 3 '2 (2(33q —6q+ 1)(l + 1) —2(33q —6q+ 1)l

+24(5q —1)[(l + 1) —l ] + 64[(l + 1) —l ])A,
+c e 3 2 f(2720q —71q + 32q+ 2796)(l + 1) —((2720q —71q + 32q+ 2976)l

+32(252q —12q + 64) [(l + 1) —l ]

+256(41q —9) [(l + 1) —l ] + 4096[(l + 1) —l ])A, 4~s + ).

Using the above expressions one can derive approximate analytic expressions for the Bp in the lower A orbits as well

as for the lower A spacings:

(12)

Ei„—— D1 —10dpA—'~ + dA ~ —+
~

dp+10pdp
~

A
35 / 105

(13)

Eig = D1 —14dpA—, + dpA, +—
~

„dp+14Pdp
~

A, (14)

E2, —— D1 —14dpA, —~ + dpA, ~ +
~

—do+ 14pdp
~

A,

where

DE.~ = 4DdpA, '~ —10DdpA, ~ —2D(5dp+ 2Pdp)A, ',

AEpd = 4DdpA 'r —14Dd A —D(21dp 4Pdp)A

n'

(8mADrp2 )

(16)

(17)

(18)

For P=O, one obtains the corresponding expressions for static local case (B = rpA, ). It is seen that the AX/3

dependence of the radius parameter affects the coefBcient of the A, term and all the higher power terms which also
contain the dependence on the nucleon mass. It is also seen that this dependence influences the p and d states more.
This is also verified from our numerical calculations (see Sec. IV).

Next by employing the Helmann-Feynman theorem (see, for example, [29]) analytic expressions for the kinetic and
potential energy of the A orbits may also be obtained:
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Ti, = 3Ddo A, — —Dd A —D(—do + 3Pdo) A

Ti„——5DdoA, — D—doA, —D( s do + 5Pdo)A, ',

T,g = 7DdoA, —
2 Dd A —D( '

do + 7Pdo)A

V,.= —D[1 —3d,A, "—
(—'„'d', —3Pdo)A ],

Vg„———D[1 —5dpA, —( i~ do —5Pdp)A, '],

Vjg = D[1 —7dpA ( && do 7Pdp)A ].

2 r
VA ~(r) = D/cos—h R' (2o)

We can also approximate the A-nucleus interaction by
a A-nucleus potential of the form [30—33]

the Helmann-Feynman theorem

2D(2n + 1.5)

/8pDR2/h2 + 1
(22)

where the same parametrization [expression (3)] is
adopted for the radius parameter R. This potential
model has the advantage that the Schrodinger eigenvalue
problem can be solved analytically for states with t=0.
The energy eigenvalues are given by the expression

2D(2n+ 1.5)

/8 @DRY/h2 + 1
(23)

These expressions for the ground state take the simple
forms:

1

2 R 2

- 2
(2A —1)(3A + 1/2)

2A(2A + 1/2) (2A + 1)
(24)

n=0, 1, 2, ... . (21)

Expression (21) is a rather simple "semiempirical" for-
mula B~ = B~(A,) which reproduces the average trend
of the variation of Bp with the mass number A, . It is,
of course, an approximate formula and it should also be
clear that it contains only part of a proper hypernuclear
formula, as is the case with other semiempirical formulas
of this type [34].

Another advantage in using the above potential model
is the possibility of easily obtaining analytic expressions
for the expectation values of the potential and kinetic
energies of a A in states with t=0. Thus one has by using

(2A —1)
(25)

with

(1+8@DR /h ) —1

which are equivalent to formulas (8) and (7), respectively,
of Ref. [31], where, however, ro was considered indepen-
dent of A. The expansions of (21), (24), and (25) as
function of A, have the following form:

BA ——D 1 —6doA, i +10doA, i —(3do+6Pdo)A, ' —3do A, i +
mN

(26)

VA = D1 —3doA, i —+
i

—do+3Pdo
~
A, ' —— doA

(2 ) 2m~

T~ = D 3doA, i —10doA, i +
~

—do —3Pdo
~
A, '+ —do A. i'+"f9 i 3 m~

) 2 m~

(27)

(28)

It is seen that the forms of the 6rst two terms of the expansions of BA with the two potential models are the same
while the third and fourth ones dier a little.

In the framework of the same potential model an approximate analytic expression is derived [33] which also gives
the B~ in states with l g 0:

() () h2 l(l + 1)I'(2A+ 0.5)I'(2A —l —0.8)
2pR2 31'(2A + 0.7)I (2A —1 —1)

(29)
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4 4= ~w = —(T)Ho ——(T)i.3 3

= 4DdoA /' ——Dd A
40

c 3 o c

+2D(3do —2pdo)A, '
N A-4/'3+. . .

mp
(30)

It is seen that the erst term of the above expression is of
the same form with that of expression (16) while the sec-
ond one is somehow diH'erent. However, the third terms of
these expressions have opposite contributions and there-
fore one expects similar results since in addition the pa-
rameters of the two potentials do not difFer appreciably

Our numerical results have shown that expression (29)
works very well: That is, the B~ values obtained with
(29) differ from the numerically calculated A energies less
than 1% throughout the periodic table [33]. It should
be noted, however, that formula (29) does not express
explicitly the dependence of B~ on A as is the case with
the analytic formulas proposed above.

It is also noted that formula (24) is particularly use-
ful in deriving an expression for the oscillator spacing
Ru~ which approximates the lower A energy level spac-
ing AE,~ by applying the virial theorem as proposed in
[31]

(see next section).
Finally, in the framework of the analysis of A hypernu-

clei with the aid of —Vo/cosh (r/R) potential it is also
possible to derive approximate analytic expressions of the
mass number A, as function of the Bg. The simplest ex-
pression which may be derived is based on the assumption
that p = mg.

k B~ )
1+8/

/

—3
(Di
(B~)

—3

(31)

As should be expected, this expression is not accurate for
light nuclei. This is obvious if we recall that

t' m~
p, =my

~

1+ A, '
~m„

which shows that we completely ignore the second term
of the binomial. However, this is valid only for large A, .
Our numerical results show that for A, =12 there is a
deviation of about 13%. However, as the mass number
increases we obtain better results, e.g. , for A, around 90
the deviation is less than 1.5%. In general, our study
shows that expression (31) is satisfactory for A, ) 30.
Next expanding the binomial of (32) in powers of A,
and including now the second term of the expansion one
obtains after some algebra

A, —:A —1=3 —1+ 1+6mp mp 1 Bp
m~ m~ 8do D

)-3 —1

-3+ 1+8
B~)

Our results show that (33) is very satisfactory. For A, = 12 the deviation from the "exact value" is about 0.3%.
We note also, that including the other terms of the expansion in an approximate way the following very accurate
expression is obtained:

—1
mp

3/2

A. =3 —1+ 1+6 y 2 —~1+ v~~ + — y )mN mN" mN" 2mN" (34)

where y = A, .

III. APPROXIMATE EXPRESSIONS FOR THE
A BINDING ENERGY OF AA HYPERNUCLEI

The existing data about double A hypernuclei are quite
few. Old experiments with nuclear emulsions gave evi-
dence for the existence of s+&He and &o&Be [35,36]. The
overall binding of the A hyperons B~~ and the contribu-
tion EB~~ from the A-A interaction is (17.7+0.4) MeV,
(4.3+0.4) MeV and (10.9+0.5) MeV, (4.7+0.5) MeV, re-
spectively. The values of AB~~ gave rise to many the-
oretical studies regarding their compatibility to be ac-
counted for the same Vg~ potential (see, for example,
[37]). Recent experiments [38,39] carried out at KEK
renewed the interest. A new double hypernuclear event

was reported and it was intepreted as either &&Be or
&~&B, the B~~ energies being (8.5+0.7) and (27.6 +0.7)
MeV, respectively. It is noted, however, that the erst
choice corresponds to a repulsive A-A interaction (AB~~
= —4.9 +0.7) while the latter to an attractive one (AB~p
= 4.9 +0.7). This event was analyzed theoretically by
Dover et al. [24] and by Yamamoto et al. [40]. Both
studies concluded that the interpretation of the event as
&&B is the most probable. This is consistent with the old
data and in accord with a recent reinterpretation of the
&&Be event by Dalitz et aL [41]. Dover et al. [24] state
that a AB~~ ) 0 should be expected in any reasonable
model. Finally, Himeno et al. [42] calculated the B~~ of
the three events on the basis of the G-matrix theory in fi-

nite nuclei by adopting as bare interaction the variants D
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and F of the Nijmegen potential [43]. It was shown that,
when interpreting the new event as &&8, the D model
reproduces the data very well, while the model I" does
not.

Using formula (21), one may derive an approximate ex-
pression for the B~~ by making the necessary assumption
that double A hypernuclei are stable against the strong
interaction conversion AA ~ =¹Speci6cally, having in
mind that

ity against the strong conversion and various possibilities
were considered regarding the strength of the hyperon-
hyperon interaction. Therefore, it is clear that our simple
formulas for the Bg~ values should be considered within
the limits imposed by our assumptions, that is stability
against strong decays and a strong AA interaction im-
plied by the few empirical data, which, in addition, is
considered independent of the mass number.

B~~(~~~") = 2B~(~" ') + &B~J (35) IV. NUMERICAL RESULTS AND COMMENTS

one can write

B~~ 2D 1+
~

—
~

A,
&~)

2

—3~ —
~
A, i~s +iSp

with

(d=
(8yDrp )

(37)

where, however, A, :—A —2 and Sp is the expectation
value of the A-A interaction in the ground state. The
latter can be calculated using a proper A-A potential.
In this work we assume that the A-A interaction is at-
tractive. The 8~& matrix element is approximated by the
empirical ABpp value (i.e., s&2 4.5 MeV) which, in ad-
dition, is considered 6xed for all nuclei. The latter means
that the A dependence of the A-A matrix element in the
s state is omitted.

Expansions (26) and (12) may also be used, in the same
way, for rough estimates of B~p. Hence one can write

Bpg D C —12dpA + 20dpA

—(6dp+ 12Pdp)A, '+.

Bpp —D C 12dpA + 15dpA

(25,+
i

—d', + 12Pd,
i A. ' + "E4'

where C = 2+i Sp/D.
It is also noted that formula (37) may be easily ex-

tended for the triple A hypernuclei. In such a case, how-
ever, the first term of (37) is multiplied by 3, A, = A —3,
and one also has to add the expectation value of the A-A
interaction between the 8- and p-state lambdas.

One should keep in mind, however, that multi-A hy-
pernuclei are generally unstable to AA + =N strong in-
teraction decays. This problem has been very recently
investigated in detail by Dover and Gal [44]. The au-
thors have derived a generalized Bethe-Weizsacker mass
formula for strange hadronic matter, where cascade parti-
cles have also been included in order to ensure the stabil-

The determination of the parameters of the two poten-
tials is performed by a least-squares fit (in a way analo-
gous to that used in [45] and discussed in detail by Bod-
mer and Rote for the ground state Bp for the square well
potential [46,47]) to the experimental B~ values. At this
point we note that in a very recent publication [33] it
was shown that a 6tting procedure to only ground-state
A energies leads to rather poor results. The ground state
Bp are very well reproduced but the A energies in the
other states do not, in general, agree well with the data.
It was also shown that the quality of the fit is improved
if one takes into account all the available data. In addi-
tion, it is expected that an overall 6t to all available data
leads perhaps to more reliable results instead of adjusting
the parameters to reproduce the binding states of chosen
hypernuclei.

In the present work the parameters of the potential
models are determined by global fits to the 8, p, and d
energies of ~ 0) ~ Si, ~ Ca, ~5 V, and ~ Y hypernuclei.
The experimental ground state Bp together with their
experimental errors are taken from [11]. The p~ and
dp energies are those from figures of Refs. [8,9,14]. As
experimental errors for these we used those in [14]. Ta-
ble I contains the experimental values obtained kom the
(7t+, K+) data together with the quoted errors used in
the 6tting procedures. The data for & S and & Fe are
also included. It is noted that the 8 and p A energies
of s&2S, were observed in (K,m ) reaction [6] while the
s~ energy of s&sFe was obtained from a (7r+, K+) reac-
tion and is rather preliminary [48]. Finally, for the sake
of comparison with our results, Table I also includes the
theoretical predictions of a Woods-Saxon potential ob-
tained with the parametrization of [14], which gives an
excellent fit to the data.

In order to investigate the role of the density depen-
dence, which is introduced efFectively by the A depen-
dence of the radius parameter, we performed two fits for
each potential. The 6rst one was for the local static
case (P=O) while in the second formula (3) for the ra-
dius parameter was used. For the Gaussian potential the
Schrodinger equation is solved numerically while for the
cosh potential the analytic formula (29) is used. The best
fit values for the Gaussian potential are first fit D= 33
MeV, rp ——1.273 fm, second fit D= 32.45 MeV, rp=1.438,
rp: 1 118 fm while for the cosh potential they are first
fit D= 34.38 MeV and rp= 1.142 fm, second fit D= 33.68
MeV, rp ——1.311 fm, rp: 1 133 fm. The results of the
second fit give, for both potential models, a somewhat
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TABLE I. The observed A single-particle binding energies and the theoretical values obtained
from a Woods-Saxon (WS) potential using the parametrization of Ref. [14].

16O
28S-
32 S
40
A Ca
51y.
56F
89Y
138B
208Pb

gexp
1s

12.5+0.35
16.0+0.28
17.5+0.50
18.7+1.10
19.9+1.00
21.0+1.50
22.1+1.60

BWS1s

12.98
16.44
17.18
18.36
19.54
19.96
21.83
23.25
24.31

Bexp
1p

2.5+0.5
7.0+1.0
8.0+0.5

10.5+1.0
12.0+1.0

16.0+1.0

BWS
1p

2.53
7.18
8.31
10.16
12.10
12.81
16.07
18.67
20.67

Bexp
1d

4.0+1.0

9.5+1.0

BWS
1d

3.98
4.92
9.42
13.23
16.28

shallower but wider potential well.
In Table II the A binding energies in 8, p, and d state

for the Gaussian potential, calculated numerically and
by means of the proposed approximate expressions, are
displayed. It is seen that the Sp energies in all cases
are very close and agree well with the experimental BA.
For the other A states the results of the first fit (values
in parentheses) show that as A, increases the agreement
with the data becomes worse especially for A &50. On
the contrary, the A energies obtained from the second
fit are very much improved and all of them are within
the quoted error bars. This is due to the corrections
introduced by the A dependence of the radius parame-
ter, which, in addition, increases the region of validity
of the potential model. The same is the case with the
cosh potential as it is seen from Table III. The values in
parentheses again correspond to the erst fit.

Our analysis has shown that the comparison of the
results of the two potentials (second fit) with those of
the more realistic Woods-Saxon potential (Table I) shows
that the values of Eq, agree well for 16 & A & 208. For
the other nodeless A single particle states the comparison
is quite satisfactory for A & 100. For larger A the pp
and dp energies diH'er from those of the Woods-Saxon
potential systematically by about 1.5 MeV.

Having in mind that the proposed potential models are
not expected to be valid for the heavy system and that
for systems with A & 12 the depth parameter should also

depend rather strongly on A, the region of their validity
should probably be 16 & A & 100.

In Tables IV and V the theoretical predictions for the A

kinetic and potential energy for both potentials using the
parameters of the second 6t are shown. For the Gauss-
ian potential the A kinetic and potential energies were
calculated numerically and by means of the approximate
expressions (19). For the cosh potential the ground-state
A kinetic and potential energy was calculated using ex-
pressions (24) and (25) respectively, while the p and d
state kinetic and potential energies were calculated nu-

merically. It is seen that the approximate analytic ex-
pressions give results which are usually close to those
calculated numerically. For A & 28, however, and for the

p and d states, the convergence is not good. Therefore,
the corresponding expressions should be used for hyper-
nuclei in the region 28& A & 100.

In Table VI the theoretical values of the lower energy
level spacing A, z for both potentials together with the
available experimental values are shown. Columns 3 and
4 contain the results obtained numerically and by means
of (16) for the Gaussian potential. In the fifth column are
the results for cosh potential using formulas (29), while
in the last column the values of ~~ are displayed. These
are obtained with the erst two terms of the expansion of
(32) as in [31], namely,

(4O)

TABLE II. The BA energies in s, p, and d states with the Gaussian potential calculated numer-

ically and with the corresponding approximate expressions (see text) for a number of hyperuuclei.
The values in parentheses were obtained using for the radius R of the potential the simple expression
R=r0A 1/3

16p
28S.
32S
40C
51V
56F
89Y

Ba138

208pb

BnumIs
(12.98) 12.39
(16.19) 16.25
(16.88) 17.02
(17.96) 18.21
(19.05) 19.38
(19.45) 19.80
(21.27) 21.66
(22.27) 23.14
(24.01) 24.31

Bappr.
1s

12.47
16.30
17.06
18.24
19.41
19.82
21.67
23.15
24.34

Bnum
1p

(2.86) 2.39
(6.92) 7.24
(7.86) 8.31
(9.37) 10.00
(10.94) 11.70
(11.52) 12.32
(14.23) 15.12
(16.52) 17.40
(18.44) 19.26

Bappr.
l~

1.18
6.86
8.01
9.80
11.57
12.21
15.07
17.38
19.25

Bnum
1d

(3.98) 5.00
(4.66) 5.74
(7.90) 9.17

(10.77) 12.07
(13.23) 14.48

Bappr.
1d

4.48
5.29
8.96
11.96
14.42
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TABLE III. The Bg energies in s, p, and d states with the cosh potential using expression (29)
for a number of hypernuclei. The values in parentheses were obtained using for the radius R of the
potential the simple expression R = r0A,

16p
28�-
S32
40'
51V
56F
89Y
138B
208Pb

B1,
(12.96)
(16.20)
(16.90)
(18.01)
(19.14)
(19.55)
(21.46)
(23.05)
(24.38)

B1,
12.55
16.27
17.08
18.32
19.54
19.97
21.95
23.51
24.79

B1p
(2.98)
(6.87)
(7.78)
(9.23)
(10.80)
(11.36)
(14.07)
(16.42)
(18.41)

B1p
2.52
7.21
8.26
9.93
11.64
12.25
15.11
17.45
19.38

(3.97)
(4.64)
(7.70)
(10.52)
(12.99)

B1d

5.02
5.77
9.11
11.98
14.42

TABLE IV. The kinetic A energies in s, p, and d states for the Gaussian and the cosh potentials
for various A hypernuclei (for details see text).

16p
28S.
32S

"Ca
51V
56F
89Y

TnUm
1s

7.94
6.89
6.66
6.24
5.82
5.66
4.93

~appr.
1s

8.58
7.14
6.84
6.37
5.91
5.74
4.96

Tcosh
1s

7.87
7.02
6.79
6.42
6.03
5.89
5.10

annumlp

8.91
9.43
9.28
8.97
8.56
8.39
7.52

yappr.
1p

12.01
10.41
10.06
9.42
8.90
8.68
7.63

Tcosh
1p

8.11
9.00
8.95
8.77
8.48
8.35
7.62

annum1d

10.04
10.00
9.42

gappr.
1d

10.24
10.08
9.22

ycosh
1d

9.50
9.43
9.16

TABLE V. The potential A energies in 8, p, and d states for the Gaussian and the cosh potentials
for various A hypernuclei (for details see text).

16p
28S.
32S
40'
51V
56F
89Y

Vnum
1s

—20.33
—23.14
—23.67
—24.45
—25.20
—25.46
—26.59

Vappr.
1s

—21.04
—23.43
—23.90
—24.62
—25.31
—25.56
—26.65

V cosh
1s

—20.16
—23.28
—23.86
—24.73
—25.56
—25.86
—27.12

VI1Um
1p

—11.30
—16.67
—17.60
—18.97
—20.26
—20.71
—22.64

V1p
—13.30
—17.14
—18.13
—19.34
—20.51
—20.92
—22.75

Vcosh
1p

—10.69
—16.22
—17.21
—18.70
—20.11
—20.60
—22.73

VIIUm
1d V1d

—15.06 —15.65
—15.74 —16.23
—18.59 —18.82

Vcosh
1d

—14.47
—15.20
—18.27

TABLE VI. The lowest A energy level spacing calculated with the Gaussian and the cosh poten-
tials together with the experimental values and the hcuA values from (40) for various A hypernuclei.

16p
28S.
32S
40'
51V
89Y

~exp
sp

10.0 +0.5
9.00 +1.0
9.50 +0.5
8.20 +1.0
7.90 +1.0
6.10 +1.5

g Gauss
SP

10.08
9.01
9.05
8.24
7.70
6.45

A,~
""(appr. )
11.30
9.44
9.05
8.45
7.84
6.60

gcosh
sp

10.03
9.06
8.82
8.39
7.90
6.84

9.43
8.58
8.34
7.97
7.54
6.60
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Again it is seen that the theoretical spacings calculated
with both potentials are close to the experimental spac-
ings.

It is interesting to note that the leading term in all
—X/3the expansions of the formulae proposed above is A,

which is an indication of certain surface effects intro-
duced by the potential models. The corrections due to
the A term are rather appreciable for hypernuclei-X/3

with A & 100 for which these expressions are mainly
valid.

Our study has also shown that the use of A-nucleus po-
tentials with parameters depended on A, which somehow
reBects their density dependence or nonlocality, leads to
better results. This is in accord with other more elab-
orated studies and shows the necessity in using density
dependent A-nucleus potentials for a reliable description
of the modern binding energy data which have invali-
dated older theoretical approaches based on local static
potentials.

Finally, the theoretical predictions for B~p for a num-
ber of double A hypernuclei calculated with the vari-
ous formulas proposed in the preceding section are dis-

played in Table VII. It is noted that for the sake of
simplicity we set P = 0. In addition, since the deriva-
tion of these expressions is based on the formulas for
the ground-state BA we used as parameters the ones
which are obtained from a Bt to only ground state Bp
and which reproduce excellently the ground-state data
for A&12. Namely, D=35.56 MeV, rp=1.075 fm and D=
34.16 MeV, rp=1.199 fm for the cosh and the Gaussian
potential, respectively. Using the empirical ABpp value

( 4.5 MeV) for the s& matrix element one can calcu-
late the B&& values by means of formula (36) (second
column). In the same table are also displayed the B~~
values calculated with the first four terms of the expan-
sions (38) and (39), respectively, namely,

BAp 75.6 —139A, + 75.5A, i —7.4A, , (41)

BAA —72.8 —122.2A, ' + 45.5A, + 5.7A, '. (42)

It is seen from Table VI that the values calculated with

(41) and (42) are very close to the ones obtained with
expression (36).

In conclusion, we would like to point out that the
present analysis is of a more simpli6ed nature compared
to certain other more sophisticated approaches. It should
be noted, however, that the potentials assumed in the
present work are very suitable and serve our purpose
very well. Their use has ensured a remarkable simplicity
of our approach, thus allowing the derivation of several
interesting analytic expressions for the A energies as func-

TABLE VII. The BAA energies calculated with formulas
(36), (41), and (42) for various double A hypernuclei.

13

16

28

32

40
AACa
51

&~~ (36)
28.8
31.3
37.4
38.7
40.8
43.1

&~A (41)
27.7
30.4
37.0
38.5
40.8
43.1

B~A (42)
27.6
30.4
37.0
38.4
40.7
43.0

tion of the core mass number. Such expressions, derived
on the basis of a potential model, are proposed for the
erst time, to our knowledge, apart perhaps &om the ones
for the ground state A energies for which there are such
expressions (see [33j and references cited therein).

V. SUMMARY
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In this paper two A-nucleus potentials suitable mainly
for relatively light and intermediate hypernuclei have
been used for the derivation of analytic expressions for
the various energy quantities of a A in A hypernuclei. The
density dependence of these potentials was taken into ac-
count approximately by considering the A dependence of
their radius parameters. It turned out that such a choice
was essential for a reliable description of the hypernuclear
data.

The proposed analytic expressions give values which in
most of the cases are fairly close to those calculated nu-

merically. In addition, they are rather simple and hence
they are suitable for practical use in various phenomeno-
logical studies.

Finally, in the framework of this approach approximate
analytic formulas for BpA in double A hypernuclei have
been derived under the assumption that the A-A interac-
tion is attractive and ignoring the strong AA conversion.

[1] D.H. Davis, Nucl. Phys. A547, 369c (1992).
[2] D.H. Davis and J. Pniewski, Contemp. Phys. 27, 91

(1986).
[3] 3. Pniewski and D. Ziemiska, in Proceedings of the

Seminar on Kaon-Nuclear InteI'action and Hypernuclei,

Zvenigorod, 1977 (Nauka, Moscow, 1979), p. 33; B.Povh,
Annu. Rev. Nucl. Part. Sci. 28, 1 (1978).

[4] B. Povh, Prog. Part. Nucl. Phys. 5, 245 (1981); 18, 183
(1987); Comments Nucl. Part. Phys. 9, 15 (1979).

[5] W. Briickner et a/. , Phys. Lett. 55B, 107 (1975); 7QB,



49 DEPENDENCE ON THE MASS NUMBER OF ENERGY. . . 1421

157 (1978).
[6] R. Bertini et al. , Phys. Lett. 83B,306 (1979);Nucl. Phys.

A360, 315 (1981).
[7] C. Milner et al. , Phys. Rev. Lett. 54, 1237 (1985).
[8] R.E. Chrien, in Proceedings of the XIth International

Conference on Particles and Nuclei, Kyoto 1987 [Nucl.
Phys. A478, 705c (1S88)].

[9] P.H. Pile, in Proceedings of the International Symposium
on Hypernuclear and Low Energy Kaon Physics, Padua
1988 [Nuovo Cimento A 102, 413 (1989)].

[10] R.E. Chrien, ibid Conc. luding remarks, Il Nuovo Cimento
A 102, 823 (1989).

[11] P.H. Pile et al. , Phys. Rev. Lett. 66, 2585 (1991).
[12] C.B. Dover, L. Ludeking, and G.E. Walker, Phys. Rev.

C 22, 2073 (1980).
[13] H. Bando and T. Motoba, Prog. Theor. Phys. 76, 1321

(1986).
[14] D.J. Millener, C.B. Dover, and A. Gal, Phys. Rev. C 38,

2700 (1988).
[15] R.E. Chrien, in LAMPF Workshop on, (7r, K) Physics,

(Los Alamos, NM, Igg0), Proceedings of the LAMPF
Workshop on (rr, K) Physics, AIP Conf. Proc. No 224,
edited by B.F. Gibson, W.R. Gibbs, and M.B. Johnson
(AIP, New York, 1990), p. 28.

[16] C.B.Dover, in LAMPF Workshop on (z', K) Physics [15],
p. 3.

[17] A. Bouyssy and J. Hiifner, Phys. Lett. 64B, 276 (1S?6).
[18] A. Bouyssy, Nucl. Phys. A290, 324 (1977); Phys. Lett.

84B, 41 (1979).
[19] C. Daskaloyannis, M. Grypeos, C. Koutroulos, and D.

Saloupis, Lett. Nuovo Cimento 42, 257 (1985).
[20] R. Hausmann and W. Weise, Nucl. Phys. A491, 598

(1989).
[21] C.B. Dover, in Proceedings of the International Sympo

sium on Medium Energy Physics, Beijing, 1987, edited
by Chian Huan-Ching and Zheng Lin-Sheng (World Sci-
entific, Singapore, 1987), p. 257.

[22] Y. Yamamoto, H. Bando, and J. Zofka, Prog. Theor.
Phys. 80, 757 (1988).

[23] F. Fernandez, T. Lopez-Arias, and C. Prieto, Z. Phys. A
334, 349 (1989).

[24] C.B. Dover, D.J. Millener, A. Gal, and D.H. Davis, Phys.

Rev. C 44, 1905 (1991).
[25] D. Zhu, C.B. Dover, A. Gal, and M. May, Phys. Rev

Lett. 67, 2268 (1991).
[26] G.A. Lalazissis, J. Phys. G 19, 695 (1993).
[27] H. Miiller, J. Math. Phys. 11, 355 (1970).
[28] L.K. Sharma, J. Choubey, and H.J.W. Miiller, J. Math.

Phys. 21, 1533 (1980).
[29] R. Bertlmann and A. Martin, Nucl. Phys. B168, 111

(1980).
[30] M. Grypeos, G. Lalazissis, and S. Massen, Nucl. Phys.

A450, 283c (1S86).
[31] G.A. Lalazissis, M.E. Grypeos, and S.E. Massen, Phys.

Rev. C 37, 2098 (1988).
[32] G.A. Lalazissis, M.E. Grypeos, and S.E. Massen, J. Phys.

G 15, 303 (1989).
[33] G.A. Lalazissis, Phys. Rev. C 48, 198 (1993).
[34] A. Gal, Adv. Nucl. Phys. 8, 1 (1975).
[35] D.J. Prowse, Phys. Rev. Lett. 1'7, 782 (1966).
[36] M. Danysz et al. , Phys. Rev. Lett. 11, 121 (1963).
[37] A.R. Bodmer and Q.N. Usmani, Nucl. Phys. A4B8, 653

(1987).
[38] S. Aoki et al. , Phys. Rev. Lett. 65, 1729 (1990).
[39] S. Aoki et al. , Prog. Theor. Phys. 85, 782 (1991).
[40] Y. Yamamoto, H. Takaki, and K. Ikeda, Prog. Theor. 8B,

86? (1991).
[41] R.H. Dalitz et al. , Proc. R. Soc. Loud. Ser. A42B, 1

(1989).
[42] H. Himeno et al , Prog. T.heor. Phys. 89, 109 (1993).
[43] M.M. Nagels, T.A. Rijken, and J.J. de Swart, Phys. Rev.

D 12, 744 (1975); 15, 2547 (1977); 20, 1633 (1979).
[44] C.B. Dover and A. Gal, Nucl. Phys. ASBO, 559 (1993).
[45] D.H. Davies et aL, Phys. Lett. 9, 464 (1962).
[46] A.R. Bodmer and D.M. Rote, in Proceedings of the Inter

national Conference on Hypernuclear Physics, Argonne,
1969, edited by A.R. Bodmer and L.G. Hyman (Argonne
National Laboratory, Argonne, Illinois, 1969), Vol. II, p.
521.

[47] D.M. Rote and A.R. Bodmer, Nucl. Phys. A218, 97
(1970).

[48] O. Hashimoto et al. , in Proceedings of the International
Symposium on Hypernuclear and Lou Energy Kaon
Physics [9], p. 679; M. Akei et al. , ibid. p. 457.


