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We examine the predictions for nuclear charge radii made by an extended Thomas-Fermi mass
formula, the first to be built entirely on microscopic forces, and the finite-range droplet model mass
formula, the most refined of the droplet-model approaches. The former is highly successful, the
parameters emerging from the mass fit giving an optimal fit to charge radii also, without any further
adjustment. The latter model in its published form seems to suffer from an inappropriate choice for
the values of some of the parameters, and we discuss how improvement might be possible.
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I. INTRODUCTION

A considerable effort continues to be devoted to the
measurement and study of nuclear charge radii. Their
systematics reveal several significant aspects of nuclear
structure, and in particular they constitute the main
source of information concerning the density of nuclear
matter. Thus, in this latter respect, the study of nuclear
radii can serve to impose strong constraints on the satu-
ration properties of nuclear forces, a point of considerable
significance not only for nuclear theory, but also for the
understanding of stellar collapse and type II supernova
explosions.

Charge-radius systematics also display structural ef-
fects related to nuclear shape transitions, providing in-
formation that is often complementary to that given by
nuclear spectroscopy. In this way, they contribute to our
detailed knowledge of the shell strucure of nuclei, thus
providing constraints on mean-field theories of the nu-
cleus.

Finally, charge radii and, more generally, charge-
density distributions provide direct information on the
Coulomb energy of nuclei, and are thus of great interest
for the so-called nuclear mass formulas. It is with this
aspect that we shall be concerned in this paper.

Although nearly 60 years have elapsed since Bethe and
von Weizsiacker proposed their famous formula, a consid-
erable effort continues to be devoted to the development
of ever more sophisticated nuclear mass formulas. Much
of the motivation for this effort lies in the fact that the
late stages of stellar nucleosynthesis, particularly the so-
called r process, depend crucially on the binding energies
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(among other properties) of nuclei so neutron rich that
there is no possibility of being able to measure them in
the laboratory. It is thus of the greatest importance to
be able to make reliable extrapolations of masses (and
other properties) away from the known region, relatively
close to the stability line, out towards the neutron-drip
line.

Modern mass formulas no longer take the form of sim-
ple algebraic expressions, as was the case until some 30
years ago. Rather, they are fully fledged nuclear mod-
els of considerable sophistication, taking into account
shell structure, pairing effects and deformability. As
such, they make predictions for other properties besides
masses, such as charge and matter distributions, fission
barriers, and single-particle (s.p.) wave functions. How
well these models can reproduce the experimental charge
distributions constitutes a crucial test for their validity.

Until very recently all mass formulas used some form
or other of the drop(-let) model of the nucleus to repre-
sent the macroscopic, i.e., the smoothly varying part of
the nuclear binding energy, and added microscopic cor-
rections to take account of shell and pairing effects. The
latest and most refined form of this approach to be pub-
lished, the so-called finite-range droplet model (FRDM),
fits 1593 mass-data points with an rms error of 0.769
MeV in its 1988 version [1], some 25 parameters being
used. Since then an improved version which achieves an
rms error of only 0.669 MeV for 1654 mass-data points
has been announced [2].

However, in the last few years a high-speed approxi-
mation to the Hartree-Fock (HF) method has been de-
veloped, leading for the first time to the construction of
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a complete nuclear mass table based entirely on micro-
scopic effective forces [3-6]. This so-called ETFSI ap-
proach calculates the macroscopic part of the binding
energy in the extended Thomas-Fermi (ETF) approxima-
tion, and the shell correction using the Strutinsky theo-
rem in its integral form (SI). Pairing is also taken into
account with a §-function force, handled in the usual way
by the BCS method. Although this is still strictly speak-
ing a microscopic-macroscopic model, there is a much
greater coherence between the two parts than is the case
with mass formulas based on the drop(-let) model, since
the same Skyrme force underlies both parts (see Sec. II).
This presumably accounts for the fact that with just nine
parameters the ETFSI-1 mass formula gives almost as
good a fit to the mass data as does the FRDM mass for-
mula, 1492 nuclear masses being fitted with an rms error
of 0.736 MeV (parameter set SkSC4 of [6]).

Now it turns out that although the FRDM and ETFSI-
1 mass formulas give comparable fits to the mass data
they often differ in their extrapolations far from the
known region of the nuclear chart. Thus the question
arises as to which of the two should be believed. Clearly,
one obvious test that any model should satisfy is that
of predictability, i.e., new data should be successfully re-
produced without any further refitting of the parameters.
Both models pass the tests of this kind to which they
have been subjected [2, 6], but only because the tests
have been made in regions not too far from the stabil-
ity line, where they agree anyway. Thus the question of
which mass formula to believe in those cases of disagree-
ment that are found in the experimentally inaccessible
regions remains open.

Generally speaking, one would prefer the formula with
the better theoretical foundation, i.e., the one with the
better representation of the underlying physics. One in-
dication of the theoretical superiority of one mass for-
mula over another giving a comparable fit to the mass
data is that it would achieve this fit with fewer parame-
ters. However, while this criterion should enhance one’s
confidence in the ETFSI-1 formula at the expense of the
FRDM formula, in reality it guarantees nothing, since
the form of the Skyrme force underlying the ETFSI-1
model is purely phenomenological, and one could imagine
that another model with the same number of parameters
would give different extrapolations. Another criterion
that could be adopted is to see how well the respective
mass formulas predict some nuclear property other than
masses, i.e., some property to which the formulas have
not been fitted.

In this paper we consider such a property, the charge
radius, as a test for mass formulas. This is a particularly
suitable quantity, since a large amount of precise data has
been accumulated over the past decade, even on rare and
radioactive isotopes, thanks to the advent of laser spec-
troscopy [7]. Moreover, the interpretation of the data is
relatively straightforward. Specifically, we shall compare
the ETFSI and FRDM mass models from this standpoint
(for the latter we take the 1988 version [1], the only one
to be published so far).

In fact, we shall go beyond the requirement that the
mass formulas give acceptable radii, and examine the im-

plications of the requirement that for a given model the
fits to masses and charge radii should be simultaneously
optimized by the same parameter set. It is by no means
obvious a prior:i that this condition can be satisfied for
any given model, and we have here a sensitive test of
the internal consistency of the model in question. Fur-
thermore, charge radii may be the most pertinent data
for the determination of any of the model parameters
that are not unambiguously determined by the masses,
as happens in the case of the FRDM.

II. THE MODELS

As a general remark we note that both of the mod-
els considered here are of the two-part microscopic-
macroscopic type (even if the ETFSI model achieves
a very high level of coherence between the two parts),
and that the charge radii are determined entirely by the
macroscopic part. Both of the present models use the
Strutinsky theorem in one form or another to incorporate
shell-model corrections into the energy, but these have no
direct bearing on the density distributions. Nevertheless,
in both of the present models the equilibrium deforma-
tion that results from the minimization of the total energy
is strongly influenced by the microscopic terms. Thus to
the extent that microscopic effects drive the nuclear de-
formation they will influence the calculated charge radii.
But to go further than this in incorporating microscopic
effects into the density distributions it is necessary to
perform HF calculations, where there is, of course, no
separation into macroscopic and microscopic parts.

A. The ETFSI calculation

The ETFSI method has already been described in de-
tail [3-6]. We shall therefore recall here only those as-
pects relevant to the calculation of charge radii.

In this method the density distributions of protons and
neutrons are determined by the ETF part of the calcula-
tion, this being the macroscopic part. Rather than deter-
mining these distributions by solving the Euler-Lagrange
equations, they are parametrized by a suitable functional
form, the parameters of which are determined for each
nucleus by minimizing the ETF energy calculated for the
given Skyrme force. (The same force is then folded over
this density distribution to generate the s.p. field that
determines the microscopic corrections, thereby ensuring
a high level of coherence between the microscopic and
macroscopic parts of the model.)

In the limit of spherical nuclei, the functional form
assumed for point nucleons is the simple Fermi function

)= P2 1

Pa(r) p—— 1
where ¢ denotes neutrons (n) or protons (p). However,
all nuclei are allowed to deform, although the conditions
of axial symmetry and left-right symmetry are imposed;
deformed configurations are generated from the spheri-
cal distribution (1) by means of the (c, k) prescription of
Brack et al. [8], as described in [4] (note that the parame-
ters Cy and a, are taken to be deformation independent).
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The rms radius of a spherical point-proton distribution
of the form (1) is

pelE) e

to lowest order in b/Cp, where

(r1)y/? =

b= (r/V3)a, 3)

(see, for example, Myers [9]). As for deformed nuclei,
expansions in the multipole deformation parameters are
available. However, we prefer to calculate the rms ra-
dius essentially exactly by numerical integration over the
parametrized proton distribution,

<ﬁ»=/mnﬂfn (4)

Then folding in the finite proton size, we have for the
rms charge radius

(r2y? = {(rD)p + 23172, (5)

where s, = 0.8 fm is the rms radius of the proton’s charge
distribution (see, for example, Eq. (16) of [9], and also
the Appendix).

The ETFSI-1 mass table [10], available on request (to
J.M.P. or F.T.), gives the rms charge radii of all nuclei
with 36< A < 300, calculated as above. All the ETFSI
charge radii quoted here come from this table.

Now the rms charge radius is a measure of the low-
est moment of the charge distribution, but electron-
scattering experiments determine not only this moment
but also higher-order moments. Thus, assuming a sim-
ple Fermi charge (not point-proton) distribution of the
form (1), it is possible to measure the diffuseness param-
eter a., along with the rms radius, and data compilations
give both parameters (also Ccp, but this is not indepen-
dent of the other two parameters). To compare with the
ETFSI results the value of a,, that emerges from the min-
imization of the ETF energy has to be corrected for the
finite size of the proton. We show how to do this in the
Appendix.

B. The FRDM calculation

The 1988 FRDM mass tables of Moller, Myers, Swi-
atecki, and Treiner (MMST) [1] could have given the
charge radii for all nuclei, but did not, and we stress that
the charge-radius calculations that we present here are
our own. However, the paper of MMST, taken with the
earlier paper of Myers and Schmidt (MS) [11], makes the
prescription for calculating FRDM charge radii clear and
unambiguous, provided the constraints of axial symmetry
and left-right symmetry are imposed on the deformation.
For all the parameters that appear in the following ex-
pressions we take the values given by MMST [1], since
these come out of the mass fit of the model (except o
and b).

Following Egs. (21)—(24) of MS, we write for the mean-
square radius

(rz)ch = (rz)u + (rz), +3b% + sf,. (6)

The first three terms here are essentially as in Eq. (21) of
MS. On the other hand, the last term, representing the
finite proton size, as in Eq. (5) for the ETFSI calculation,
is new, not, as far as we know, having appeared before
in droplet-model calculations of the radius. Its presence
here is essential, since it appeared in the FRDM mass
formula [1], and will thus have affected the values of the
other parameters: the value taken in MMST for s,, and
thus here, was 0.8 fm, as in our ETFSI calculations.
As in MS [11], we have for the “uniform” term

3

2 = —
{r)u = ¢
and for the “Coulomb redistribution” term

12
(r?), = ﬁgC’R%g(az,m), (8)

Rzzf(az,a4), (7)

where C' is given by Eq. (17) of MS, and f(as2,a4) and
g(az,a4) are as in Egs. (22) and (23), respectively, of
MS, with

2l+1

ap =
47

B, (9)

where (; is the multipole deformation tabulated in
MMST [1]. The third term of Eq. (6) represents the
surface diffuseness, and in the case of a Fermi distribu-
tion of the form (1) the parameter b will have the same
meaning as in Eq. (3). MMST [1] assume that b takes
the same value in all nuclei, but this may not be cor-
rect. For example, ETF calculations [3, 5] show that b is
indeed A independent to a high degree of accuracy, but
does depend on I = (N—2Z)/A. We do not know whether
the approximation of MMST introduces any significant
error; in any case they take the constant value b = 0.99
fm.

As for the sharp radius Rz appearing in Egs. (7) and
(8), it is still given by

ONI-6
= - 10
Rz 30{1 v B,,}’ (10)
with
Ro = roA3 (1 +8) (11)

as in MS. However, for € and § we must now use the
expressions of MMST [1], rather than those of MS [11].
The parameter rg is the charge-radius constant, related
to the saturation density pgo of symmetric nuclear matter
through 2Tr3 = 1/pgo. MMST [1] set it equal to 1.16 fm.

III. RESULTS

In comparing the predictions of the two models with
experimental values of the charge radius we shall con-
sider both relative values §(r2) along an isotopic chain,
determined by laser-spectroscopic measurements of iso-
tope shifts, and absolute values, determined by measure-
ments on the elastic scattering of electrons. We recall
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that neither model has any free parameters to fit the ra-
dius data.

A. Relative charge radii

In Fig. 1 we compare experimental changes of mean-
square charge radii for some long isotopic chains to the
ETFSI and FRDM calculations. The experimental data
were obtained from Ref. [7] and, for more recent data,
from Refs. [12-18]. The data displayed cover a major
part of the nuclear chart with Z ranging between 20
(Ca) and 88 (Ra), and N varying between 20 and 144.
Over the wide range of data considered, the agreement of
the predictions from both models with the experimental
data is good, on the whole. Actually, it should be noted
that for each chain we take the same reference isotope as
chosen in the original experimental publication. It then
turns out that in some cases the agreement between the-
ory and experiment could be improved by an arbitrary
change of the reference isotope, as, for example, in Cd.
Here the ETFSI model predicts a shape transition be-
tween N = 64 and N = 65 that does not appear in the
experimental data, and it is the resultant error in the cal-
culated radius of the reference nucleus, N = 66, that is
responsible for the large discrepancies seen in the figure
for the light Cd isotopes. With an appropriate change of
the reference isotope this discrepancy could be shifted to
the far less numerous isotopes with N > 65, producing
thereby the spurious impression of an improvement.

It should be borne in mind that both calculations con-
tain only static deformations, which are limited to axial
symmetry with just even-order multipoles (up to hexade-
capole for the FRDM). Thus some of the discrepancies
might be due to the absence of dynamic contributions
to the deformation, to triaxiality, or to octupole and,
probably less important, higher-order multipoles (I > 5).
This is certainly the case for Ca where the systematic
deviations between the models and experimental values
are the largest, and where the importance of collective
quadrupole and octupole contributions to the deforma-
tion has been pointed out on several occasions (see [7]
and references therein).

Even though it is not the purpose of this communica-
tion to discuss all the presented examples in detail, it is
worthwhile to add a few remarks on gross features found
in the comparison between the experimental data and the
predictions. In both models shell effects are expressed
through their influence on the ground state deformation.
At N = 50 the major shell closure is well expressed in
the ETFSI approach (Rb, Sr), whereas the FRDM fails
to predict an influence of the shell closure on §(r3,) val-
ues. Both models do fairly well for N = 82 (Xe, Cs,
Ba, Nd, Sm, Eu) in predicting the change in slope of the
8(r?%,) values, which is not as drastic as observed at N
= 50. For N = 126, neither model indicates any shell
effect; however the Pb data still reveal a definite kink,
but again less pronounced than at N = 50 or 82. The
stabilizing effect of the proton shell closure on the nuclear
shape is well reproduced by both models in the Sn (Z =
50) and Pb (Z = 82) region. Here the constant slope of
8(r%,) over a wide range of isotopes expresses the change

of nuclear volume at constant deformation.

Sharp shape transitions from small to large deforma-
tion are correctly predicted in the ETFSI approach for
the neutron-rich Rb and Sr isotopes, and for the neutron
deficient Hg nuclei. For these cases the FRDM model
predicts either no change in deformation (Hg) or a more
gradual increase to a final strongly deformed shape (Rb,
Sr). Both models fail to predict the sudden increase in
deformation observed in the rare-earth region (Eu), fa-
voring a smooth transition from spherical to strongly de-
formed shape. For Hg the ETFSI approach anticipates
a deformation change from small oblate (8; = —0.16) to
large prolate (32 = 0.45) for N = 104. This is the general
trend expected from previous calculations [19, 20] and
indicated by the experimental data. However the tran-
sition occurs one neutron number lower than expected,
the change in deformation is overestimated, and no dif-
ference between the ground-state deformation of the odd
and even isotopes is found. The corresponding disconti-
nuity in the Hg neighbor Au is not reproduced by either
model.

The ETFSI calculations for both Rb and Sr predict too
early an onset of deformation for the neutron-rich iso-
topes. For the neutron-rich Sr isotopes the calculations
are remarkably similar to full HF+BCS calculations us-
ing force SKa [12]. These calculations reveal the same
sharp, but early, onset of deformation and a similar over-
estimation of §(r2) for the heaviest isotopes. For the
very neutron-deficient isotopes §(r? ) is overestimated in
the ETFSI calculations, as in HF calculations with dif-
ferent forces [12, 21]. The FRDM fit is somewhat better
for the §(r?,) of the strongly deformed nuclei at both ex-
tremes of the Sr chain, with predicted 3, values which are
very similar to those obtained from the ETFSI calcula-
tions and to those extracted from experimental BE2 val-
ues (see Table I). For the transitional proton-rich Rb and
Sr isotopes the deficiencies of the FRDM approach have
been pointed out on several occasions [12, 24]. In this
region the results for §(r%) from the ETFSI approach
are closer to the experimental values.

For the heaviest elements (Rn, Fr, Ra), the agreement
of the ETFSI predictions with the data is very good,
whereas the FRDM reveals a constant deviation in the

TABLE I. Comparison of the experimental |3;| values for
Sr isotopes [22, 23] with the predictions from the ETFSI and
FRDM models.

A ETFSI FRDM Expt.
78 0.43 0.41 0.434(27)
80 0.40 0.39 0.377(16)
82 0.30 0.02 0.290(6)
84 0.15 0.03 0.211(5)
86 0.00 0.02 0.128(10)
88 0.00 0.01 0.117(3)
90 0.11 0.04 0.120(19)
92 0.15 0.10 0.116(24)
94 0.19 0.25 0.115(25)
96 0.35 0.34 0.15(4)
98 0.39 0.36 0.409(5)
100 0.38 0.37 0.426(9)
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neutron-rich region. It is surprising that the agreement
of the ETFSI results is achieved by including only even-
order contributions to the deformation since some of the
heavy nuclei of these elements are known to exhibit oc-
tupole deformation [5, 25, 26]. An inclusion of the oc-
tupole degree of freedom into the ETFSI calculations is
possible, and it would be interesting to see how much the
changes in mean-square charge radii are affected.

One general feature that emerges from these calcula-
tions is that the slope of §(r%) vs N for ETFSI is ei-
ther comparable to the FRDM slope or greater, i.e., it is
somewhat greater on average. This suggests a stronger
dilation of the proton distribution by the excess neutrons
in ETFSI, which is consistent with the larger value of the
surface-stiffness coefficient Q for ETFSI (112.3 MeV [6])
than for FRDM (29.4 MeV [1]). As discussed in [27], the

TABLE II. Absolute rms charge radii (fm).

ETFSI FRDM Expt. ETFSI FRDM Expt.
36g 3.30 3.38 3.28 110pg 4.58 4.59 4.54
37¢C1 3.34 3.42 3.38 1100q 4.57 4.59 4.58
36Ar 3.40 3.43 3.33 11204 4.58 4.61 4.61
10Ar 3.41 3.47 3.42 1140q 4.64 4.63 4.63
39K 3.42 3.49 3.41 16cd 4.65 4.64 4.64
0Ca 3.45 3.52 3.45 112gy 4.59 4.62 4.59
48Ca 3.54 3.60 3.45 114gy 4.60 4.63 4.60
4874 3.60 3.65 3.60 116Gy 4.62 4.64 4.62
50Ty 3.61 3.67 3.57 117gn 4.62 4.65 4.62
Sty 3.64 3.70 3.60 118gy 4.63 4.66 4.63
50Cr 3.68 3.72 3.66 119gy 4.63 4.66 4.64
52Cr 3.68 3.73 3.64 1209 4.64 4.67 4.64
53Cr 3.69 3.74 3.73 122gp 4.65 4.68 4.66
54Cr 3.71 3.76 3.69 124gy 4.67 4.70 4.67
55Mn 3.75 3.79 3.68 138, 4.83 4.86 4.85
54Fe 3.74 3.78 3.68 13978 4.85 4.88 4.85
56Fe 3.77 3.81 3.73 142Nd 4.90 4.93 4.92
58Fe 3.78 3.84 3.77 144Nd 4.93 4.94 4.93
59Co 3.81 3.86 3.77 146N 4.96 4.98 4.98
58Ni 3.82 3.86 3.77 148Nd 4.99 5.01 5.00
8ONi 3.84 3.88 3.80 150Nd 5.02 5.05 5.01
SINj 3.84 3.89 3.81 1449m 4.93 4.96 4.95
52Nj 3.86 3.90 3.83 1489m 5.00 5.02 4.99
84Nj 3.88 3.92 3.85 1509m 5.02 5.05 5.04
83Cu 3.89 3.93 3.88 1529m 5.05 5.08 5.09
85Cu 3.91 3.95 3.89 1549m 5.07 5.11 5.13
647n 3.92 3.97 3.92 154Gd 5.09 5.11 5.12
667n 3.94 3.98 3.93 156Gd 5.12 5.14 5.07
687n 3.95 4.00 3.96 158G3d 5.13 5.15 5.17
°Zn 3.99 4.00 3.99 165Ho 5.22 5.22 5.21
0Ge 4.03 4.06 4.04 166y 5.23 5.24 5.24
2Ge 4.05 4.08 4.06 174yh 5.31 5.30 5.41
" Ge 4.07 4.09 4.07 176yh 5.31 5.31 5.37
6Ge 4.07 4.10 4.08 5L 5.31 5.31 5.37
88Sr 4.23 4.28 4.19 181y 5.34 5.36 5.48
89y 4.26 4.30 4.24 184y 5.36 5.37 5.43
90Zr 4.28 4.32 4.26 186w 5.37 5.38 5.40
17r 4.29 4.33 4.31 1920y 5.39 5.41 5.41
927r 4.29 4.34 4.29 196py 5.41 5.44 5.38
947r 4.31 4.36 4.31 197 Ay 5.43 5.45 5.31
°87r 4.36 4.40 4.40 203 5.46 5.48 5.46
23Nb 4.32 4.36 4.32 2051 5.47 5.49 5.47
92Mo 4.32 4.36 4.29 204pp 5.49 5.50 5.48
%Mo 4.34 4.38 4.33 206py, 5.49 5.51 5.49
%Mo 4.35 4.40 4.36 207pp 5.49 5.51 5.50
98 Mo 4.40 4.44 4.39 208py, 5.50 5.52 5.50
1000Mo 4.45 4.47 4.43 209B; 5.51 5.53 5.52
104pg 4.49 4.53 4.44 232 5.74 5.77 5.70
106pq 4.51 4.55 4.47 238y 5.80 5.82 5.84

108pg 4.52 4.57 4.52 - - - -

€ 0.003 0.035 - €rms 0.036 0.057 -
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comparison with experiment for this question is clearer if
decoupled from the problem of static deformation. Look-
ing thus at the Pb and Sn series we see that there seems
to be a slight advantage for ETFSI in the former case,
while both models work equally well in the latter.

A second general feature of ETFSI as compared to
FRDM is that the former tends to produce more easily
deformable nuclei. We believe that this behavior results
from the inclusion of a correction for spurious rotational
energy in the ETFSI calculations, effectively projecting
states of good angular momentum out of the deformed
wave function. This is not taken into account in FRDM,
the resulting error that would arise in deformed nuclei
being smoothed over all nuclei in the data fit. Globally,
the inclusion of this correction in ETFSI improves the
agreement with experiment, but its effect on deforma-
tion might well be too strong.

B. Absolute charge radii

We compare in Table II our results for the two mod-
els with the data compilation of de Vries et al. [28].
When these authors give more than one result we choose
the Fourier-Bessel analysis in preference to the Gauss or
Fermi parametrizations, while in the case of two or more
analyses of the same type we take the mean. Table II
also gives the mean error € and the rms error €, for
each model with respect to these data.

In the case of ETFSI about 20% of the rms error comes
from just two nuclei, !81Ta and %7 Au. These nuclei are
among the worst for the FRDM calculation also, and
insofar as the data are reliable it would appear that some
essential feature of these nuclei is being missed by both
models. However, it is to be noted that all of the quoted
experiments for these two nuclei were performed before
1960 (see [28]).

1. ETFSI results

Regardless of this problem, it will be seen that the over-
all agreement of the ETFSI results with experiment is al-
together satisfactory. Indeed, the mean error € is so small
that it is difficult to imagine any improvement. Thus it
would seem safe to affirm that the ETFSI-1 mass formula
satisfies the test of simultaneously optimizing both the fit
to the masses and the fit to charge radii with the same
parameter set (set SkSC4 of [6]).

Of particular interest in this optimizing set of param-
eters is the charge-radius constant rg. The value deter-

TABLE III. Surface diffuseness parameters (fm) in

ETFSI-1 calculation (experimental values in parentheses).
ap CP Gch

10Ca 0.4565 3.74314 0.478 (0.561)
8Nj 0.4498 4.28583 0.481 (0.560)
88gr 0.4320 4.95013 0.474 (0.496)
1209y 0.4272 5.52875 0.475 (0.576)
206p, 0.4216 6.71033 0.477 (0.545)
208pp, 0.4205 6.72724 0.476 (0.549)

mined by the mass fit of [6] is rp = 1.140 & 0.005 fm (in
[6] this result was expressed in terms of kr, the Fermi
momentum of symmetric nuclear matter at saturation,
and the limits were not given); the present work shows
that this value optimizes also the charge radii.

Turning now to the diffuseness parameter a.p, we limit
ourselves to spherical nuclei that have been well measured
and fitted to two-parameter Fermi (2pF) charge distribu-
tions of the form (1). Our results are given in Table III.
In this table a, and C, are the parameters that result
from the minimization of the ETF energy, while a, in-
cludes the correction for the finite proton size, made as
described in the Appendix. The quantity in parentheses
is the experimental value of a.p, as given in the compila-
tions [28] and [29].

We see that our diffuseness parameters are consistently
about 15% too small, which reflects a well-known limi-
tation of the ETF approximation [8]. This error is ade-
quately compensated, as far as binding energies are con-
cerned, by virtue of the fit of the force parameters to the
mass data, but the details of the charge distribution are
left uncorrected. Clearly, we are approaching here the
limits of the ETFSI model.

Nevertheless, it is clear from Eq. (2) that if we ever
got both ('rz)z}/l2 and ay, right then our value of 7y would
certainly be smaller than the value of 1.14 fm that we
gave above. In this connection, it is interesting to note
that the HF effective force giving the best fit to electron
scattering, the D1 force of the Gogny group [30], has ro
= 1.13 fm, but since no limits have been quoted there is
not necessarily any conflict with our own results.

2. FRDM results

The FRDM results shown in Table II have been cal-
culated with the MMST values for all parameters. We
see that there is a small but systematic overevaluation of
the charge radii, especially for the lighter nuclei, and it is
clear that the MMST parameter values are not optimal
from the point of view of the charge radii. However, it is
not obvious that the MMST values for the parameters r¢
and b are optimal from the point of view of the masses
either, since MMST [1] did not vary these parameters in
their mass fit, claiming that they were fixed by electron-
scattering and muonic x-ray measurements of the charge
distribution. Thus it should be possible in principle to
improve the FRDM charge-radius predictions simply by
readjusting these two nonoptimal parameters. Combin-
ing a new value of 7y, most effective in heavy nuclei, with
a new value of b, most effective in light nuclei, should per-
mit the elimination of most of the deficiencies remarked
in Table II.

First, however, let us see how well the parameter b is
in fact determined by the charge-distribution measure-
ments. Examining the 2pF fits of the compilations [28]
and [29] we find that we cannot exclude any value of
acn between 0.54 and 0.58 fm, i.e., b, between 0.98 and
1.05 fm, according to Eq. (3). Now the way in which
MMST [1] use the parameter b implies that it must be
interpreted as referring to point protons, and we have
treated it likewise. We thus estimate that the relevant
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range of acceptable b values is 0.93 to 1.00 fm, which
means that the MMST choice lies near the upper limit.
However, there is some indication in the data (apparent
in Table III) of a slight decrease on moving to heavier nu-
clei, which could be a manifestation of the I-dependent
effect revealed by ETF calculations (Sec. IIB). Since the
FRDM does not take account of this effect, one should
show some preference for higher values of b. It is in this
sense that we believe the MMST choice for b to be rea-
sonable. But since different measurements of even the
same nucleus often show considerable scatter, lower val-
ues cannot be excluded.

In Table IV we present the results of three exploratory
attempts to fit ro and b to the charge-radius data. [In
all cases we have checked that the changes of r¢ do not
affect the quality of the fit to the isotope chains; §(r% )
is independent of b, as can be seen from Eq. (6).] Fit 1
holds b at its canonical (and, as we have seen, plausible)
value of 0.99 fm, and optimizes with respect to ro. At
first sight it would appear that a considerable improve-
ment has been obtained, while reducing the discrepancy
between the ETFSI and FRDM values of ro. However,
this fit is still unsatisfactory, since it does not lead to the
correct variation of (r? ) with A, heavy nuclei now being
too small, while light nuclei are still too big. In fit 2 we
fix ro at its ETFSI value of 1.14 fm, and optimize with
respect to b. We see that this is the worst of our fits,
and that the required value of b is rather high. Thus, it
is unlikely that we can reconcile the FRDM and ETFSI
values of rg in this way. The best fit, fit 3, obtained by
releasing both parameters, is no better than the ETFSI
fit, in which no parameter adjustment was made at all.
Furthermore, the value b = 0.83 fm is probably too low.

We stress the exploratory nature of these fits of the
parameters 7o and b. Our main conclusion here is that
from the standpoint of charge radii the MMST values
of ro and b are far from optimal. But in making a new
fit it should be borne in mind that in the MMST mass
fit 7o and b were not the only parameters that were not
optimized: The macroscopic parameter L of the FRDM
was arbitrarily set equal to zero, even though it influences
radii through the quantity § of Eq. (10). Furthermore,
if any of these parameters 7¢, b, or L in the mass fits are
changed there will be changes in the other parameters as
well, and thus changes in the calculated radii. Such an
undertaking is clearly beyond the scope of the present
paper.

Nevertheless, it is of interest to note in this respect
the role of the surface-stiffness parameter @), an increase
of which leads to an increase in the sharp proton radius
Rz of Eq. (10), through a reduction in the neutron-
skin thickness [second term on the right-hand side of Eq.

TABLE IV. Fit of FRDM parameters to charge-radius
data.

Fit To b € €rms
1 1.15 0.99 0.003 0.049
2 1.14 1.03 -0.001 0.056
3 1.18 0.83 0.000 0.035

(10)]. Thus it might be possible to improve the agree-
ment between the FRDM radii and experiment by taking
a lower value of r¢g and a higher value of Q. In this way
one would reduce the discrepancy between the ETFSI
and FRDM models not only for ro but also for @, the
two models giving in their present form 112.3 MeV and
29.4 MeV, respectively, as noted above.

IV. CONCLUDING REMARKS

In this paper we have examined two modern mass for-
mulas, the ETFSI formula and the FRDM formula, from
the point of view of charge radii. The object is to see
whether with all parameters being determined by the
mass fit, the fit to the charge radii is simultaneously op-
timized. In this way the coherence of the underlying
physics of the models can be tested.

The results of Sec. IIIA on the variation of charge
radii along isotope chains shows that both of these
microscopic-macroscopic models work fairly well, even
though in both cases the radius is determined entirely by
the macroscopic density distribution. Indeed, it seems
that the major role of the microscopic corrections is to
drive the deformation, to which extent they do show up
in the calculated radius. For some chains the ETFSI
model works better than the FRDM model, while in other
chains the contrary situation prevails. It is not possible
to say that one model is better than the other as far as
the variation of the charge radii along isotope chains is
concerned.

As for the absolute values of the rms charge radii (Sec.
ITIIB), we have seen that the ETFSI model works well
in its present form, and satisfies the criterion of simulta-
neously optimizing the mass and charge-radius fits with
the same parameter set. The situation concerning the
FRDM formula is somewhat ambiguous. In the mass fit
of MMST [1] certain parameters were not optimized, and
we have shown that the choice that was made for these
parameters was far from optimal for charge radii. Thus it
is still conceivable that the FRDM can be simultaneously
optimized to the mass and charge-radius data.
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APPENDIX A: FOLDING THE FINITE PROTON

If we write the charge distribution within the finite
proton as f(|r — r'|) we have

pen(r) = / oot F (I — £'|) %" (A1)
Then if we take the Gauss form
f(z) = (o) exp ( - j’;’—) (A2)
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for the charge distribution within the proton, rms radius

s= \/g o, we have for a spherical distribution of protons

h 27'7'

Pen(r) = —== e /dr'r'p ("e
(A3)

To fit this folded distribution to a Fermi function we
calculate the Ford-Wills moments

1/k
re= {5200} (A4)
where
ey frk“pch('r)dr
= (i (49)

and use the fact that for a Fermi distribution one has

72 a?

R,=C+ —(k+5)—= . A6

k=Ct Tk +9)% (a6)
The rms radius of the resulting Fermi distribution is then
found to satisfy Eq. (5), i.e., Eq. (16) of [9], to a high
degree of precision.

On the other hand, Egs. (17)—(18) of [9] relate the
surface diffuseness of this folded distribution to that of
the original distribution of point protons by

2

a., — a

ﬁn | 'UMN

2
2= (A7)
We find this difference to be about double the value given
by the folding procedure. Presumably, the approxima-
tions made in [9] are not valid for such small quantities,
and we accordingly do not make use of Eq. (A7).
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