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Exact solutions and constrained Hartree-Fock spectra
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It is shown that in a soluble triaxial quasispin model the good quasispin states
~
JK) and

~
J)

can be established on basis SU(2)xSU(2) by means of the diagonalization method. The energy
eigenstate

~
J) has an approximate good quantum number K which can be determined through

the procedure proposed here. The triaxiality of the exact solutions of the model Hamiltonian and
the characteristics of the energy spectra are discussed. Two new constrained Hartree-Fock (CHF)
methods are proposed and solved. The comparisons of calculated CHF spectra with exact solutions
show that the new CHF prescriptions proposed in this paper are the effective methods for producing
states having good quasispin quantum numbers and the spectra with multiband structure.

PACS number(s): 21.60.Jz, 21.60.Fw, 21.10.—k

I. INTRODUCTION

The methods of researching the effectiveness of nuclear
many-body theories in the exactly soluble model were
first proposed by Lipkin and others [1—3]. But the orig-
inal Lipkin model is not suitable for studying the pro-
jected Hartree-Fock (PHF) and the constrained Hartree-
Fock (CHF) methods, which are important for restor-
ing the broken symmetries of self-consistent solutions.
In order to study the CHF and PHF methods Cambi-
aggio and Plastino introduced the spin-flip interactions
into the Lipkin model [4], but they only took into ac-
count the "particle exciton" interactions. Therefore their
model Hamiltonian has axial symmetry in a certain qua-
sispin space. In view of the importance of the pairing
correlation we added the "pairing exciton" interactions
to the model Hamiltonian [5]. In this way triaxial sym-
metry has been introduced; in other words, it leads to
additional symmetry destruction, so that our model is a

I

more general SU(2) x SU(2) quasispin model and is more
suitable for researching the methods of restoring broken
symmetries. In Sec. II we will describe the model Hamil-
tonian briefly. In Sec. III the procedure for obtaining the
coupling basis states

~
JK) and the eigenstates

~
J) will be

established. In Sec. IV we will discuss how to determine
the approximate band structure in the energy spectra of
the model. In Sec. V we will list some of the new pre-
scriptions of CHF calculations and compare their energy
spectra with the exact ones. Some conclusions follow in
Sec. VI.

II. TRIAXIAL QUASISPIN MODEL

In our model N fermions distribute between two de-
generate levels separated by the single particle energy e.
In the particle number representation the model Hamil-
tonian is taken as

oa az +~W) a a (aq az —a q a v — )
pcs pe~y'

+ —V) a a (aq az —a q a z )+2cr) ra„a (aq a& —a q a z~)
lrr W

pl~ T

where a„and ap are fermion creation and annihilation operators in state p on level cr, respectively. o, T = +1 or —1

denotes the particle in the upper level or lower level, and p, q = +1,+2, . . . , +2N, for an even-N system with "+"
and "—"representing "spin up" and "spin down, " respectively.

Now a particle-number operator N, two sets of operators L~, I and I~, I, which completely commute each other,
are introduced:

N = %++ % = ) (at+av++at a„)= ) at av,
p po'

I.+ = —,') a„'+(ap +a p ),
p

1 XI+ ———, ) a +(a —a ),
p

I =L+t, L, = 4) oat (a~ +a „),
I =I+t, I, = 4) o.at (a„—a p ).

(2)
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It can be shown that Lg, L„and I~, I, are two

sets of quasispin operators &om the generators of group

SU(2) xSU(2). From Eq. (2) we define another set of
quasi-spin operators:

ated by the quasispin raising operators L,+ and I+, such
as I+14) I+L+14)

III COUPLING BASIS STATES
I JK)

AND GOOD QUASISPIN STATES IJ)

J~ ——Lg+I~, J, = L, +I,.

In terms of Eqs. (2) and (3) the Hamiltonian (1) can be
rewritten as

H = J, + v(J —I —1, ) +mr(I+L++ I L ),

Generally speaking the

I
IMr LMr, ) of I2, I, and

eigenstates of J~, J, which are
K = MJ. But we can expand
basis

I
IMr LMr, ):

coxnmon eigenstates
L,L, are not the
denoted by I

JK) with
the state IJK) on the

H ='R/s, v = V/s, m = W/s,

(4)
I
JK) = ) BM,M IIMrLMr, )Jr,

MI ML,

(6a)

where J = J+J + J2 —J„and I and L have similar
expressions. It can be shown that the Hamiltonian H
may be exactly diagonalized in the common eigenstates

II' LMr, ) ofI, I, and Lz, L„which are the basis func-
tions of SU(2) xSU(2). For an even-particle system the
unperturbed ground state is a state in which all particles
are in the 0 = —1 level and occupy the kp states in pairs.
We denote this state by 1$):

N/2

at at 10) —=

p=1

at 10),
p

where 10) is the vacuum state. From Eqs. (2)—(5) we

know that the state 1$) belongs to the SU(2) x SU(2) basis

and has the quantum nuxnbers

Jz = —2N I=L= 4N, I, =L, = —-¹
All other basis functions can be obtained from 1$) oper-

l

(JK) (JK)) BM, M, BMJM, = 6M, M, bM, M, ,

MIMI

M~+M~I =K
(6b)

where the lower index K represents that only the ba-
sis with Mg + ML, ——K is contained in the expansion.
Then after diagonalizing the operator J2 in the basis
space IIMrLMr, ), all J values which satisfy the condi-
tions IKI ( J ( 2N, and the corresponding coefficients

BM M, i.e., all the states
I JK) with definite K value,(JK)

are obtained. This procedure is similar to that used for
determining the total angular momentum of the state in
the large-scale shell model calculation [6].

According to the Eqs. (2) and (3) and the definition
J = J+J + J, —J, and taking into account the eigen-
values of the operators I+ and L+, it is not difficult to
deduce the formula of the matrix elements of Jz:

(IMr'LML, I
J IIMrLMr, ) = 2[I(I+ 1) + Mr Mr, ]4r,M, ~M, M,

+[I(I+ 1) —Mph] [L(L+ 1) —MJ ML, ] (bM~ M, +gb'M~ M, ~ + $M M, ~bM M, +~).

It is evident from Eq. (4) that in the case of m = 0 the Hamiltonian H is diagonal in states
I JK) and the corresponding

energy is

@JK = (JKIH(~ —0)1JK) — ) (BM~~~) (K + 2vMIMI )~MJMz~M~Mz,
MI ML,

+V BM, M, BM M [I(I+ 1) —M'M ]
ML, MLMIMI

X[L(L + 1) —MJ, , ML] (8MJ, Mg 16M~,ML, +1 + ~MJ—,My+1~M~, Mg —1).

In the general case of m g 0 the states
I JK) are not the eigenstates of H, but they can be used as the basis vectors

diagonalizing H. Then the good J eigenstates of H are expanded on the basis
I JK):

IJ) =) &'IJK) K 0, +2, +4, . . . for even K,
+1,+3,+5, . . . for odd K,

where summation index K takes either even integers or odd integers depending on state
I J) belonging to an even K

or odd K group [5]. This feature of the state
I J) results &om the fact that the m term of interaction only mixes with

the states having K and K + 2, or EK = +2. It is easy to show that the matrix elements of H in basis functions

I JK) are given by
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(JK'lHIJK) =E~~~~~+~
MI MJ. MI ML

H~, l, g~ l [I(I+ 1) —MzMz] ~'

x [L(L + 1) —Mz Mz, ]
' (hM', Ml i—~M', Ml, i—+ ~M~, Mr+1~M~, Mr, +1)) ( )

where Ega is calculated in terms of Eq. (8). Then by
diagonalizing H matrix the exact energy eigenvalues and
the wave functions AKJ of the good J states are obtained.

Before ending this section we should point out that
the state

l
JK) is in fact the vector coupling state of two

quasispins I and L. It is obvious from Eq. (3) that the
quasispin J is just the vector sum of quasispin I and L:
J = I+L. Then the coupling state

l
JK) can be produced

in terms of Clebsch-Gordan (CG) coefficients as follows:

l
JK) = ): (IMzLMzl JK)IIMz)ILMz) (11)

MI ML

the even J states and omit the odd J states in the band
K = 0. In the case tv g 0 the pairing interaction leads
to K mixture of the states and results in triaxial symme-
try of the Hamiltonian. In fact, the state

l J) in Eq. (9)
has the same form of the wave function of a triaxial rigid
rotor (7).

As mentioned above, the good quasispin states
l J) have

no definite K values, therefore in the energy spectra no
band structure should be exhibited. However, we can use
the following procedure to distinguish an approximate
band structure. We first calculate the overlapping

By comparing Eq.(6) with Eq. (11) we know that
the coefficients BM M are just the CG coefficients(JK)

(IMzLML,
l
JK). Consequently, the diagonalization of

Eq. (7) is in itself a kind of numerical method for calcu-
lating the CG coefficients. Because we must establish the
diagonalizing procedure to calculate the energy eigenval-
ues, it is very convenient to diagonalize the J2 matrix
using the same procedure. Then calculating the CG co-
efficients, which is required for use of Eq. (11), is not
necessary at all.

IV. DETERMINATION OP BAND STRUCTURE

First of all, we work in the case of m = 0. In this case
the energy spectra of an even-N system are given by Eq.
(8). In order to more distinctly describe the characters
of this energy spectrum, we rewrite Eq. (8) in terms of
Eqs. (4) and (11) as follows:

Ega = (JKlH(u) = 0)lJK) = K+ v J(J+ 1)
'vN( N+ 1), -(12)-

where we have made use of the values I = I = 4¹It is
shown by Eq. (12) that when to = 0 the energy spectra
of an even-N system are formally coincident with that
of an axial symmetry rigid rotor. The axial symmetry of
the Hamiltonian H(m = 0) is fully exhibited. However,
it must be pointed out that there is an important dif-
ference between Eq. (12) and the energy formula of the
axial symmetry rigid rotor. The Hamiltonian of a rotor
is invariant under the rotation of total spin by angle vr

about the intrinsic x axis. And so there are no odd J
states in the K = 0 band for an even-N system. But
in the SU(2) xSU(2) model the Hamiltonian H(m = 0)
does not have the mentioned invariance, which can be
easily shown by using Eq. (4), so that the odd J states
appear in the K = 0 band of the even-N system. In
spite of the appearance of an odd J state, the research
of the e8'ectiveness of CHF methods does not appear to
be afFected. In the following we are only interested in

0
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FIG. 1. The K structures of states K = 0 and J = 10 of
the system N = 20 at difFerent values of v (m = v/2).

and then take the state having maximum AK among the
states with same J value as a member of the K band.
In this way a set of selected states possessing de6nite
K constitute an approximate "rotational band. " Here
we use the approach quantum number K to denote this
band in distinguishing the band quantum number K of
the axial symmetry system. It must be noted that for
this selected state AK is not necessarily the maximum
amplitude in the expansion of the state itself. By prac-
tical calculations we know that the procedure described
above is effective in most cases, but not in all cases. We
sometimes have no choice but to take the state which has
small AK, even the minimum AK, as the member of the
K band. This is related to the K structure of the state.
As evidence an example is given here. In Fig. 1 the vari-
ation in the K structure of the states K = 0, J = 10, for
N = 20 system is exhibited with the varying strength pa-
rameters of the interactions. In the figure czar

—(A&) .

It is shown that the single-peak K structure only exists
in the region around v = 0.1 and m = 0.05. In the re-
gion around v = 0.2 there are double-peaks K structures,
and when v increases beyond about 0.3 even triple-peaks



49 EXACT SOLUTIONS AND CONSTRAINED HARTREE-FOCK. . . 1399

Q. 8855 3 +Q,

-12-

-16-

-20 .

-24-

O. SS55 (3, —

-0. 369 ) 3, j,

~ 6316 I 3 3&

727 ) 3, 1&

5671 ) 3v 3)

( 3, 1)

/ 3, -1)

FIG. 2. The energies of
states J = 3 in the bands
K = +1 of the system N = 20
and the first two maximum am-
plitudes in the K structures
plotted versus the interaction
strength. o for K = 1; ~ for
K = —1.

-28-

-32
0. 1 0. 2 0. 3 0. 4

I I

0. 5 v (w=v/2)

K structures present. However, all the K structures are
symmetrical about K = 0, and a kind of symmetrical "re-
pulsion" in the strength distribution of the wave function
appears. Because the amplitude for the peak value K is
equal to that for the peak value —K, we cannot assign
the K value according to the peak value for the state
which has a symmetrical "repulsion" K structure. Only
the value K = 0 must be assigned to this state.

At the same time, with the increase of the interaction
strength, the band-crossing phenomena are &equently
observed. In Fig. 2 the energies of the states J = 3 in the
bands K = +1 of the system N = 20 are shown. In the
figure the numbers beside points and circles are the first
two maximum amplitudes and the corresponding basis
vectors

I
JK) in the K structures of the states

I
J = 3).

The energies of the basis functions
I
J = 3, K = +1) are

also given by dashed lines for comparison. Two cross-
ings between the band K = 1 and the band K = —1 are
shown. The first crossing comes from the amplitude ex-
change between basis K = +1, and the second crossing
is due to the increase of amplitudes of basis K = +3.

(/IHIP') = —2N cosa cos p + 4vN (cos p —i)
+2wN(cos n —cos P), (15a)

(PIJ, IP) = —2N cosa cosP, (15b)

(PIJ IP) = 2N(1+ 2N cos P), (15c)

(PIJ„IP) = 2N sina cosP, (15d)

(pI J„Ip) = 4N[1 —cos a + (N —1) cos p
(N —2) cos —a cos P]. (15e)

(16a)

(16b)

Let us consider now the J„and J2 simultaneous con-
strained HF theory. In this case the Hamiltonian and the
constraint are

V. NEW CHF PRESCRIPTIONS AND GOOD J
STATE ENERGY SPECTRA

In order to introduce the variational parameters, we
perform two successive transformations with fermion op-
erators at and a„:

Taking into account the variational conditions

B(PIH'I@)/Ba = 0, 8(PIH'I@)/BP = 0,

and Eqs. (15a), (15d), (15e), the solutions of Eqs. (16)
can give

cos 2
—i sin 2 c—p

~
—isin2p cos2p

~ ~
c„+

(14)

P = 0, sinn = (2/N)[J(J+ 1) —K ] ~,
8 = 2m/(N+1),

(u = [J(J+1) —K ] ([—N + K2 —J(J+1)]
(c„ cos 2n —i sin 2a t & b~

i sin 2n cos 2n
~ I

b„+—)
Taking the unperturbed ground state IP) = P btIO) as
trial function, we get in the 6 representation

—8~/(N + 1)),
(18)

ECHF (J J2) — [
~ N2 + K2 J(J+ 1)]1/2 + 1~N2

—2m[J(J+ 1) —K + ~N]//(N + 1),
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where EcHF(J+, J„)are the energy eigenvalues of the J„
and J„simultaneous constrained Hamiltonian (16a). It is
evident from the first two expressions of Eq. (18) that be-
cause of the condition sin a & 1 there is a restriction on
J values: J(J+ 1) & 4N + K . Then if K ) (N/2)~~2,

the maximum of J is N/2; if K & (N/2)~~2, the maxi-
mum of J is N/2; if K & (N/2) ~, the maximum of J is
restricted by the condition J & zN —1.

Now let us turn our attention to another constrained
HF method, that is, J, and J simultaneous constrained
HF theory. The Hamiltonian and the constrained condi-
tions are

H' = H —AJ —o.J„ (19a)

(&IJ'I&) = J(J+ 1) (&IJ.I&) = K (19b)

Taking into account Eqs. (15a)—(15c) and inserting Eq.
(19) into Eq. (17), we can obtain the solutions of this
problem:

cosP = 2Gg/N, cosa = —K/Gg,

Gg = [J(J+1) —2N]'i', —

(20a)

P = vN ——,'~(4 —NK'/G', ), ~ = 1+~NK/G'„

(20b)

GHF(J,J,) = K + v(Gq —s~N )

+2mN(K /Gq —4Gg/N ), (20c)

with the condition J(J+1)) 2N. This condition means
that lower J states near J = 0 are rejected in J and J,
CHF theory. But because the eigenenergies only depend
on G2&, we can get the energies of states for which J(J+
1) & N/2 by extrapolating Eq. (20c) towards J = 0.

The eigenstates in the two CHF theories mentioned
above possess good quantum numbers J and K. When
m = 0 the states

I
JK) of the even-N system constitute

the spectra of the rigid symmetrical rotor. When m is not

equal to zero the band structure is destroyed by the K
mixture. But we can distinguish the approximate band
structure by using the method described in the last sec-
tion. There are two examples, given in Figs. 3 and 4. It
can be seen from Fig. 3 that if m is little, the band struc-
ture is only slightly affected. The orders of the states in
the bands K = 0, 1, and 2 are the same as that for
m = 0, and the energy level spacings almost keep un-
changed. With increasing m the band structure becomes
more and more indistinct. The orders of the levels in the
bands K g 0 are strikingly perturbed, and the level spac-
ing distributions are also different &om that for m = 0, as
shown in Fig. 4. When the value of m is very large, it is
impossible to distinguish the band structure. However, it
is worthwhile to point out that the energies of the states
in the band K = 0 are essentially not affected by the
change of m. When the value of m becomes rather large,
the band K = 0 conserves fairly well in spite of the ob-
vious changes in the K structures of the wave functions
(see the examples shown in Fig. 1).

In Figs. 3 and 4 the energy spectra on the right-hand
side are the yrast spectra for even K and odd K. Those
spectra have no character of band structure at all: the
level orders are thrown into confusion and the level spac-
ings are irregular. In fact, the yrast states which are
states possessing minimum energy for given quasispin J
do not have the same value of K, and so do not consti-
tute a rotational band. This tells us that we should deal
carefully with the "yrast band" for the actual nuclei and
pay attention to the inner structure of the members of
this band [8].

Also in Figs. 3 and 4 we compare the exact spectra
with the constrained HF spectra; that is, CHF(J„, J„)
and CHF( J2, J,) spectra, respectively. On the whole, the
CHF(J„,J„) spectra are pressed too low relative to the
exact

I
JK) spectra and

I J) spectra, while CHF (J2, J,)
spectra have energy level spacings which are compara-
ble to that of IJK) and

I J) spectra. At the same time,
the bandhead levels of the bands K = 1 and K = 2
also approach the ground state K = 0, especially for
CHF( J„,J2) spectra. Therefore, in practical applications
of CHF theories it is necessary to add a K-dependent
constant term to correct the energies of the bandhead
levels.
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FIG. 3. The energy spectra
of the system N = 20 for
v = 0.10 and m = 0.05.
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FIG. 4. The energy spectra
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VI. CONCLUSIONS

(1) By means of diagonalizing the J matrix, the
coupling basis

[JK) can be constructed from the
SU(2) x SU(2) basis functions ~IMILMI, ). When to = 0
the states [JK) are the energy eigenstates of H(m = 0),
and the spectra possess the characteristics of the axial
symmetry rigid rotor energy spectra.

(2) In the case to P 0 the Hamiltonian can be diago-
nalized in the coupling basis functions

~
JK). Then we

obtain the eigenstates ]J), which are of K mixture, and
the corresponding energy spectra. If the interactions are
not strong, the approximate band structure can be dis-
tinguished among the good J but K-mixed energy levels.
In other words, it is possible to design an approximate
quantum number K (denoted by K) to the state

~
J).

If the interactions are strong the band structure is de-

stroyed by the striking X mixture, except for bands such
that K = 0. On the other hand, the yrast states do not
constitute a good rotational band in either weak interac-
tions or strong interactions mentioned here.

(3) From the comparisons of CHF( J„,Jz) and
CHF(J2, J,) spectra with the exact energy spectra, we
know that CHF(J„, J„) spectra are too low in energy,
while the CHF(J2, J,) spectra may be comparable to
) JK) and

~
J) spectra, except for the states for which

K = 0 and the condition J(J + 1) ) 2N is not satis-
fied. On the whole those two new CHF prescriptions are
the effective methods to obtain the states having good
quantum numbers J, K and the spectra with multiband
structure, if the interactions are not very strong.
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