
PHYSICAL REVIEW C VOLUME 49, NUMBER 3 MARCH 1994

Comparison of the Porter-Thomas distribution with neutron resonance data of
even-even nuclei
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The low-energy neutron resonance data of the even-even nuclei Sm, Gd, Dy, ' Er,
Th, and ' U have been examined in order to test the validity of the Porter-Thomas

distribution of the reduced neutron widths —a chi-squared distribution with one degree of freedom
(v = 1). In an attempt to circumvent the ever-present problems of missed or spurious s wave levels as
well as extra p wave levels, a maximum likelihood statistic was employed which used only measured
widths greater than some minimum value. A Bayes-theory test applied to the data helped to ensure
that p wave contamination of the s wave level population was not signi6cant. The error-weighted
value of the number of degrees of freedom for the nine nuclei studied, (v) = 0.98 +0.10, is consistent
with the theoretical expectation of v = 1.

PACS number(s): 24.30.—v, 24.60.—k, 25.40.—h

INTRODUCTION

When a low-energy, ( 5 keV, neutron interacts with
a heavy nucleus, compound nuclear states are formed.
The signatures of these states are the narrow resonances
observed in the total neutron-nucleus cross section as a
function of incident neutron energy. For most nuclei with
A & 150 (exceptions occur in the actinide region), the
compound nuclear state decays via two open channels,
namely, elastic neutron emission characterized by a neu-
tron width 1„, and the emission of gamma rays lead-
ing to neutron capture with the width I'~. The neutron
width, capture width, and resonance energy are the pa-
rameters which appear in the Breit-%igner expression
for the resonance cross section. At these low energies
the neutron initiating the reaction is basically either 8
wave (l = 0) or p wave (I = 1), and a measured neutron
width is related to an intrinsic or reduced width (I'„)
through different (l = 0, 1) penetrability factors, namelyI'„= PoI'„, or I'„= Pql'„, where Po ——(E/1 eV) ~

and Pq ——Pox /(z + 1). z = kR and E, k, and R are
the resonance energy, neutron wave number, and effec-
tive nuclear radius, respectively. At low energies kB && 1
and, assuming the reduced 8 and p wave widths are of
the same order, the measured p wave resonance widths
are much smaller than the averuge s wave widths. Many
years ago Porter and Thomas [1] suggested that the re-
duced neutron widths of resonances characterized by the
same quantum numbers obeyed a chi-squared distribu-
tion of one degree of freedom (hereafter referred to as the
Porter-Thomas Distribution —PTD). The theoretical ar-
gument for this was based on the proportionality of the
reduced widths to p, where p is a resonance amplitude
defined in the R-matrix theory [2] of nuclear reactions
as an overlap integral between a channel wave function
and a compound nuclear state function. p was argued
to have a Gaussian distribution about zero which leads
to the PTD for the reduced neutron widths. The PTD
distribution emerges naturally in random matrix theory,

introduced by Wigner [3]. The PTD has the form

P(y v y)dy = Ky("~ ) exp( —vy/2y)dy .

K is a normalization constant, y is the reduced neutron
width (e.g. , I'o), v is the number of degrees of freedom,
and y is the average reduced width. For v = 1 the PTD
results. The nature of the PTD is such that the reduced
widths vary in strength over several orders of magnitude
and the smallest widths are the most probable. Although
generally believed to be correct it is difBcult to verify,
&om neutron resonance data, that v = 1 experimentally.
Some of the reasons for this are as follows: (i) Due to
the limiting eKects of finite experimental resolution, in
any given experiment in which a statistically significant
number of resonances is detected, a number of weak reso-
nances remain undetected. Under these conditions a test
of the PTD would lead to values of v & 1. (ii) The dif-
ficulty of distinguishing weak resonances &om statistical
Buctuations. Spurious levels are sometimes introduced
in this manner. Extra small widths lead to estimates of
v ( 1. (iii) For many nuclei weak s wave widths are in-
distinguishable &om strong p wave resonances. This is
a function of the relative strength of the s and p wave
strength functions, So and Sq, as well as the resonance
energy and the radius, R, of the target nucleus. Extra p
wave resonances in an otherwise complete 8 wave popu-
lation of levels lead to estimates of v ( 1. (iv) Because
the widths obeying the PTD have values spanning sev-
eral orders of magnitude, the inherent Quctuations in the
determination of v due to finite sample size are large.
For this reason it is not feasible to determine v with suf-
ficient accuracy by examining the resonances of just one
nucleus —experimental data of the necessary quality and
completeness do not exist.

A determination of v with one of the smallest uncer-
tainties was made by Harney [4] (v = 0.93 + 0.11) using
a technique based on the ideas of Krieger and Porter
[5], wherein correlations between different channel am-
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METHOD

The method employed here is intended to determine v
in a manner which circumvents the problems (i), (ii), and
(iii) mentioned above. Since these difficulties arise from
the smallest levels, a statistic was employed which uses
only reduced widths larger than some minimum value.
In addition, it was necessary to exclude strong p wave
widths that are mixed in with the weak s wave levels. An
important aid, in this regard, is the Hayes-theory (BT)
test suggested by Bollinger and Thomas [8]. The appli-
cation of this test for even-even target nuclei requires a
knowledge of the s wave strength function So, the s wave
level spacing Do, the p wave strength function Sq, and the
nuclear size. The BT test helps to determine how large
the minimum width must be to reduce p wave contami-
nation to negligible proportions. Additional assumptions
and the equations required for the BT analysis are out-
lined in Appendix A. The finite sample size problem (iv)
can only be overcome by examining as much data as pos-
sible.

The method of estimating v was developed by consid-
ering the probability distribution

F(y yl, v, y)dy = P(y v, y)ay P(y v, y)dy
JJ1

(2)

This distribution is normalized to unity for values of the
reduced widths yq ( y ( oo. P(y, v, y) is the distribution
defined by Eq. (1) and yq is some minimum reduced
width above which all levels have been detected and are
all s wave levels. For n widths yl, . . . , y„, the likelihood
function

L(y. v y) = +(y', yi, v, y)
i=1

is constructed and the maxima conditions OL/Ov = 0,
BL/By = 0 lead to the equations

(4a)

(Iny)/(1) = ) in(y')/~
i=1

(4b)

plitudes were examined for a unique set of proton data
taken at Duke University [6]. A test of the PTD is made
here using the neutron resonance data that have been
collected over the years [7]. In principle even-even target
nuclei with A ) 150 should form good test cases. For s
wave neutrons the resonances formed with even-even nu-
clei have the same spin and parity, 1/2+, and form a sin-
gle population of levels to which the PTD is expected to
apply. The larger level spacing and resonance widths of
the even-even target nuclei should result in fewer missed
levels than neighboring odd A nuclei. The heavier even-
even nuclei also possess a statistically significant number
of levels where experiment can resolve most levels.

where (a) = f aP(y, v, y)dy, with a = y, 1, and lny.

Equations (4a) and (4b) are two transcendental equa-
tions in the two unknowns v, y. The right-hand side
of these equations has the fixed values determined by a
particular set of experimental data. The integrals are cal-
culated numerically for a range of v and y until unique
values satisfying the equations are found. Monte Garlo
calculations carried out using Eq. (1) with known values
of v, y indicated that Eqs. (4a) and (4b) can be success-
fully applied to determine these parameters. These same
calculations indicated that the value obtained for v is bi-

ased (larger than the true value) and a typical correction
is reducing v from, e.g. , 1.22 to 1.10. All quoted values
of v have been corrected for this bias. The correction
is mainly a function of the number of levels, n, and the
ratio of the minimum width to the average width.

The uncertainty in the determination of v, y was as-
sumed to arise fl. om two sources, finite sampling errors
and the uncertainty of the individual measured widths.
The finite sampling error was determined in the usual

way when maximum likelihood estimators are used. For
example, for a given value of y, it was assumed that v

is Gaussian distributed about the optimum value; thus
it follows from this that o'„= [8 L/Bv—2], where 0„
is the standard deviation of v due to finite sample size.
Similar remarks apply to the uncertainty of the average
width, y. The other uncertainty, associated with the ex-
perimental error of each individual width, was found to
be much smaller than the finite sampling error. These
two errors were added in quadrature.

COMPARISON %PITH EXPERIMENTAL DATA

A cursory examination of the neutron resonance data
available [7] suggests there exists a significant amount
of data for even-even nuclei with A ) 150. However,
resonance data were included in the analysis only if the
number of levels, of a given nucleus, with widths above
the appropriate minimum value was 45, the minimum
width was less than 10'Fp of the average width, and the
value of v was relatively stable to variations of the mini-
mum width. There are nine nuclei meeting these criteria
for which the statistical analysis described above was car-
ried out and an estimate of v made. Generally speaking,
since v is sensitive to the smallest widths, the minimum
width yq should be chosen as small as possible, yet at the
same time, be suKciently large that no levels have been
missed in the given energy range, nor should there be a
significant number of p wave levels.

The three nuclei studied in the actinide region had the
largest number of levels per nucleus. The results for these
nuclei will be discussed first. The difhculty in this region
of the periodic table is that Si ) So so that p wave

contamination of the small s wave widths is usually a
serious problem. Typical are the Th data of Rahn
et al. [9], shown in Fig. 1, where the reduced neutron
widths, assumed to be s wave, are plotted versus the
resonance energy. At energies less than 100 eV reduced
widths as small as 0.001 meV have been detected, while

at an energy of 1500 eV the minimum width detected
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FIG. 1. Plot of the Th reduced neutron widths, of Raha
et al. [9), as a function of resonance energy. At energies below
100 eV neutron widths as small as 0.001 meV have been de-
tected, while at the highest energies near 4000 eV the smallest
width detected is close to 0.08 meV. In contrast, the largest
widths measured Quctuate about a value near 9 meV without
any noticeable energy dependence. This is strong evidence
that weak levels are being missed as the incident neutron en-

ergy increases. A plot of this nature can be used as a guide
to determine the minimum width above which all levels have
been detected in a given energy range. For example, for Th
it is reasonable to assume that all widths greater than 0.01
meV have been detected in the energy range 0—1500 eV. Plots
of the reduced neutron widths vs resonance energy for all the
nuclei examined had the same qualitative features as Th.
These plots help to determine, for each nucleus, the minimum
reduced width above which all levels have been detected in a
given energy range.

has increased to 0.01 meV. At the highest energies near
4000 eV, the minimum width detected is about 0.08 meV.
In contrast, the largest widths measured hover around 9
meV and, allowing for Buctuations, are independent of
energy. This is compelling evidence that small levels are
being missed with increased frequency as the incident
neutron energy increases. For each nucleus studied the
plot of the reduced neutron widths vs resonance energy
had the same qualitative features as Fig. 1. This type of
plot was used, for each nucleus, to help determine yq for a
given energy range. In order to keep the minimum width
for Th as small as possible and still include a reason-
able number of levels, yz could be chosen equal to 0.01
meV and then the data between 0.0 and 1500 eV could
be used to determine v, y. Unfortunately, this approach
is not possible because many of the levels in this energy
range with widths ) 0.01 meV are p wave. Several mea-
surements [10—12) of the Th p wave strength function
cluster about the value 10 Si ——1.5, and this value along
with the s wave parameters [9), 10 Se ——0.84, De ——16.7
eV, were used in the BT analysis. The BT test indicated
that if yi ——0.14, 0.15, and 0.17 meV for the data up
to E = 1900, 2419, and 2664 eV respectively, the num-
ber of possible p wave levels present, out of an average
of 100 levels, has been reduced to less than 1/2. For

TABLE I. Listed are the values of the number of degrees
of freedom v and the average neutron width y determined
from the neutron resonance data of the nine even-even nuclei
analyzed as described ia the text.

Element
152S

158Gd
162D
166E
168E
182yy
232Th
236U

238U

1.13+0.37
1.28+0.43
0.64+0.28
0.85+0.24
1.10+0.42
1.12+0.38
1.32+0.30
0.90+0.29
0.92+0.26

y (meV)

11.37+2.11
15.52+2.72
11.08+2.36
6.76+1.15

15.10+2.97
14.66+2.37
1.62+0.18
1.92+0.30
2.50+0.36

these widths, solving Eqs. (4a) and (4b) yielded v = 1.25,
1.43, and 1.27, while y = 1.65, 1.65, and 1.57 meV. The
choices of v, y = 1.32 + 0.30, 1.62 + 0.18 meV are given
in Table I. The quoted errors are dominated by the finite
sampling uncertainty.

The U data of Carrao and Brusegan [13] were used

up to E = 1535 eV. Over this energy range missing 8
levels and p wave contamination were a problem. If yi ——

0.12 meV the problem of missing levels is eliminated and
a BT analysis with (104Se ——1.0, De ——16.2 eV) [13] and
104Si ——2.3 [14] suggested that less than 1/2p wave level
was present out of 80 levels (removing a level as p wave
did not change the result in any significant way). The
values of v obtained by increasing the minimum width
from 0.13 to 0.17 meV varied between 0.84 and 0.96 awhile

y varied between 1.89 and 1.97 meV. The final values are
given in Table I.

The analysis of the 2ssU data [9] was similar to that of
thorium in that p wave contamination was the dominant
problem. Reported values of the p wave strength function
range from 10 Si ——1.4 [9] to 2.44 [11].For the BT test
the value of 10 Si was assumed to lie between 1.7 and
2.0. The s wave parameters (104Se ——1.08, De ——20.8
eV) were taken from Rahn et al. [9]. When yi ——0.23
to 0.27 meV was selected for the data to E = 2671 eV,
the BT test indicated that for each value of yi, 1/2 to
1 level out of 90 were p wave. Solving Eqs. (4a) and
(4b) with and without one possible p level removed led
to values of v between 0.84 and 0.98 and y between 2.40
and 2.58 meV. The compromise values are v = 0.92 and

y = 2.50 meV.
Six nuclei between A = 152 and 182 were found to

be good candidates for this analysis. The final values
obtained for v and y are given in Table I. Remarks about
these nuclei follow.

For the is2Sm data [15], the sole problem of missing
8 wave levels was overcome by choosing y~ ——0.3 meV
for the data to E = 2657 eV. By varying the minimum
width &om 0.3 to 0.5 meV, v, y varied &om 1.08, 11.12
meV to 1.20, 11.62 meV. The final values for the 46
widths used are given in Table I.

For the BT test of the Gd data [16], the s wave
parameters 10 So ——1.5 and D0 ——86 eV of Rahn et al.

[16] were used. These same authors found, for i eGd, a
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p wave strength function of 10 Sq ——1.7, and this value
was used for Gd. For energies up to 4985 eV all levels
with widths greater than 0.42 meV were detected. In
order to reduce p wave contamination and still keep a
small minim»~ width, yq was chosen equal to 0.75, 0.82,
and 1.1 meV. For the first two values of y~ one possible

p wave level was removed out of the 44 levels analyzed;
for yq ——1.1 IneV it was not necessary to remove any
p levels. Solving Eqs. (4a) and (4b) yielded v between
1.23 and 1.34 and y between 15.24 and 15.75 meV. The
final choices of 1.28 6 0.43 and 15.52 6 2.72 are listed in
Table I.

For the M2Dy data [17] the BT test (10 So ——1.88,
Do ——64.6 eV and 10 Sq ——1.1 from Liou et at. [17])
suggested a few p waves were detected, but with yq

——0.62
meV, p wave contamination to E = 4000 eV is reduced
to no more than 1/2 level out of 50; in addition, no larger
widths were missed. Increasing yq from 0.62 to 0.84 meV
for the data to E = 4000 eV led to values of v between
0.60 and 0.68 and y between 10.7 and 11.3 meV. The
final values are listed in Table I.

For the ~MEr data of Liou et aL [18] the BT analysis
(10 So = 1.7, Dp = 37.6 eV, 10 Sq ——0.7) [18] suggested
four possible p waves to E = 2984 eV. Choosing a mini-
mum width of 0.105 meV for this energy range reduced
the p wave contamination to less than 1/2 level out of
70, with no missed levels. Varying yz between 0.105 and
0.17 meV gave consistent values of v, y around the final
choices of 0.85 + 0.24, 6.76 6 1.15 meV.

For ~ Er [18]p wave contamination rather than missed
levels was the dominant problem. A BT test (10 So ——

1.5, Do ——93.6 eV, 10 Sq ——0.7) [18] indicated that for
the data up to E = 4885 eV the minimum width had to
be larger than 0.60 meV to reduce the number of possible
p levels to less than one out of about 45 widths. Using
yq

——0.39, 0.60 meV (with two and one possible p levels
removed, respectively), and yq ——0.72 and 0.93 (with no

p levels removed), the solutions to Eqs. (4a) and (4b)
for v were found to lie between 1.03 and 1.14, while y
fell between 14.76 and 15.33. The final choices are v =
1.10 + 0.42 and y = 15.10 6 2.97.

Missing s levels comprised the only difhculty with the
~s2W data [19]. For energies up to 4492 eV the min-
imum width was varied between 1.3 and 2.2 meV. For
these approximately 58 levels consistent values around
the final choices v = 1.12 + 0.38 and y = 14.66 + 2.37
were obtained.

CONCLUSION

Using a statistic which attempts to circumvent the dif-
ficulties of missing levels, spurious levels, and p wave
contamination of an s wave population of levels, nine
sets of neutron resonance data were examined to test
the correctness of the PTD. The error-weighted average
value of v for the nine even-even nuclei listed in Table
I is (v) = 0.98 + 0.10. Given the 10%%uo uncertainty, the
fact that (v) is so close to 1 can be considered somewhat

fortuitous. However, the result is completely consistent
with the PTD (u = 1) and overlaps Barney's [4] result of
{v) = 0.93 + O.ll found using a different technique and
determined Rom data of a diferent nature.

APPENDIX

Described here are the assumptions and equations used
to assign a probability to a measured width as being ei-
ther s wave or p wave —the so-called Hayes-theory test
[8]. When an s wave neutron is incident upon an even-

even nucleus only J = 1/2+ compound nuclear states can
be formed. For p wave neutrons the presence of the spin-
orbit interaction leads to both J = 3/2 and J = 1/2
resonant states. If the ratio of p levels to s levels is taken
to be 3 to 1 and if there are twice as many J = 3/2 p
levels as J = 1/2 p levels, then the relative probability
that a measured width is p wave can be expressed as

Prob(p) = (2P+ + P„)/(P, + 2P+ + P„), (Al)

I'p = SpDp,

(gI'„') = 3SgDp/(C + 1),
(gI'„')+ = C(gI'„') /2 .

(A2)

Given Sp, Dp, and Sz, only the parameter C needs to
be determined. | is the ratio of the compound nucleus
formation cross section for p wave neutrons in the J =
3/2 and 1/2 states. The values of C, calculated with
an optical model, depend on the mass number A but are
relatively insensitive to the parameters of the potential
needed to bracket the experimental values of Sq vs A for
A & 150. The value of C is about 1.5 for Sm and
increases to 2.87 for U.

As an example, consider the Th level at 2624.3 eV
with a measured width of 7.17 meV. With 10 Sp = 0.84,

= 16.7 eV, 10 Sq ——1.5, t = 2.8, an.d R = 1.4A»,
the probability that this level is s or p wave is 0.446 and
0.554, respectively.

where the Prob(s) = 1.0—Prob(p). P„P+ represent
the s and p wave probabilities of detecting a level of a
given width and have the functional form of Eq. (1) with

K, v = 1. The + and —superscripts associated with the

p wave probabilities refer to the J = 3/2 and 1/2 lev-

els, respectively. The measured width (not the reduced
width) is substituted into the expressions for P, „. This
requires that the average widths (also not reduced) be
determined at the resonance energy of the level being ex-
amined and are found by multiplying the average reduced
widths by the s and p wave penetrabilities evaluated
at the resonance energy. Thus, given the assumptions
above, estimating the average reduced widths is what re-
mains to be done. It follows kom the definitions of the s
and p wave strength functions that the average reduced
widths can be expressed as
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