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Role of heavy-meson exchange in pion production near threshold
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Recent calculations of s-wave pion production have severely underestimated the accurately known
pp — ppn® total cross section near threshold. In these calculations, only the single-nucleon axial-
charge operator is considered. We have calculated, in addition to the one-body term, the two-body
contributions to this reaction that arise from the exchange of mesons. We find that the inclusion
of the scalar o-meson exchange current (and lesser contributions from other mesons) increases the
cross section by about a factor of 5 and leads to excellent agreement with the data. The results are
sensitive neither to changes in the distorting potential that generates the NN wave functions nor

MARCH 1994

to different choices for the meson-nucleon form factors.

PACS number(s): 11.40.Ha, 13.60.Le, 13.75.Cs

I. INTRODUCTION

Recently, a precise measurement of the total cross
section for pion production in the reaction pp — ppn®
was carried out using the electron-cooled stored beam of
the Indiana University Cyclotron Facility (IUCF) Cooler
with an internal gas target [1]. The novel technology
made it possible to extend the measurements to within
a few MeV of threshold. Over most of the covered en-
ergy range, contributions from higher partial waves are
negligible, and the cross section is thus due to a single
partial wave (3Py — 1Sq + s-wave pion). That this is the
case can be deduced from the energy dependence of the
cross section and the angular distribution of the outgoing
protons [1].

As we will discuss below, s-wave pion production is
sensitive to the axial charge of the two-nucleon system.
A number of calculations using the single-nucleon axial-
charge operator [2—4,1] have been carried out with vari-
ous choices for the NN distorting potentials. Quite sur-
prisingly, such calculations all underestimate the data by
approximately a factor of five. This discrepancy is even
more serious since there is little ambiguity in the calcula-
tions, because only a single partial wave is involved, and
the NN wave functions and the (free) operator are both
well known.

The discrepancy could be explained by an enhance-
ment of the axial charge in the NN system, which
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could come from a relativistic effect. There exist many
relativistic calculations for nuclear systems; for exam-
ple, relativistic impulse-approximation calculations [5,6]
accurately reproduce elastic proton-nucleus scattering
data. Relativistic models characteristically feature large
Lorentz scalar and vector potentials [7]. The strong
scalar potential enhances the lower component of the
Dirac wave function of the nucleon; this change enhances
the axial charge [8] (see Sec. IV). Several authors have
examined the consequences of this relativistic effect on
B decay or muon capture rates in A = 16 nuclei [9] and
nuclei near A = 208 [10].

In nonrelativistic models, relativistic effects can
be incorporated formally via meson-exchange currents
(MEC’s). In this view the relativistic effect would be
represented by a MEC involving a scalar o meson. Note
that o exchange also provides a phenomenological model
for the intermediate-range attraction in the NN interac-
tion and is responsible for part of the spin-orbit potential.
Many authors have examined MEC contributions to the
axial-charge operator in nuclei, and found that the largest
contribution is due to mp exchange [11], which enhances
axial-charge matrix elements by about 60%. The next
largest MEC is believed to be the relativistic o exchange,
contributing another 40% to the axial charge. Together
these contributions could account for the approximately
100% enhancement seen in axial-charge matrix elements
for a variety of 8 decays [11]. However, the size of the
MEC contribution that one would derive from experi-
ment depends on assumptions about complicated wave
functions and short-range NN correlations.

Because of isospin considerations, the mp current (pro-
portional to the dot product of 7; X 7 and the pion field)
cannot contribute to pp — ppm®. However, other MEC’s
may well be important. In this case, pion production
in the pp system would provide a unique laboratory for
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testing MEC models for a number of reasons. First, the
initial proton must decelerate in order to produce a pion.
The resulting large momentum mismatch can best be me-
diated by meson exchange. Heavy mesons are favored;
indeed, the initial relative momentum near threshold of
about 1.9 fm~! is comparable to the mass of the ¢ meson.
Thus the process is very sensitive to two-body contri-
butions. Second, contributions from intermediate states
with a nucleon and a spin—% A are expected to be small,
since such a system cannot be formed in a relative s state
because of angular momentum considerations. Further-
more, the A cannot decay into a spin—% nucleon and an s-
wave pion. (Reference [4] provides estimates of A contri-
butions.) Third, pion-rescattering effects are believed to
be small, because the scattering length for pion-nucleon
s-wave scattering in the required isospin combination is
small, as will be discussed in Sec. II. Finally, the wave
functions in this case are simple and can be calculated
reliably.

Lee and Riska [12] have recently suggested that the
inclusion of MEC’s could explain the magnitude of the
observed pp — ppr® total cross section. They calcu-
late MEC’s by assuming a simple operator form for the
NN potential. This allows the calculation of MEC’s for
phenomenological potentials, but depends on model as-
sumptions. In this paper, we perform a similar calcu-
lation; however, we use an explicit one-boson-exchange
model for the NN interaction as well as for the calcu-
lation of meson-exchange contributions. We also include
the Coulomb interaction, which is quite important near
threshold. Furthermore, we examine the sensitivity of
the calculated cross section to many of the model ingre-
dients.

In Sec. II we outline the formalism for the calcula-
tion and discuss the input parameters and some compu-
tational details. In Sec. IIT we collect and discuss the
results for a variety of one-body and two-body contribu-
tions and for different VIV interactions. Section IV lists
the conclusions from our work.

II. FORMALISM AND DETAILS OF THE
CALCULATION

In this section we present the formalism used to cal-
culate the total pp — ppn® cross section for s-wave pion
production. The calculation is carried out in coordinate
space, because this allows for a simple treatment of the
Coulomb interaction between the two protons. The first
three subsections are devoted to the matrix elements that
correspond to the production mechanisms illustrated by
the diagrams in Fig. 1, namely, (a) the one-body term
and the two-body terms that arise either from (b) pion
rescattering or (c) the exchange of heavier mesons. In
Sec. IID we collect a number of calculational details and
give the expression for the total cross section.

A. One-body matrix element

The one-body term [Fig. 1(a)] can be viewed as a nu-
cleon radiating a pion in the distorting potential of the

T
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FIG. 1. Contributions to the reaction pp — ppm®. Shown
are (a) the one-body term, (b) the two-body term that arises
from pion rescattering, and (c) the two-body term that arises
from the exchange of heavier mesons (z).

other nucleon. The interaction between the two nucleons

is needed in order to conserve energy and momentum.
We start with the pseudovector interaction Lagrangian

between the pion field q-b' and the nucleon field ¢ [13],

L‘*int = - fﬂNN 1/)75’7“7_-‘1/1 : ap.(; ) (1)
m7|'

where f,nn is the pion coupling constant and m, is the
pion mass. A pseudoscalar Lagrangian (proportional to
Vys T - $), instead of Eq. (1), would yield the same one-
body contribution; however, pseudovector coupling is fa-
vored for reasons that are discussed in Sec. IIC.

The field operators in Eq. (1) involve sums over opera-

tors that create or destroy particles of a given momentum
[14]. The term

My < Uy (p') (v57020 — ¥57Y - Q)Us(p) (2)

is responsible for the emission of a neutral pion of momen-
tum ¢ by a proton of momentum p. Here U is a proton
Dirac spinor, and p’ = p — q is the final proton momen-
tum. The second term in Eq. (2) has the nonrelativistic
limit ysv — —o, where o stands for the conventional
2 x 2 Pauli spin matrices. This term, which represents
the familiar nonrelativistic o - q pion coupling, is odd un-
der spatial reflection of the pion, q — —q. It is thus
responsible for the production of pions with odd angular
momentum (p wave or higher). Since, near threshold,
the production of p-wave pions is suppressed by the an-
gular momentum barrier, we are interested here only in
the first term in Eq. (2), which, being even under spatial
reflection, can describe the production of s-wave pions.
The existence of this term is a consequence of Lorentz
invariance, which requires both a timelike and spacelike
part to be present in the original pseudovector (vs7v,9")
coupling.

Alternatively, coupling to an s-wave pion can also be
generated from a nonrelativistic o -q coupling term by in-
voking Galilean invariance. Clearly, the coupling should
involve a dot product between o and the momentum of
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the pion relative to the nucleon, rather than just the mo-
mentum q of the pion. However, since m, is so much
smaller than the mass M of the nucleon, the relative
momentum differs from q by only a small recoil term
involving the nucleon momentum p. Thus we expect a
o - p coupling term from the nucleon recoil, which can
produce s-wave pions, that is smaller than the o - q term
by a factor of m,/M. The nonrelativistic limit of the
first term in Eq. (2),

1 ’
7 M X (P+ P )Xs
To (01570000 (p) = ~ 2 Xe P HROXe )

is precisely this recoil contribution, where, near thresh-
old, we take qo ~ m..

It is straightforward to evaluate the contribution of the
one-body term in Fig. 1(a) for the partial wave 3Py —
1So. The result for the corresponding matrix element is

(2]

n=-Tt /Om dr jo (%) wo(r) (Ed; + %) w(r) . (4)

Here up and u; are distorted coordinate-space wave func-
tions for the 1Sy and 3Py channels, p and p’ are the initial
and final relative momenta of the two nucleons, and ¢’ is
the pion momentum in the final pp center-of-mass frame.
The distorted waves are normalized such that

XS]

ur(r) — sin (p?‘ - % + JL) ; (5)

as r — oo, where §y is the corresponding phase shift.
An analogous prescription applies when, asymptotically,
Coulomb wave functions are used.

When the IUCF Cooler data [1] became available, it
was immediately clear that the one-body cross section,
calculated with J; alone, does not reproduce the data,
underestimating the experiment by about a factor of five
[1]. This discrepancy is so much larger than any uncer-
tainty in the calculation of J; that the conclusion is un-
avoidable that there must be significant additional con-
tributions to s-wave pion production, over and above the
one-body term discussed so far.

B. Pion rescattering

An obvious mechanism for pion production that in-
volves both nucleons is the so-called pion-rescattering di-
agram shown in Fig. 1(b). We note that in Eq. (4) the
wave function for a free pion is used, while the two nucle-
ons appear as distorted waves. One might argue that the
pion-rescattering diagram represents the first correction
that arises from the distortion of the pion. The matrix el-
ement J, for the rescattering contribution, derived from
a simple phenomenological pion-nucleon s-wave interac-
tion, is given in Ref. [2] as

/\lmﬂ' > . q’T
T = d ~
J. op L 7'.70( 2 uo(r)

x [f(r) (% + %) + m£, (2+3:) %} ur(r) .

The radial function f is defined as f(r) = e #"/r, where
= y3mn.

The pion-rescattering matrix element in Eq. (6) scales
with the parameter A;. This parameter is obtained from

the appropriate isospin average of the pion-nucleon s-
wave scattering lengths a;/; and a3/2, corresponding to

isospin % and %:
m
A= —?"(01/2 + 2a3/2) - (7)

Koltun and Reitan [2], as well as other authors more
recently [3,4], use the older value of

AKR — 0.005 , (8)

while Lee and Riska [12], making use of the computer
code SAID [15], favor the value

AR — _0.0023 . (9)

In both cases, pion-nucleon phase shifts have been ex-
trapolated down to threshold from energies where scat-
tering data are available. The two values differ because
of new data added during the past 25 years and also
because of different constraints in the extrapolation pro-
cedure. On the other hand, there exists experimental
information that is more directly related to the scat-
tering lengths. For instance, from the branching ra-
tios of the decay of pionic hydrogen [16], one obtains
ayj2 — agjz = 0.263 £ 0.005m!; from the measured 1s
width of pionic hydrogen [17], one obtains 2a;/, +a3/> =
0.258 £ 0.012m 1. Combining the two results yields

A1 = 0.001 £ 0.002 . (10)

We conclude that, so far, there is no experimental evi-
dence that A; differs from zero or, consequently, that on-
shell pion rescattering contributes to pp — ppm®. Never-
theless, we will explore the sensitivity of the calculated
cross section to a possible nonzero value of A; in Sec. III.
Alternatively, one can calculate pion-rescattering con-
tributions using a phenomenological chirally symmetric
Lagrangian. For example, Adam et al. [18] calculate an
axial MEC by considering fully retarded one-pion ex-
change and three other diagrams. For our process, the re-
tarded pion exchange gives zero [their Eq. (2.12a)], while
the other diagrams are all proportional to 7; x 7> and,
hence, make no contribution to pp — ppm®. Thus this
approach also predicts very small pion rescattering.
Whether an off-shell treatment of the pion-nucleon
rescattering vertex results in a much larger contribution
remains to be seen. It may be possible to investigate this
by using a chiral Lagrangian and working to higher order
in derivatives. Alternatively, one could use a full three-
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body model of the NN system. For the remainder of
the paper we will restrict ourselves to the on-shell matrix
element, Eq. (6).

C. Exchange of heavy mesons

In this subsection we discuss the exchange of mesons
heavier than the pion. Clearly, meson exchange, where
the intermediate state is a positive-energy nucleon, is al-
ready contained in the distorted waves used for evaluat-
ing the one-body term in Fig. 1(a), as is explicitly mani-
fest in the construction of the Bonn potential. However, a
virtual, negative-energy state as shown in Fig. 1(c) is not
contained in the nonrelativistic wave functions. There-
fore, this contribution must be explicitly added to the
pion-production operator as a two-body correction.

The matrix element for Fig. 1(c) is calculated using el-
ementary Feynman rules [14]. Let us first consider scalar-
isoscalar o-meson exchange (other heavy mesons will be
discussed below). Neglecting distortions for a moment,
this matrix element is given schematically by

— 2 — | (VV
Mﬁ X U;Uz (’rnz—gik—z-> Ull [(m‘) YsYoq0
m

N 4%
Y5Y040 oM

where k, is the momentum of the exchanged o meson,
and U; and U] (U; and U}) are the initial and final Dirac
spinors for the first (second) proton. In Eq. (11) we
have only included the antinucleon contribution V'V /2M
for the Feynman propagator of the intermediate nucleon,
taking the nonrelativistic limit ko + Ex ~ 2M for the en-
ergy denominator (there is an implicit sum over the spin
indices of V and V). Also, we have only kept the vs570go
part of the pion-nucleon vertex, since we are interested
in s-wave pions. The two terms in Eq. (11) correspond
to the two possible orderings for the emission of the o
meson and the emission of the pion.

It is a simple matter to take the nonrelativistic limit
of Eq. (11) by expanding to lowest order in 1/M. This
yields

Ul 3 (11)

1 g2 maxio - (p+P)x1
. o . (12
My o M(mg+k2> oM (12)

Here k is the momentum transferred by the ¢ meson,
and p and p’ are the initial and final momenta of the
first nucleon. Equation (12) then represents an additional
two-body contribution to the effective nonrelativistic op-
erator that describes pion production. This term can
be directly compared to the one-body term in Eq. (3),
which has a very similar form, except that the two-body
term contains an additional factor of 1/M and a fac-
tor g2/(k? + m2) from the o-meson propagator. It is
important to realize that the one-body and o-meson ex-
change contributions [Eqgs. (3) and (12)] have the same
sign. Thus the two-body contribution will interfere con-
structively with the one-body term.

We now express Eq. (12) in coordinate space, by taking
the Fourier transform, and then calculate the matrix ele-
ment with nonrelativistic distorted waves. The momenta
p and p’ become gradient operators that act on the dis-
torted waves. These give rise to a factor (d/dr + 1/r) as
in Eq. (4). The meson propagator is transformed to a
radial function f,(r) that contains the mass m, and the
coupling constant g,. This function has the general form

2 e~ MaT

folr) = 2 (13)

where z = {0,0,w,p}. Finally, the contribution to
Fig. 1(c) from the exchange of the ¢ meson (z = o)
becomes

m2 [ "y (T
T i (2 s

« (%+%) ur(r) . (14)

Equation (14) is identical to Eq. (4) except for the extra
factor of f,(r)/M. In contrast to the situation with J;
[Eq. (4)], the inclusion of the pion wave function jo(g'r/2)
is not crucial in this case because of the short range of
fo(r).

As mentioned later, we obtain the NN distorted waves
from the coordinate-space version of the Bonn one-boson-
exchange potential. The boson masses and coupling con-
stants needed to construct this potential have been fit
to NN scattering data and are listed in Table A.3 of
Ref. [19]. For consistency, we use the same parameters
in calculating the exchange contributions discussed here.
We also adopt the technique described in Eq. (A.28) of
Ref. [19] to include monopole form factors at all meson-
nucleon vertices, according to the prescription

A2 —m?2
9z = Gz 35 7a > (15)
AZ k2

where k, is the transferred momentum and A, is the
cutoff mass (also listed in Table A.3 of Ref. [19]).

In the following, we also consider the contributions to
the diagram in Fig. 1(c) from the exchange of mesons
other than the o meson, again using the corresponding
parameters from the Bonn potential. We will find later
that these contributions are small compared to J,.

Let us begin with the scalar-isovector § meson. Its con-
tribution Js has the form of Eq. (14) with the appropriate
mass ms and coupling gs used in Eq. (13):

_omR =g fsr) (d 1\, 0,
J5_~W[) d"‘Jo(7)u0(T) M (5‘*’7,) 1(r) -

(16)

For pp — ppm® the isospin factors are the same for the
exchange of either an isoscalar or an isovector meson.
The contribution from the exchange of a vector-isoscalar
w meson can be calculated in a similar fashion. It con-
tributes a term
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2 poo '
Jo = —E%/ dr jo (ﬂ) uo(r)
PP Jo 2

)@ e

(17)

The contribution from the exchange of a vector-isovector
p meson has the form of Eq. (17), with the exception of
a nonvanishing tensor coupling:

m *® . (qr
Jp = —W/o dr jo (—2*) uo()

[ (202)+ (38 2o
(18)

)

Here C,, = 6.1 is the ratio of the tensor to vector coupling
for the p meson [19]. Note that Eq. (18) describes only
the p-meson contribution to the diagram of Fig. 1(c). In
principle, there are other contributions of the p meson to
the axial charge that arise from a mp current [11]. How-
ever, the mp current has an isospin factor proportional to
the dot product between the pion field and 7; x 7> and,
therefore, does not contribute to the reaction pp — ppn®.
Again, we modify Egs. (16)—(18) to include form factors
following Eq. (A.28) of Ref. [19].

In principle, contributions from the exchange of pseu-
doscalar 7 and 7 mesons to the diagram in Fig. 1(c) are
possible. These contributions would be large if pseu-
doscalar coupling (y5) were used in Eq. (1). However,
there are several arguments in favor of pseudovector
coupling (ys5v.q*) [20,21]. For example, pseudoscalar
coupling (alone, without any sigma-pi coupling) implies
an unrealistically large s-wave pion-nucleon scattering
length. In contrast, pseudovector coupling yields zero
(to lowest order) for the scattering lengths, in agreement
with experiment and consistent with the (experimentally
supported) value of A; = 0 for the pion-rescattering term
(see Sec. IIB). After adopting pseudovector coupling,
MEC contributions from 7 and 7 mesons vanish to low-
est order in 1/M.

D. Calculational details and total cross section

The first step in the calculation is the evaluation of the
NN distorted waves u; and ug in the entrance and exit
channels. To this aim we make use of the coordinate-
space version of the Bonn one-boson-exchange potential,
as described in Appendix A.3 of Ref. [19]. The form-
factor correction is applied according to the prescription
in Eq. (A.28) of Ref. [19], and the Darwin term (pro-
portional to V?) is included following Ref. [22]. Masses,
coupling constants, and cutoff masses are listed in Ta-
ble A.3 of Ref. [19] for all contributing mesons. In that
table, two sets of parameters are listed: Bonn potential
A (BPA) and Bonn potential B (BPB). They differ in
the contribution of the  meson and in the values of the
cutoff parameters. In order to test the sensitivity of the
calculation to the distorting potential and to connect to

earlier results [1], we have obtained distorted waves also
from the Reid soft-core (RSC) and Reid hard-core (RHC)
potentials [23].

The next step is the evaluation of the one-body con-
tribution J; [Eq. (4)]. This depends only on the NN
wave functions and the pion-nucleon coupling constant.
For the latter, we adopt the value f2y,/4m = 0.075,
which is consistent with the Nijmegen phase-shift anal-
ysis [24,25]. In order to compute the very long-ranged
integral in Eq. (4), we integrate conventionally from 0 to
some Tpyax and then rotate the contour into the complex
plane as explained in Ref. [26]. This changes an integrand
that is oscillating like (sinr)/r into one that is exponen-
tially damped. For calculations without the Coulomb
interaction, we choose 7., to be about 7 fm. When the
Coulomb interaction is included, 7. is increased to 100
fm in order to be able to use the simplest asymptotic form
[27] for Coulomb wave functions in the complex plane.
Our results are insensitive to the exact choice of r.x.
Since the initial state has a relatively large momentum
(p ~ 1.9 fm™1!), we expect that Coulomb effects in the
entrance channel are small, even at threshold. Thus, in
our calculation, the Coulomb interaction only affects the
1S, final state.

The next step, in principle, is determining the pion-
rescattering contribution J., as in Eq. (6). However,
since the rescattering parameter \; seems to be consis-
tent with zero, this step will be omitted except when
we investigate the sensitivity of the results to a possible
deviation of A; from zero.

Finally, heavy-meson exchange contributions for o, 4,
w, and p mesons are calculated using Egs. (14) and
(16)—(18). These depend on meson coupling constants,
masses, and form-factor cutoff masses. For these param-
eters we use the same values that define the distorting
potentials BPA and BPB, discussed above. For this rea-
son, our calculations with BPA and BPB distortions are
self-consistent. Note that the calculation does not con-
tain any parameters that are adjusted to pion-production
data.

The matrix element Jio for the reaction pp — ppn® is
then composed of contributions from the one-body term
J1, from pion rescattering J, (in principle), and from
heavy-meson exchange currents Jygc:

Jiot = J1 + Jx + JMEC - (19)

As described in Ref. [2], the total cross section is obtained
as a phase-space integral over the square of the matrix
element,

Af2un [T 2
_ Aaww d Tetl? 20
Teot = A mE 9" 4P| Jsot| (20)

where (3 is the laboratory velocity of the projectile, ¢’ is
the pion momentum in the final pp center-of-mass system,
and p' is the relative momentum of the final protons.
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III. DISCUSSION OF RESULTS AND
SENSITIVITY TO INGREDIENTS

A. Contributions to the matrix element

We now examine the relative importance of the various
contributions to the matrix element Jio; [see Eq. (19)].
To this aim, we evaluate Ji,; for the typical values of
p=19fm™ ! p'=0.2fm™! and ¢’ = 0.1 fm—'. The re-
sults are listed in Table I, which shows that the o-meson
contribution J, is about as large as the one-body term
Jy. Furthermore, these two contributions are construc-
tive; therefore, the o-meson contribution will increase the
cross section by about a factor of four.

The next important contribution is from the w meson
(35-45% of the J; or J, contribution). In comparison, all
other terms are significantly smaller. In particular, the
pion-rescattering term J, is small even when the large
older value of A\; = 0.005 is used, and the isovector 6- and
p-meson contributions are very small and tend to cancel
each other. For the sake of completeness, we include in
JuMmEc the contributions from all heavy mesons; however,
it is important to keep in mind that the dominant two-
body contribution is due to the scalar o-meson exchange.

This large J, contribution [Eq.(14)] can be easily un-
derstood in relativistic models. In these models [5,7,21],
the nucleon has an effective mass

M*=M-S (21)

from a strong scalar field S. This enhances the lower
components in the Dirac spinors U. If spinors of mass
M* are used, Eq. (3) becomes

X0 (P +P)Xs

U (p's M*)vs70q0Us (p; M™) =~ AL

(22)

Thus a reduction of the nucleon mass enhances the s-
" wave pion coupling. Let us expand 1/M* to lowest order
in1/M:

1 1 S
M*‘M(1+M) . (23)

If one assumes that the scalar field arises from the second

TABLE 1. Contributions to the total matrix element Jio¢
for an initial nucleon momentum of p = 1.9 fm™!, a final
nucleon momentum of p’ = 0.2 fm ™', and a pion momentum
of ¢ = 0.1 fm~'. The Bonn one-boson-exchange potentials
(BPA and BPB) and the Reid potentials (RSC and RHC) are
described in the text. The pion-rescattering contribution J.
assumes A; = 0.005 [see Eq. (8)].

Potential J1 Jo Jw Jx Js Jo

BPA —0.174 -0.163 —-0.062 —0.042 -0.009 0.009
BPB -0.165 —0.152 —-0.063 —0.044 -0.024 0.011
RSC —0.143 —-0.135 —0.050 —-0.038 —0.006 0.008
RHC —0.126 —0.140 —0.048 —0.040 —0.007 0.009

nucleon, or S = f,(r) [see Eq. (13)], then the second term
(S/M), when substituted into Eq. (4), immediately yields
the o-meson contribution of Eq. (14). Thus the scalar
field of the second nucleon affects the Dirac spinor of the
first nucleon in such a way that the modified spinor has a
larger coupling to an s-wave pion. This simple argument
also shows that J; and J, should add constructively.

It is nevertheless surprising that the o contribution is
almost as large as the one-body term, especially since J,
involves an additional factor of 1/M. This is explained
by realizing that it is not J, that is large, but J; that
is anomalously small. Near threshold, the two nucleous
approach each other with a relative momentum p ~ 1.9
fm ™!, and yet they must almost stop in order to produce
a pion. Because it is difficult to mediate such a large mo-
mentum mismatch through the distortions of Fig. 1(a),
J; is relatively small. On the other hand, the o-meson
propagator in Fig. 1(c) provides an efficient means of
transferring momentum. As already pointed out, it is in-
teresting that the o-meson mass (550 MeV, according to
Table A.3 of Ref. [19]) is comparable to p ~ 1.9 fm~!.

The interpretation of the o-meson contribution de-
serves comment. Clearly the ¢ is not a sharp resonance.
Instead it is a simple phenomenological model for the
important intermediate-range attraction in the NN in-
teraction. Assuming that this attraction transforms as a
Lorentz scalar provides a natural explanation of the spin
dependence of the NN force [5,7]. We expect a more
complicated model of the intermediate-range attraction
(such as correlated two-pion exchange) to yield a similar
J, contribution, provided the attraction transforms as a
Lorentz scalar.

B. Total cross-section results

In Fig. 2 our calculation is compared with the avail-
able pp — pp7® total cross-section data as a function of
7, the maximum pion momentum in the overall center-
of-mass frame in units of m, (7 = gmax/Mmx), or, alter-
natively, the projectile energy T in the laboratory. The
IUCF Cooler data [1] are shown as solid dots (note that
there is a 6.6% uncertainty in the normalization of the
data that is not shown), while data from previous work
are marked with crosses [28], squares [29], bars [30], and
diamonds [31]. As is well known by now, the one-body
term alone (dashed line) greatly underestimates the data.
However, when the two-body contributions are included
(solid line), the measured cross sections are reproduced to
an extent that is truly remarkable in view of the fact that
none of the parameters of the model have been adjusted
to pion-production data. The dot-dashed line, which has
been obtained without the Coulomb interaction, demon-
strates that Coulomb repulsion is responsible for a fairly
sizable reduction of the cross section near threshold. All
calculations shown in Fig. 2 use the BPA distorting po-
tential.

It has been pointed out earlier [1] that the energy de-
pendence of the s-wave cross section follows from phase
space and the final-state interaction between the two
(charged) protons. This is sufficient to reproduce the
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FIG. 2. Total cross section for pp — ppn® as a function of
7, the maximum pion momentum in the center-of-mass frame
in units of mx, or the projectile energy T in the lab frame.
The recent IUCF Cooler measurement [1] is shown by solid
dots; data from previous work are marked with crosses [28],
squares [29], bars [30], and diamonds [31]. The solid line in-
cludes heavy-meson exchange and the Coulomb interaction,
and the dotted lines describe the error bands for the 7V cou-
pling constant f2, /47 = 0.075 £ 0.003 and the rescattering
parameter A; = 0.000 £ 0.002 (see text). The dashed line
neglects heavy-meson exchange and includes the Coulomb in-
teraction, while the dot-dashed line includes heavy-meson ex-
change, but neglects the Coulomb interaction. (Note that the
Coulomb interaction is included in all other curves in this pa-
per.) All calculations use BPA. The solid curve is the same
as in Figs. 4 and 5.

shape of the measured cross section up to n ~ 0.6, where
higher partial waves (which we are neglecting) start to
contribute [1]. Thus it is only the magnitude of the cross
section near threshold, represented by a single number,
that contains nontrivial physics information. Our work
shows that heavier meson exchange (mainly of the o me-
son), together with the one-body term, is sufficient to
explain the observed magnitude of the cross section. In
the past, it has been suspected that the role of heavy-
meson exchange currents is suppressed by NN correla-
tions and form factors at the meson-nucleon vertices. We
find that this is not the case in the NN system: Because
of the simplicity of the present reaction, it is possible to
explicitly include NN correlations by solving for the full
two-body wave function. Even with these correlations
included, J, remains large.

The dependence of J, on the cutoff mass is illustrated
in Fig. 3 (using BPA). Note that the form factor in
Eq. (15) has a normalization at k2 = 0 that depends
strongly on A,:

AZ —m?
ga(O) = ga——KZ— . (24)

o
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FIG. 3. Dependence of J, on the cutoff mass A, for an ini-
tial nucleon momentum of p = 1.9 fm™?, a final nucleon mo-
mentum of p’ = 0.2 fm™?, and a pion momentum of ¢’ = 0.1
fm~!. The dashed line is obtained by keeping g, fixed, while
for the solid line g,(0) was kept constant [see Eq. (24)]. The
calculations use BPA, which has the standard cutoff A, = 2
GeV.

Indeed, the primary effect of this form factor is to change
the value of g, (0) rather than the momentum dependence
of the interaction. It is this coupling near k;‘: = 0 that
plays a dominant role when adjusting the parameters of
one-boson-exchange potentials to NIV scattering. There-
fore it may be more meaningful to compare results with
different A, values at a fixed g, (0) rather than at a fixed
go. Figure 3 shows only a modest decrease of J, with
decreasing A, (at fixed g,). However, if one keeps g, (0)
fixed rather than g,, J, actually increases very slightly
with decreasing A, . If two potentials fit phase shifts with
different cutoff masses, we expect approximately similar
values of g,(0) (rather than g,). If this is the case, the
J, contribution will be almost independent of A, .

We now examine the sensitivity to the various dis-
torting potentials that are mentioned in Sec. IID. Fig-
ure 4 shows the total cross section, calculated with
the Coulomb interaction included and without the pion
rescattering term, for the two somewhat different one-
boson-exchange potentials BPA (solid line) and BPB
(dotted line), and for the RSC (dot-dashed line) and
RHC (dashed line) potentials. For the phenomenological
Reid potentials there is no way to unambiguously deter-
mine the meson-exchange contributions. Therefore, we
simply adopt the meson couplings and cutoff masses from
BPA for both RSC and RHC. This allows us to study the
effects of a change in only the distorted waves ug and u;.
The RHC wave functions are identically zero at small dis-
tances; in contrast, the RSC wave functions are nonzero,
but still small. This enhancement of the wave functions
at small r leads to a modest increase in pion production.
At small r, the BPA and BPB wave functions are almost
identical, but larger still than the RSC wave functions,
resulting in a slightly increased cross section. However,
some of the difference between the Bonn and Reid results
is due to the fact that BPA and BPB generate slightly
larger on-shell phase shifts as compared to the Reid po-
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FIG. 4. Sensitivity of the calculated cross section to the
distorting potential. Shown is the cross section divided by
n® as a function of . The data are the same as in Fig. 2.
The curves are for the Bonn potentials A (solid line) and B
(dotted lines), and for the Reid soft-core (dot-dashed lines)
and Reid hard-core (dashed lines) potentials. The solid curve
is the same as in Figs. 2 and 5. The lower four curves are
without Jugc (the curves are labeled in the same manner as
above, except a dot-dot-dashed curve is used for BPA).
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FIG. 5. Sensitivity of the calculated cross section to the
rescattering contribution using BPA. Shown is the cross sec-
tion divided by n? as a function of . The data are the same as
in Fig. 2. The curves are for A\; = 0.005 (dotted lines), A\; = 0
(solid line), and A; = —0.0023 (dot-dashed lines). The solid
curve is the same as in Figs. 2 and 4. The lower two curves
are without Jvec.

tentials. This is because the Bonn potentials are fit to pn
rather than pp data. Nevertheless, the range in cross sec-
tion for different potentials is still relatively modest. We
point out that all calculations without meson exchange
(the lower four curves in Fig. 4) greatly underestimate
the data.

Based on the small value for A; in Eq. (10), we do not
expect pion rescattering to be important. For complete-
ness sake, we still wish to examine the effect of a possible
rescattering contribution. All calculations in Fig. 5 are
carried out with BPA and with the Coulomb interaction
included. The dotted lines correspond to A\; = 0.005, the
dot-dashed lines to A\; = —0.0023, and the solid line is
without rescattering. The effect from pion rescattering is
relatively small even for the large value A\; = 0.005, and
all calculations with only one-body and pion-rescattering
contributions (the lower two curves in Fig. 5) fall substan-
tially below the experimental data. Clearly pion rescat-
tering as described by J. [see Eq. (6)] cannot explain
the difference between J; and the data. However, one
must realize that Eq. (6) is based on a simple on-shell
model for pion-nucleon scattering. It is conceivable that
the pion-nucleon interaction might be modified due to
the fact that the intermediate pion in Fig. 1(b) is off the
mass shell. This is a topic that deserves further study.

IV. IMPLICATIONS AND CONCLUSIONS

We have calculated s-wave pion production in pp —
ppm® by considering the one-body term, pion rescatter-
ing, and two-body meson-exchange processes. We con-
firm that the one-body term underestimates the data by
about a factor of five, and that pion rescattering (in our
model) is indeed small. On the other hand, we find a
large contribution from the exchange of heavy mesons (in
particular, the scalar o meson) coupling to the negative-
energy state of a nucleon, as in Fig. 1(c). This meson-
exchange contribution is large enough to explain the dis-
crepancy between one-body production and the data,
and, when taken into account with self-consistent dis-
tortions, leads to an excellent fit to the data without
parameters that are adjusted to pion-production infor-
mation.

The theoretical description of the pp — ppn® reac-
tion close to threshold is clean and simple. Only a sin-
gle partial wave is allowed in either the entrance or exit
channels, pion rescattering may be suppressed, and in-
termediate A isobars are expected to be unimportant (in
marked contrast to most other reactions involving pions).
Furthermore, the simplicity of the system allows a full
treatment of NN correlations.

The operator for the production of s-wave pions has
the same form as the axial-charge operator. Therefore,
we conclude that the axial charge in nuclear systems is
much larger than what one expects from one-body pre-
dictions. This agrees with the conclusions from a number
of calculations of first-forbidden 3 decays in nuclei [11].
However, these nuclear studies are less conclusive because
of structure ambiguities. The pp — ppm® system is free
of such ambiguities.
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The pp — ppn° reaction is sensitive to two-body contri-
butions because of the nature of the axial-charge operator
and due to a large momentum mismatch that naturally
favors the exchange of heavy mesons.

Uncertainties in the meson-nucleon form factors and
the two-nucleon wave functions have been examined and
are much smaller than the discrepancy between the one-
body contribution and the data. Heavy-meson MEC’s
provide a simple, economical way to account for this dis-
crepancy. However, other alternative explanations may
be possible, among them being off-shell pion-rescattering
effects.

Using a simple on-shell model we conclude that pion
rescattering does not contribute significantly to the cross
section. However, it is possible that models of the off-
shell TN N vertex could give contributions that are com-
parable to those from the heavy-meson exchange. Fur-
ther work should be devoted to a study of full three-body
models of the mNN system; however, such calculations
are beyond the scope of this paper. Until more is known
about the off-shell effects, it seems reasonable to take the
on-shell results as a guide and to assume pion rescatter-
ing to be small.

If pion rescattering is indeed small, then near-threshold
pp — ppm° data may provide evidence for heavy-meson
exchange contributions to the axial current. This is anal-
ogous to the electro-disintegration of the deuteron, which
provides evidence for electromagnetic MEC’s. However,
in our system, the MEC’s are a very large effect com-
pared to the ~ 10% contribution to the cross section in
the case of the electromagnetic current [32].

To the best of our knowledge, all previous experimen-
tal evidence for MEC’s has exclusively involved contri-
butions of pionic range. This is significant because of the
possibility that heavy-meson contributions are greatly
suppressed by NN correlations and meson-nucleon form
factors. We have shown that this is not the case in the pp
system. The importance of heavy-meson exchange cur-
rents could be very significant for experiments planned
at CEBAF, which, involving higher momentum transfer,
are likely to be sensitive to such short-distance effects.

Relativistic nuclear models characteristically feature
large Lorentz scalar and vector potentials [7,21]. In
these models, the o meson describes the important
intermediate-range attraction in the NN interaction and
gives rise to a scalar potential that reduces the effective
mass of a nucleon. This reduction in M* enhances the
lower components of Dirac wave functions, and this in-
creases the axial charge. This change in the Dirac wave
functions is also what provides the natural description
of a large range of nucleon-nucleus scattering data, in
particular, spin observables [7]. Our finding that this
same effect may explain the observed pion-production

cross section also provides an indirect experimental con-
firmation of this key feature of relativistic models.

The J, term in our calculation can be viewed more
generally as a term involving some intermediate-range
attraction in the NN interaction that transforms like a
Lorentz scalar. This contribution does not necessarily
have to arise from an elementary narrow o meson. In-
stead, it could well be an effective representation of a
more complex mechanism. In any case, and whatever
the microscopic origin of this Lorentz scalar attraction,
its importance in the present calculation may provide ev-
idence for a large relativistic effect in the VN interaction.

Future theoretical work on the pp — ppn® reaction
should be devoted to a study of the off-shell aspects of
pion rescattering. Also, the present study should be ex-
tended to include the next higher partial waves, as they
become important with increasing bombarding energy.
This is especially important, since a measurement of the
spin-dependent total cross section, which will allow the
separation of p-wave pion contributions, is planned at
IUCF. This provides the data necessary to search for
meson-exchange contributions to Gamow-Teller matrix
elements. Since we have found a large and unexpected
meson-exchange contribution to the axial charge, we may
well speculate about the existence of a similar contribu-
tion to Gamow-Teller matrix elements.

This could have important consequences for the pp —
de*v reaction and the solar neutrino problem [33]. This
reaction is believed to proceed via a 1S, — 35; Gamow-
Teller transition. An enhancement of as little as 15%
in the matrix element for pp — de*v (from an unex-
pected MEC) would dramatically reduce the disagree-
ment between theory and experiment [34], because, in
the standard solar model, the rate of this reaction sensi-
tively affects the central temperature of the sun and thus
the high-energy neutrino flux. Of course, present calcu-
lations of m and p MEC’s [35] give only a small contribu-
tion. Furthermore, MEC’s for this channel are expected
to be smaller than the order v/c MEC contributions to
the axial charge. However, one may still speculate that
some unsuspected MEC or other effect could be impor-
tant. Through very accurate pion-production data it may
be possible to gain (indirect) experimental information
about the pp — de*v rate.
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