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An effective two nucleon interaction is defined by an optimal fit to select on- and half-off-of-the-
energy shell ¢ and g matrices determined by solutions of the Lippmann-Schwinger and Brueckner-
Bethe-Goldstone equations with the Paris two nucleon interaction as input. As such, it reproduces
the interaction on which it is based better than other commonly used, density-dependent effective
interactions. This new (medium modified) effective interaction, when folded with appropriate density
matrices, has been used to define proton-'2C and proton-'60 optical potentials. With them elastic-
scattering data are well fit and the medium effects identifiable.

PACS number(s): 24.10.Cn, 24.10.Ht, 21.30.+y, 25.40.Cm

I. INTRODUCTION

Over the years many groups have studied the elastic
scattering of nucleons from nuclei using model two nu-
cleon (NN) g matrices to describe the interactions be-
tween the projectile and constituent nucleons of the tar-
get [1-10]. Broadly, those studies may be classified into
two groups, namely the set that used momentum space
[2-4], and the set that used coordinate space [5-10] repre-
sentations. These two approaches have their own differ-
ing advantages. By using momentum space, nonlocalities
due to proper consideration of antisymmetrization within
the NN g matrices can be considered as their inclusion
is straightforward. But as yet, no calculation of that
type has considered, properly, all of the known nuclear
medium modifications that define the NN g matrices to
be distinctively different to the free particle NN ¢t ma-
trices. On the other hand, coordinate space studies have
allowed for such medium modifications in NN g matrices,
and we consider aspects of this second approach herein.

All coordinate representation studies of the nucleon-
nucleus (N-A) optical potentials begin by defining effec-
tive interactions to the actual NN g matrices. Those
effective interactions can have diverse operator character
(central, tensor, two-body spin-orbit, etc.), but always
have relatively simple local functional forms (i.e., sums
of Yukawas or Gaussians). Furthermore, the exchange
amplitudes arising from antisymmetrization in a coordi-
nate space approach are approximated usually to give in
finality, a local equivalent N-A optical model potential.
Nevertheless, with such an approach, elastic-scattering
data can be described quite well [7,11,12], and there are
noticeable effects caused by the medium modifications
set into the effective NN interactions.

In the last decade, three effective interactions have re-
ceived some attention. They are those which are com-
monly known as the LF (Love-Franey) [6], the Hamburg
[7], and the M3Y [13] with the last, when modified to
add density effects, specified as the DDM3Y [14,15]. The
LF effective interaction was based upon the on-shell free
NN t matrices (the NN scattering amplitudes) as de-
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fined by the Arndt phase shifts. No constraints were ap-
plied to the off-energy-shell properties of the ¢ matrices
or to allow for medium modifications of those ¢t matrices
specifically. But that effective interaction was designed
with impulse approximation conditions in mind. In con-
trast, the Hamburg interaction was based upon g-matrix
elements associated with the Paris interaction and evalu-
ated allowing for Pauli blocking and, very approximately,
the average background mean field in which the nucleons
move. Those g matrices were cast as functions of rel-
ative coordinates (for each NN channel) whose Fourier
transformations were then mapped against those of an
(coordinate space) effective interaction. This interaction
was structured as central, tensor, and spin-orbit in char-
acter, each with (fixed range) Yukawa form factors. The
ranges were chosen a priori, and the strengths optimized
to minimize the integrated squared difference between
g matrices and those effective interaction values in the
range of momentum transfer to 5 fm~!. The proton-
nucleus optical model potentials were then deduced by
folding and reasonable results were obtained for scatter-
ing from 2C. The M3Y effective interaction [13] and its
density-dependent upgrades [14,15] are of more recent use
in analyses of heavy ion interactions. That interaction
and its modifications also were taken as the linear combi-
nation of Yukawa factors with long and short ranges cho-
sen to give the one pion exchange potential (OPEP) tail
and to simulate heavy meson exchanges. The purely real
strengths were selected to give g-matrix elements similar
to those of the Reid soft core potential which are ap-
propriate to describe the 60 ground state. The density
dependence of the M3Y is then specified as a scale func-
tion, f(p), upon the original effective interaction. Details
of that function f(p) were chosen to reproduce the den-
sity dependences of a previously calculated microscopic
(N-A) optical model [16]. But this effective interaction
is purely real, and optical potentials derived with it then
must be supplemented by a phenomenological imaginary
part.

Thus by their construction and/or by the choice of con-
straints to fit parameter values, all these effective inter-
actions do not truly provide a detailed representation of
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the NN dynamics underlying a “parameter free” theoret-
ical model of nucleon-nucleus scattering. Recently [17], a
new scheme was proposed to define effective interactions
of appropriate form. This scheme allows one to optimize
fits to a range of on- and half-off-shell g matrices. We
have used it to determine effective interactions to both ¢
and g matrices obtained from the Paris interaction [18]
for a number of two nucleon angular momentum chan-
nels and for a range of densities up to nuclear saturation
(kf = 1.4 fm~1). The results have been used to define
via a local density approximation, the p-!2C and p-10
optical potentials at 200 MeV. The program DWBA91 of
Raynal [19] has been used with those optical potentials
to evaluate the differential cross sections and analyzing
powers.

Following a brief summary detailing the method by
which the g matrices were evaluated, and how the effec-
tive interaction parameter values were obtained, the zero

density (free particle) ¢ matrices given by exact solution
J

3.0, pik) = V9 (0, p) +

with k being the on-shell momentum.

of the Lippmann-Schwinger equation starting with the
Paris interaction are compared with those of our effec-
tive interaction and also with those of the Hamburg one,
since that is the most appropriate of the three others dis-
cussed for 200 MeV protons. Finally, we compare the op-
tical potentials, cross sections, and analyzing powers we
obtain by folding of our effective interaction with data
and those results found when all medium modifications
are ignored.

II. FROM t AND g MATRICES TO EFFECTIVE
INTERACTIONS

Nonrelativistic many-body theories of the nucleon-
nucleus optical potentials are framed around the NN t
matrices, which in momentum space and for channels
a {= JST}, are solutions of the Lippmann-Schwinger
equation

« q*dq P
Z/ Vi, q 7 tfy)(q,p;k), (1)

As in the Hamburg [7] studies, we use the Paris interaction for the VIECI? (p',p) and solve Eq. (1) by matrix inversion
[20]. Half-off of the energy shell for 200 MeV incident energy and a select set of NN channels, the ¢ matrices so found

are given in Figs. 1-4 by the solid curves.

If the struck nucleon is embedded in a nuclear medium, then it is more appropriate to use medium modified NN g
matrices in optical model calculations and the g matrices used here are solutions of the Brueckner-Bethe-Goldstone

(BBG) equation,

G(Lag’(p pvk kF) = VLL' p p)+ Z/ (a)

Q(q7 K'kF) 2dq (oz)

E(k K kp) — G/ (g,p;k, kr), (2)

wherein Q(g, K; kr) is the (angle averaged) Pauli operator and K is the average center of mass momentum as defined
previously [20,21], with the latter specified at a laboratory incident momentum py and for a Fermi momentum kg- so

that

K(k;kF,Po): { {(k2+pg)_

The energies in the propagators of the BBG equations
include auxiliary potentials, U, and are defined by

(R /m)(¢* + K?)
+U(q+K)+U(la-K).  (4)

Details of the calculations have been given previously
[21], and the result is tables of complex numbers for each
incident energy, Fermi momentum value, and set of rel-
ative momenta for each NN channel. In a free NN col-
lision the struck nucleon initially has zero momentum.
Now, as it is embedded in (local) nuclear matter, that
struck nucleon can have a range of momentum values.
Due to Pauli blocking and the angle averages used in
defining g matrices [20,21], that range extends from %k[‘
to the (local) Fermi value (kg) itself. That complicates
calculations severely, and so a simplification has been
used in generation of the required tables, namely that

(k2 +p2): if 0<2k <kp—po

L[(2k + po)? — kZ]}3

3
if ke — po < 2k < ki +po - ®)

the struck nucleon momentum has been fixed at an av-
eraged value in that range, 0.8536kp, for each density.

Those tables are the input database for the effective
interaction parametrization scheme [17] we use herein.
Specifically we have selected the half-off-shell ¢ and g
matrix elements in the procedure to find an optimum
effective interaction, which, in coordinate space, has the
form

(i)ST o o) e~ (/A7)
Gett (TaE§kF):ZSj (E)—“T—
j=1

e #ﬁ)

_Zs(l) E kF

for each operator of the set

(i) = {central, tensor, and two-body spin-orbit}
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FIG. 1. The real (left column) and imaginary (right col-
umn) components of the free half-off-shell ¢ matrices for the
spin singlet P, (upper) and 'S, (lower) channels. The solid
line represents the “exact” Paris result, the dashed line, the
parametrization considered here, and the dotted line, the zero
density Hamburg t-matrix results.

where SJ(.i)(E) are the complex, energy dependent

strengths, and /\5-') = l/p(.') are the ranges of the (n;)
Yukawa functions. This effective interaction then is ex-
pressed in the form of projection operators onto each NN
channel and, when double Bessel transformed, are de-
fined as gig.) (0',p; E,kr). The selected sets (n; < 4 suf-
fice) of ranges and strengths are then defined by finding
an optimal fit to the actual (half-off-shell) g matrices in
the set of NN channels considered important. To facili-
tate this task we assume that the ranges of the Yukawa
form factors are independent of both energy and density
(Fermi momentum) and so the first step is to optimize
those ranges prior to defining the best set of complex
strengths for a given energy, density, and for each spin-
isospin channel. Across an energy spectrum of up to 450
MeV, the (inverse) ranges (u;) we have selected are 0.71,
1.758, 2.949, and 4.0 fm~! for the central components
and 1.25, 2.184, 3.141, and 4.0 fm~?! for both the tensor
and two-body spin-orbit attributes. However, the system
of equations in this mapping scheme is grossly overdeter-
mined, and there are other “optimal” sets of parameters
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FIG. 2. As for Fig. 1, but for the (S = 1,T = 1) 3P,
(upper) and *P; (lower) channels.
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FIG. 3. As for Fig. 1, but for the (S = 1,7 = 0) 35,
(upper), ®D; (middle), and 3S;-3D; (lower) channels.

that give equally good fits [22]. But the key factor which
we stress herein is that the resultant effective interaction
must remain a good representation of the NN ¢t and g
matrices central in a microscopic theory of the optical
potential. Neither the LF or M3Y (modified) are of that
form. They are predicated, in the end, upon fitting many
nucleon data. The original Hamburg interaction [7] did
seek to remain “faithful” although in a somewhat limited
fashion being determined with respect to on-shell prop-
erties only.

III. COMPARISON OF EFFECTIVE
INTERACTIONS

Herein we compare the zero Fermi momentum (free)
Paris NN effective interactions (Hamburg and ours) with

0.4 T T T T

t, (p,k)(fm)
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FIG. 4. As for Fig. 1, but for the real (upper) and imagi-
nary (lower) components of the D, channel.
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the solutions, half-off of the energy shell and at 200 MeV,
of the Lippmann-Schwinger equations in select N N chan-
nels. We compare only zero Fermi momenta results as the
two effective interactions should have that case most in
common.

The half-off-of-the-energy-shell ¢ matrices determined
by solutions of the LS equations for diverse two nucleon
channels (JST) and with the Paris interaction [18] are
shown in Figs. 1-4, and in all cases, by a continuous
line. The on-shell momenta of 1.55 fm~! (200 MeV in the
laboratory frame) is displayed therein by the large dot.
The dashed and dotted curves in those figures display the
half-off-shell representations of those t matrices given by
our effective interactions and those of the Hamburg group
[7], respectively. The real and imaginary components are
displayed separately in each diagram.

The dominant spin singlet channels at 200 MeV are
the 'P; (§=0,7=0) and 'S, (§=0,T7=1) and the Paris
t matrices and the effective interaction representations
of them are displayed in Fig. 1. Clearly our effective
interactions reproduce the actual ones very well. The
Hamburg results are quite reasonable as well over the
range of off-shell momenta shown.

The important S=1, T=1 channels are the >P, ; ones
and the ¢ matrices for them are compared in Fig. 2.
Our effective interaction reproduces the Paris ¢ matrices
very well while the Hamburg ones are rather different.
That is also the case for the deuteron channels (the $=0,
T=0 t matrices) as shown in Fig. 3. The Hamburg in-
teraction does not give the appropriate half-off-shell 35,
t-matrix elements and neither effective interaction well
reproduce those of the 3D; channel. Overall, however,
we contend that our interaction is the better candidate
in these coupled channels. But that is not necessarily
so in all channels, and the 3D, is a case in question.
The 3D, half-off-shell ¢t matrices are compared in Fig. 4.
Therein it is evident that while both effective interactions
are poor descriptions of the actual Paris ¢ matrix, ours is
the worse.

IV. DENSITY EFFECTS ON ELASTIC
SCATTERING

We have used our effective interaction to calculate the
local, optical model potentials for the scattering of 200
MeV protons from 2C and 0. The code DWBA91 [19]
has been used for that purpose with a Fermi distribution

Po (6)

pF(r) = 1+ e(r—c)/a’

defining the local Fermi momenta that specifies the NN
g matrices in a local density approximation. Parameter
values of kr = 1.29 fm~?! (to define po), c = 1.02545 fm
and a = 0.55 fm as defined previously [23] were used and
the 12C ground state was set by a complete 0s-shell and 8
(4 proton, 4 neutron) Op-shell nucleons each described by
harmonic oscillator functions for an oscillator length of
1.64 fm. In the case of 10, the Fermi distribution was fit
with kg = 1.31 fm~!, ¢ = 1.03045 fm, and a = 0.55 fm,
while a harmonic oscillator length of 1.76 fm was used.

The DWBAS1 code uses a local approximation for the
exchange amplitudes and the resultant local potentials
are displayed in Fig. 5 for 12C and in Fig. 6 for 0.
The central and spin-orbit potentials we obtained are
shown in the top and bottom segments, respectively, with
the real and imaginary parts indicated. The solid curves
are the results found when our density-dependent effec-
tive interaction is used. The dashed curves are the re-
sults given when the effective interaction to the free NN
(Paris) t matrices is used, i.e., all medium modification
effects are turned off. The medium modifications to the
central potentials show a significant reduction in the ab-
sorption while there is an increase in the real (refractive)
part. The real and imaginary parts of the spin-orbit po-
tentials also are affected quite markedly by medium ef-
fects. Notably, the more realistic interaction is less ab-
sorptive and located more within the nuclear matter dis-
tribution when compared with the potential deduced by
using the effective interaction to the free NN t matrices.

The results of our calculations of the elastic scattering
of 200 MeV protons from 2C and 60 are shown in Figs.
7 and 8, respectively. Therein, the differential cross sec-
tion and analyzing power data for 2C [11] and 60 [12]
are compared with the results found using the effective
interaction to the NN g matrices and which are given
by the continuous curve. The results found by using our
effective interaction to the free (Paris) NN t matrices
are displayed by the dashed curves. Use of the density-
dependent effective interaction gives a demonstrably bet-

T
CENTRAL

Optical Potential (MeV)

FIG. 5. Central (upper) and spin-orbit (lower) optical
model potentials for *2C(p, p) at 200 MeV. The solid (dashed)
line represents the medium modified (free) result.
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FIG. 6. As for Fig. 5, but for 0 at 200 MeV.

T T T

0.8
0.5
0.2

A (0)

-0.2
-0.5
-08 -

0 20 40 60 80

0

c.m.

(deg)

FIG. 7. Differential cross section (upper) and analyzing
power (lower) for '>C(p,p) at 200 MeV. The solid (dashed)
line represents the medium modified (free) result. The data
are from Ref. [11].
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FIG. 8. As for Fig. 5, but for '°0 at 200 MeV. The data
are from Ref. [12].

ter fit to the data than does use of the free NN t-matrix
model. In the cross section fit, the x? per degree of free-
dom is a factor of 2 to 3 improved while that of the ana-
lyzing power is reduced almost by an order of magnitude.

V. CONCLUSION

Many studies have stressed the need to have effective
NN interactions for use in microscopic model evalua-
tions of (local) nuclear optical potentials that are based
upon realistic free two-nucleon scattering interactions,
that properly reflect the off-shell character of the ¢ matri-
ces given by those realistic NN interactions and that ac-
count for medium modifications to those ¢ matrices. But
few, however, have taken all of the defined constraints
into account. Of those that do, most if not all have not
considered both Pauli blocking and average field facets of
the medium corrections, but, more problematically, have
used effective interactions that do not sufficiently well re-
produce the off-shell g matrices to which they were fit.
The density-dependent Hamburg interaction, while be-
ing very useful in past analyses of N-A scattering data,
is such an example. It does not give a satisfactory repre-
sentation of the zero density (free NN), Paris ¢ matrices
upon which it was based. But an effective interaction
scheme developed recently can be used to give an equally
utilitarian form. In the zero density limit (free NN scat-
tering), our effective interaction gives a good representa-
tion of the half-off-shell Paris ¢t matrices (at 200 MeV) for



1314 P.J. DORTMANS AND K. AMOS 49

most low J NN channels. The mapping is so overdeter-
mined however that not all channel results are as good—
or even better representations—than the Hamburg ones.

Neglecting medium corrections gave optical model po-
tentials that led to a reasonable description of the dif-
ferential scattering cross sections in two test cases; 200
MeV protons from 2C and 0. But the analyzing power
prediction is quite poor. On the other hand, by using an
effective interaction that gave comparable fits to the half-
off-shell g-matrix elements computed with both Pauli
blocking and average field effects in the relevant BBG
equations, the attendant optical potentials for 200 MeV
protons on both nuclei led to better fits to the differen-
tial cross section data and very much better ones to the

measured analyzing power.

Thus we reconfirm the conclusions of others that there
is a marked effect of density dependence in effective in-
teractions upon the specifications of nucleon optical po-
tentials, but we establish that with a more realistic rep-
resentation of the relevant NN g matrices.
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