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Weakly bound states of a three-body system
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The equivalent two-body method [H. Feshbach and S. I. Rubinow, Phys. Rev. 9S, 188 (1955)]
has been applied to investigate the weakly bound states of a three-body system. An analytical
expression for the long-range efFective potential is derived if two-body interactions are short-range
potentials with Y~~k~wa forms. The weakly bound excited state for the system with two heavy
particles and a light particle is Srst obtained if there is no bound state for two-body subsystems.

PACS number(s): 21.45.+v, 21.30.+y

I. INTRODUCTION

The Efimov effect is one of the most interesting phe-
nomena in a quantum three-body system. It was first
pointed out [1,2] by Efimov in 1970s that a three-body
system may have a lot of weakly bound states if the two-
body interactions are resonant and their strengths ap-
proach the critical value which is just necessary to keep
two particles bound with zero energy. The physical cause
of the eEect is in the emergence of the efFective attractive
long-range potential in the three-body system. The effect
is also considered as a generalization of the Thomas theo-
rem [3] which states that three spinless particles do have
a weakly bound state when the strengths of two-body
interactions approach the critical value.

Thereafter, to search for the long-range effective po-
tential and the bound states in the weakly bound three-
body system attracts a lot of physicists [4—8]. Although
some people have obtained [6—8] the long-range behavior
of the effective potential under various approximations,
they cannot give the binding energy and the wave func-

I

tion of the three-body system by their long-range effec-
tive potential. There is also no one to answer whether
there exist the bound excited states in weakly bound
three-body system if there is no bound state for two-
body subsystems. In this paper we intend to solve these
problems.

II. FORMALISM

In order to simplify the problem, we assume the three-
body system is composed of three spinless particles and
at least two particles are identical. The particles are de-
noted as 1, 2, and 3. The masses of particles are Mq, M2,
and M2 where 2 and 3 are taken as identical particles. It
is convenient to discuss the three-body problem in trian-
gular coordinate systems [9—11].After the center-of-mass
motion is removed, the wave functions of the 8 states de-
pend on three radial variables rq, r2, and rs which are,
respectively, the distances of 1-2, 1-3, and 2-3.

The variation for the Schrodinger equation can be writ-
ten as follows:
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where t(i,j,k) = (r2+ r —rI, )/2r;rs(B. @/Br;)B4/Br~ =
s(i,j,k)(B@/Br;)(B4/Brs), U(rq), U(r2), and V(rs) are
the two-body interactions and will be given afterwards.

As Feshbach and Rubinow have done [9], we assume
wave functions in S states for the three-body system are

(2)

We de6ne the new coordinate variables R, R2, and R3 as
follows:

(3)

where the scaling parameter g is used to describe the
dHFerent dependence of wave functions on r~, r2, and r3.

Since the wave function 4(R) is only a function of R, the
integration over the other two variables (R2, Rs) can be
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performed. Then Eq. (1) becomes

where
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the energy and the wave function of the ground state by
solving Eq. (9). As the energy is the function of q, finally
we shall change the value of g in order to choose a best

g which minimizes the energy. For the best g, different
eigenvalues of Eq. (9) will correspond to eigenfunctions
with different nodes. The least eigenvalue is the energy
of the ground state. The next one is the energy of the
first bound excited state.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical calculation, the masses of particles are
chosen as the integer times of the nucleon mass. M~ ——

mim and M2 ——m2m where mq and m2 are the integers
and m is the nucleon mass. The two-body interactions
are taken as S-wave potentials with Yukawa forms.

The potential between 2 and 3 is

The V,g in Eq. (5) is defined as follows:

R R—PBs
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To make the variation to Cp(R) in Eq. (4), we have
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If F(R):—Rs) 2e (R) is introduced and inserted into Eq.
(8), then Eq. (8) is changed into

V(rs) = (—s)147.585(1/m2)b —exp —2.1196—2b r3

r3 b
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where s and b (fm) are, respectively, the parameters of
the well depth and the force range. When s ( 1, the
scattering length is negative and there is no bound state
for the two-body subsystem.

The potentials of 1-2 and 1-3 are

&(r2) = (—&,) 147.585b, —'exp
~

—2.1196—'mi+m2 2b, ))' r;&
2mim2 ' r; (,

'
b ~

d P 4(8+5ri+rI2) Vg 2(2+1)
( )dR2 D' D R2

So we complete the reduction of the three-body prob-
lem to an "effective two-body equation" denoted by Eq.
(9). This is also why the method is called as an equiva-
lent two-body method [9]. For a given rI, we can obtain

where i = 1,2, b, and 8, are also the parameters of the
force range and the well depth, respectively. There is no
bound state for the two-body subsystem if the well depth
parameter 8, & 1.

Substituting Eqs. (10) and (11) into Eq. (7), we obtain
the analytical expression of the efFective potential for the
two-body interactions with Yukawa forms:

V.e = 2V.~ + V.es,
1 1
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where v = 227/(rI + 1), p = (g —1)/(g + 1), p = 1 —p,
A = 2.1196/b„B = 2.1196/b, Vj ——8,147.585[(mi +
m2)/2mim2]b, 2.1196, Vs ——s147.585(1/m2)b 2.1196.
The expression for V,~i in Eq. (14) should be replaced
by an expression similar to Eq. (15) for g = 1, i.e., P = 0.

It is evident that the effective potential is a long-range
potential. Its asymptotic behavior for a very large R is

b, b
Vg —cg
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TABLE I. Numerical results for three-body systems.

m$

1
1000
1
1
1
1
1
1
1

m2

1
1
100
1000
1000
10000
10000
100000
100000

sc

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.0
0.6
4.3
9.0
9.0
16.0
16.0
28.0
28.0

Ep (or Eg)
(MeV)
—1.23
—0.99
—1.28
—1.78
—2.01 x10 (Ei)
—2.06
—5.32x10 '(E&)
—2.17
—7.08 x 10 (Ei )

R~

(fm')
63.01
38.85
46.96
38.62
1079.29
35.12
688.45
34.00
597.04

T'32

(fm )
30.88
31.39
2.57
0.53
14.73
0.16
3.04
0.05
0.87

~12

(fm )
30.88
23.74
14.62
11.29
315.55
10.11
198.20
9.74
171.02

know whether there exist the bound excited states in the
three-body system for different mass ratio of particles.
(The masses of particles are chosen as the integer times
of the nucleon mass and denoted by the integers mq and
m3. ) In the table, Eo and Ez are, respectively, energies
of the ground state and first excited state. R3 is the
mean-square distance of R [R = 3(rq + r3 + roars)]. r3
and rq3 are, respectively, the mean-square distances of
2-3 and 1-2. They are defined as follows:

(14)

and this agrees with Zheng and Macek's work [8]. One
important difFerence between this paper and previous
works [6—8] on the Efimov efFect is that only we can give
the long-range efFective potential for an arbitrary R. It is
this point that we can give energies and wave functions
of bound states by the long-range efFective potential.

The numerical results are given in Table I. In the cal-
culation, we fix parameters of force range b = b, = 5
fm and parameters of well depth s = s, = 1.0. If there
is no bound state for two-body subsystems, we hope to

f,
~ dRR3P3(R)

fp dRF3(R)

fo dRO (R) fp dR3 f~ n 'dR3(2R —R3 —vR3)R3R3r3

fo dR43(R) fo dR3 f~ n 'dR3(2R —R3 —vR3)R3R3

fp dR4' (R) fp dR3 f& R
' dR&(2R —R3 —vR3)R3R3r]

7 g

fo dR@3(R) fp dR3 f~ ~ 'dR3(2R —Rz —vR3)R3R3
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It is seen clearly from the first two rows of Table I
that there is no bound excited state for the systems with
three identical particles and with two light particles and
a heavy particle if there is no bound state for two-body
subsystems. We also try to search the bound excited
states for these systems by changing the mass ratio of
particles but we do not find them. The first bound ex-
cited state appears when the strengths of two-body in-

teractions increase to the value which leads to a weakly
bound state for two-body subsystems. It agrees with the
previous work on a three-body system [12].

For the system with two heavy particles and a light
particle, if the mass ratio between a heavy particle and a
light particle is about greater than 1000, it is seen from
the table that there exists a bound excited state although
there is no bound state for two-body subsystems. Fon-
seca, Redish, and Shanley [6] also consider that a large
mass ratio between a heavy particle and a light particle
is a necessary condition for the Efimov effect and this
agrees with the above conclusion. It goes without saying
that the bound excited state is an Efimov state. In this
state, the mean-square-root distance between the heavy
particle and the light particle is greater than the force
range of the two-body interactions and means the light

particle is mainly outside the force range. This is due
to the efFect of the long-range effective potential in the
three-body system.

IV. CONCLUSION

In snmmary, the weakly bound states in a three-body
system have been studied in detail by the equivalent two-
body method for a three-body system. An analytical and
complete expression for the long-range efFective poten-
tial is derived for the two-body interactions with Yukswa
forms. The bound excited state in the system with two
heavy particles and a light particle is first discovered al-
though there is no bound state for two-body subsystems.
This is the first direct evidence on the Efimov effect. The
numerical result suggests that maybe one can observe this
kind of states in the molecular system with two heavy
particles and a light particle.
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