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Recent evidence of the importance of the pion in the dynamics of few-nucleon systems is reviewed.
Calculations of the triton binding energy and the nucleon-nucleon phase shifts, and the application of
chiral perturbation theory to few-nucleon systems, have highlighted the role of the pion. Qualitative
aspects of chiral constraints in few-nucleon forces are reviewed, and the connection between the
static Brueckner-Watson and Taketani-Machida-Ohnuma two-pion-exchange two-nucleon forces is
shown to be the same as that between the Weinberg and Coon-Friar two-pion-exchange three-nucleon
forces. Compact expressions for these forces are given in the Appendix.

PACS number(s): 21.30.+y, 21.45.4+v, 21.10.Dr, 11.30.Rd

I. INTRODUCTION

Three recent developments have highlighted the role of
the pion in intranuclear dynamics. As a consequence, in
very light nuclei the influence of the pion is greater than
had been previously supposed.

The first of these developments involves the three-
nucleon problem [1]. Solving the Schrodinger (or Fad-
deev) equation for the triton is now rather routine. It
is possible to perform these calculations with an error of
less than 1%. From such solutions (called “complete,”
or “exact”), it is possible to determine the influence of
individual parts of the nuclear potential. In this way we
have learned [2,3] that the bulk of the triton potential
energy ({(V) ~ 50 MeV) is due to the tensor force (i.e.,
(Vr)/(V) ~ 2/3), while the one-pion-exchange poten-
tial (OPEP) contributes 70-80 % of that energy. Similar
results are obtained for other light nuclei [4]. This dom-
inating pionic contribution is due to the tiny pion mass
(which makes OPEP by far the longest-ranged compo-
nent of the force), to the pion’s negative parity (which is
the origin of its strong tensor force), and to the near can-
cellation of the (strong) attractive and repulsive forces of
shorter range.

All of these features can be attributed to the chiral
symmetry that is concomitant with the underlying QCD
[5], to the Goldstone-mode realization of that symmetry,
and to the validity of “naive dimensional power counting”
[6] in chiral perturbation theory treatments [7] of that
symmetry.

The second development concerns the nucleon-nucleon
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(NN) force. Recently, the Nijmegen group [8] have per-
formed a very comprehensive and sophisticated phase-
shift analysis of the NN (pp and np) scattering data and
have constructed new versions of NN forces [3] as well.
This work has achieved a number of significant successes
by explicitly treating the OPEP contribution, as well as
the Coulomb, magnetic moment, and vacuum polariza-
tion forces. Omne success is a significantly better fit of
potential model predictions to the data than had been
previously obtained; the x2/per statistical degree of free-
dom is only slightly larger than 1, compared to a typical
previous value of 2. Using their high-quality multienergy
phase-shift analysis, it proved possible to determine ac-
curately the various (charge-state) pion-nucleon coupling
constants, which are consistent with being equal. More-
over, using the NN scattering data to fit [9] the pion
masses, they find m,+ = 139.4(10) MeV and myo =
135.6(13) MeV, which are consistent with the free values.
The small error bars on these masses are a reflection of
the importance of OPEP in the nuclear force. Finally, the
Nijmegen group [10] has recently taken the first steps to-
ward incorporating the two-pion-exchange potentials into
their scheme.

One of the qualitative results of the “exact” or “com-
plete” triton calculations discussed earlier is that “realis-
tic” potential models (viz., models that fit the NN scat-
tering data reasonably well and contain OPEP) under-
bind the triton by up to one MeV. If this result still holds
when relativistic corrections to the force (and other sub-
tle improvements) are included, only three-nucleon forces
remain to increase the binding to the experimental value.
Three-body forces always arise when there are hidden de-
grees of freedom that are not explicitly treated. The two-
pion-exchange three-nucleon force has the longest range.
Typical of the mechanisms [11] leading to such forces
are nucleon-antinucleon “pair” excitations, the virtual-A
excitation (by pion emission and absorption), and pion
rescattering via the (pion-nucleon) o term.

1272 ©1994 The American Physical Society



49 NON-ADIABATIC CONTRIBUTIONS TO STATIC TWO-PION-. ..

Alternative schemes exist for performing the calcu-
lation of these forces. The by-now-august Tucson-
Melbourne three-nucleon force [11] was based on a pion-
nucleon scattering amplitude derived using PCAC, cur-
rent algebra, and phenomenological input. Much later,
Coon and Friar [12] (denoted CF) used the Weinberg non-
linear (field-theoretic) model [13] to perform a consistent
calculation of those components of the two-pion-exchange
force that involve only pion and nucleon degrees of free-
dom. Roughly speaking, these components are charac-
terized by nucleon-antinucleon “pair” excitations, and/or
by “two pions in the air at the same time.” Only the re-
sulting three-nucleon forces were explicitly listed in CF,
although parts of the two-pion-exchange potentials can
be developed from their results.

The third development concerns the use of chiral per-
turbation theory to calculate nuclear forces. Recently,
Weinberg [14] developed such three-nucleon forces using
an effective chiral Lagrangian, together with a power-
counting scheme that permits consistent expansions.
Keeping only pion and nucleon degrees of freedom, he
developed three-nucleon forces in the leading order (tree
approximation) of the effective Lagrangian, and showed
how higher-order potentials could be calculated. This ap-
plication of chiral perturbation theory to nuclear forces
was extended by Orddiiez and van Kolck [15] beyond
leading order, and included both two-pion-exchange two-
and three-nucleon forces. We note that the three-nucleon
forces developed in Refs. [12] and [14] are nominally both
quantitatively and qualitatively different, and the pri-
mary purpose of this work is to explain that difference.
We will point out that the same difference originally arose
long ago in the context of two-nucleon forces [16,17] and
has its origin in different definitions of that force.

We further note that the dominance of pion degrees of
freedom in certain nuclear processes is shown by one of
the biggest success stories in nuclear physics in the past
two decades: pion-exchange currents. Meson-exchange
currents arise because charged mesons being exchanged
between nucleons can and will interact with external elec-
tromagnetic fields. The pion-exchange parts of these cur-
rents are known to dominate, and in few-nucleon systems,
where accurate calculations eliminate nuclear structure
uncertainties, processes exist [18,19] that are dominated
by those currents. A very rough (and subjective) esti-
mate is that the non-OPE parts of these currents con-
tribute ~ 20-30%. Typically, OPE currents are nearly
sufficient to compensate for deficiencies in the impulse
approximation, although sensitivity to the short-range
parts of the former (and a lack of their understanding)
makes a more quantitative statement problematic. Nev-
ertheless, one- and two-pion-exchange processes appear
to be dominant in many aspects of few-nucleon systems
[20-22]). It would be extremely interesting if we could
further refine our appreciation of their contribution.

In order to extract the most important parts of inter-
action operators in few-nucleon systems, we introduce a
simple power-counting scheme [1]. If one uses the uncer-
tainty principle in few-nucleon systems (R ~ 1.5-2.0 fm),
one deduces an average momentum, pc ~ 100-140 MeV.
For convenience, we introduce a mnemonic and equate
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pec ~ myc?. This produces a triton kinetic energy ~ 30
MeV, which is somewhat lower than the more realistic
(T') ~ 45 MeV. Nevertheless, pc is significantly smaller
than the nucleon mass, Mc?, and counting powers of 1/M
(i.e., §/Mc) is significantly easier than counting powers
of 1/c. Because a nucleus is a weakly bound system, we
count the potential and Hamiltonian as implicitly of or-
der (1/M), corresponding to the kinetic energy, which is
explicitly of that order.

We make a slight distinction between non-adiabatic
and non-static, appropriate to our subsequent discus-
sion. Non-adiabatic terms in the potential are those
which arise from retardation in the meson propagation
(i.e., the finite time that it takes for a meson to traverse
from one nucleon to another). Non-static terms are those
which vanish when the nucleon mass, M, is taken very
large. As we will see, perturbation theory allows non-
adiabatic factors to be canceled, leaving a static residue,
even though the non-adiabatic terms that we will exam-
ine are formally of order (1/M).

In what follows, we will detail how choices (implicit or
explicit) in the definition of the potential that arise nat-
urally in Rayleigh-Schrédinger perturbation theory will
also alter the definition of what constitutes a three-body
force. These choices arise because the potential is an un-
physical theoretical object, obtained from a subamplitude
according to a set of prescriptions. None of these defi-
nitions is wrong, and consistency conditions relate each
one to the others. Expediency and theoretical prejudice
are usually our guides in selecting the prescriptions we
use.

II. QUALITATIVE AND CHIRAL ASPECTS
OF THE PION-EXCHANGE NUCLEAR FORCE

Historically, the construction of pion-exchange nuclear
forces has been coupled to the question of which form of
pion-nucleon coupling to use: pseudoscalar (PS) coupling
or pseudovector (PV) coupling. Associated with the for-
mer is a dimensionless coupling constant, g [= 13.02(5)]
[9], while associated with the latter is f = g/2M and,
more frequently, a rationalized (squared) dimensionless
constant, f& = (42=)?/4r = 0.0745(6). The former
number is very large and is typical of strong-interaction
couplings, while the second is quite small. Although the
two types of pion-nucleon coupling between on-shell nu-
cleons are identical, off-shell they are different. Naive PS
coupling leads to very strong nucleon-antinucleon “pair”
contributions to the two-pion-exchange two- and three-
nucleon forces [23].

This strength can be easily determined by examining
effective couplings of one and two pions to a nucleon.
The effective nonrelativistic (single) pion-nucleon cou-
pling has the well-known form: — fo - V1 -, where o is
the nucleon (Pauli) spin operator, 7 is the corresponding
isospin operator, and 7 is the pion field operator. The
leading-order effective two-pion seagull coupling from PS
Born terms are generated by large (intermediate-state)
nucleon-antinucleon Z graphs and can be obtained from
the (negative of the) last term of Eq. (4) of CF: 2M f2x2.



1274 J. L. FRIAR AND S. A. COON 49

In chiral models, the large Born-term contribution is ex-
actly canceled by a seagull [the last term in Eq. (4) of
CF)]. Historically, the ad hoc prescription of “pair” or “Z
graph” suppression was invoked to eliminate this large
vertex. Chiral symmetry [24] does this automatically,
and the effective (chiral) Hamiltonian of Eq. (5) of CF
does not contain such a large term. Finally, for technical
reasons, the derivation of CF was accomplished by us-
ing a general chiral representation, neither pure PS nor
PV coupling, but rotated by an arbitrary amount be-
tween them. This emphasizes an important point: the
issue is not the form of the coupling (which is basically
an unphysical choice of representation) but rather the
constraints enforced by the underlying chiral symmetry.

The immediate consequences of that constraint can
be estimated rather simply. We construct NN poten-
tials and count powers of fZ, M, and m,, and treat
(and consequently ignore) the dimensionless radial fac-
tors in the potentials as order (1). Then, OPEP is of
order (f¢mx), or roughly 10 MeV (per nucleon pair),
which for three nucleon pairs is close to the calculated
35-40 MeV contribution of OPEP to (V) in the triton.
If one iterates OPEP in perturbation theory, the second-
order process involves an intermediate Green’s function
(E—H)™! ~(3)"! ~ M] and produces a contribution
of order (f§M), which is not significantly smaller than
f&. This term and higher-order iterates are not small
and they should be considered together, which occurs
naturally when the Schrodinger equation is solved. The
two-pion-exchange two-nucleon force (as we will see) is
of leading order (fgm,), or ~ 1 MeV/pair. The unphys-
ical PS seagull leads to terms of order (fiM?/m,), or 35
MeV/NN pair.

The three-nucleon forces from “pure” two-pion ex-
change involving this seagull would be of order (fiM),
or 5 MeV/nucleon triplet, a very large contribution in-
deed. The result of CF was that this force is actu-
ally of order (f¢m2/M) or ~ 0.1 MeV /triplet, and van-
ishes for static nucleons (M — o0). It is believed that
other mechanisms generate the bulk of the complete
two-pion-exchange three-nucleon force [25,26] (~ 0.5-1
MeV /nucleon triplet).

The net result of these considerations is that in the
few-nucleon systems, OPEP dominates the two-, three-,

.. pion-exchange two-nucleon forces, which get progres-
sively smaller. Furthermore, the two-nucleon forces are
much larger than the three-nucleon forces. Because the
bulk of the potential energy comes from the part of the
theory that is most believable and best understood, it
is plausible that a credible case can be established that
the triton binding energy can be understood from “first
principles,” although this is by no means certain.

III. TWO-PION-EXCHANGE NUCLEAR FORCES

In this section, we reprise the essential elements of
the derivation of CF. In that work we derived forces of
order (f&) and (f#/M); here we work to static order
only (M — oo), which (greatly) simplifies the deriva-
tion to its essentials. At this level the representation de-

pendence [12,27] on the unphysical chiral rotation angle
(denoted by p in CF) disappears. The method that we
use is generic and avoids the unnecessary complications
of quasipotential equations. To the order that we work
there is also no dependence on the unphysical “quasipo-
tential” parameter (denoted by v in CF).

A Foldy-Wouthuysen reduction of the Lagrangian
equations of motion for the Weinberg non-linear model
leads to an effective static interaction [12] for one or two
pions with each nucleon:

2
L.xn~N (—f’ys'y“au‘r T — ;—7 T -7 X 8,,#) N, (1)
A

where g4 is the axial-vector coupling constant (~ 1.26),

and hence

2
H,,Nﬁ—fO'-V(T-W)+£—2T-7rX77l'+-~ (2)
A

in the nucleon Hilbert space. Only the leading-order
(one-pion) and Adler-Weisberger (two-pion-seagull)
terms contribute to H,p, which is the static limit of
Eq. (5) of CF. Using superposition these can be extended
to operators for the absorption of incoming pions by a
nucleus:

) - qetdx:, (3)

—ZfZT

2
521r (a1 + q2) f B ZT‘Y 1(q1+qz)~wi’ (4)

where €287 is the antisymmetric tensor. The nuclear two-
pion seagull in Eq. (4) will be ignored until the Appendix.

With this pion-nucleus (many-body) vertex operator,
Jr, one can perform perturbation theory as illustrated in
Fig. 1. The shaded line in Fig. 1(a) corresponds to the
nucleus Green’s function, (E — Hp) ™!, determined by a
residual nuclear Hamiltonian, Hy, which does not contain
pion exchanges. It is convenient and appropriate to add
and subtract a “counter-term” potential, V,°, which for
our static derivation is just OPEP. The rearranged per-
turbation theory [27] then uses an unperturbed Hamilto-
nian, H, which contains OPEP plus non-pionic contribu-
tions, and which leads to a “renormalized” Green’s func-
tion, (E — H)~!. For consistency’s sake we must include
the counter term (i.e., —V,?) in separate diagrams, such
as Figs. 1(b) and 1(d)-1(g). The counter term, therefore,
is nothing more than a device to insure that we do not
double count. That is, it formally allows “subtraction”
of OPEP from the perturbation calculation, since it is
already included in H. Because OPEP is the static limit
of Fig. 1(a), we are effectively performing perturbation
theory in the retardation of the pion exchanges.

One can calculate Fig. 1(a) in any of a variety of ways,
leading to the obvious result:

- d3q o 1
B = ValH) = _/ @2 B " VE, ¥ (H-B)
xJZ(—q), (5)
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where E, = (q? + m2)'/? and (2E,)~! is the normal-
ization factor for the pion fields. This result can be
expanded using our power-counting scheme for (H —
E)/E. ~ m,/M < 1, where only corrections of leading
order (fZ/M) will be kept. We will consistently ignore
contributions of order (f3/M), (f¢/M?), and (f§). This

produces

1 .
VW(E)2V1?+‘/2‘;1r+§{E_HaZ7r}+"', (6)
where
d3q JeJe
0 _ _ YT
Ve = (2m)3 2E2° (™)
1 [ & [J2,[H,I2]
VA - - L) 'Y
L) / (2m)®  2E3 ®)
and
5 _ d3q J2Jz )
i (2m)3 2E3 °

Equations (5)—(9) correspond to the lowest-order terms
of Egs. (8) and (9) of CF, where higher-order terms in
the expansion of V,(E) were kept.

There are several noteworthy features of the result
in Eq. (6). The first is that because J, is the sum

ffff

<—w—

(@) (b)

(e) ®
(9) (h)

————————

——————

FIG. 1. Time-ordered pion-exchange graphs of order (f?)
are shown in panels (a) and (b), with the X representing
the OPEP counter term. The remaining contributions of or-
der (f*) are the disconnected graphs (c)—(f), the overlapping
graphs of (g)—(i), and the seagull graphs of (j)—(1). The cross
hatching indicates virtual nuclear excitations driven by re-
tarded pion exchanges.

of one-body operators, the double commutator involv-
ing H = T+ V in VA produces a one-body opera-
tor from T (which we ignore) and a two-body operator
from V. It contains no three-body forces. In addition,
the leading-order term in Eq. (6) is the usual instanta-
neous OPEP. Thus, summing Fig. 1(a) and 1(b) leads
to VA +1/2{E — H,Z,} + - --, where each term arises
from retardation. The most interesting feature is the
explicit energy dependence of the potential, which has
serious consequences. The Hamiltonian incorporating
such a potential is state dependent, and this modifies the
usual orthogonality relationship for wave functions with
different energies, since 3% [E — H(E)] (which enforces

orthogonality) is no longer the identity, but (1 — 2,)
(Skeptics should check the orthogonality of Klein-Gordon
equation solutions [28] for the Coulomb potential case, or
the well-studied Sturm-Liouville equation [29].) If charge
and current operators are calculated in a similar for-
malism [27], one finds peculiar exchange-current terms
of the form —%{Z,,J{:np}, where Ji’:np is the impulse-
approximation current operator. Another consequence is
the presence of three- and even four-body operators con-
tained in —%{V, Zr}, since both V and Z, are two-body
operators.

All of these consequences are well-known features of
Rayleigh-Schrédinger perturbation theory and, although
not incorrect, in our opinion they are highly undesirable.
For energies below meson-production threshold it is pos-
sible to remove the energy-dependent term by means of
a transformation. We write the Schrodinger equation in-
corporating our energy-dependent potential in the form

%{E—H,I—Z,}\IIE =0, (10)

where we ignore the (higher-order) retardation term:
V4. Defining

V1= Z, 9 =1, (11)
1
multiplying Eq. (10) by (1 — Z,)™ 2 leads to
(H+AH)? = EVY, (12)

where AH = —%[[Z",H], Zx]+- - - is of order (f¢/M) and
can be ignored. The same transformation [27] eliminates
the exchange-current terms of order (Z,,), as well as two-,
three-, and four-body forces contained in —%{V, Z,}

The problems discussed above can be analyzed in terms
of the power counting we introduced earlier. The factor
of (E — H) is of order (1/M) and is presumably small.
It vanishes in first-order perturbation theory, but the
Green’s function, G, between the two bubbles in Fig. 1(c)
is of order (E — H)™! ~ M, and the two factors can abut
and cancel in second order, leaving a static residue of
order (f§). Summing the bubbles [like Fig. 1(c)] to all
orders leads to the inverse of Eq. (10):

Ge~ (1+ Z2,/2)G(1 + Z./2), (13)

where G = (E — H)™!, which demonstrates that Z, is
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the wave function renormalization “constant” (actually
an operator) of this field-theory calculation. It is needed
to extract a “clean” (i.e., with the usual residue at the
pole) Green’s function, G, from Gg.

We complete the perturbation theory by calculat-

J

ing the remaining potential diagrams to order (f3) in
an energy-independent (i.e., conventional) representation
for the potential. Figures 1(a) plus 1(b) give (V;4). Fig-
ures 1(c)-1(f) sum to zero in the order of terms kept here.
Figures 1(g)-1(i) give (V,2), where

J2(q2)][J2 (—a1), Jﬁ(“fh)]

- /(27r 3(2E2) /(27r)3 2E2) HE ()

using an obvious notation with E; = (g2 + m2)z. Note
that this procedure includes V,° to all orders in the basis
Hamiltonian, H, and that V,2 is a two-body potential
only [mentioned above Eq. (18a) of CF]. In addition to
OPEP (included in H), we have obtained (VA) + (V.B).

Alternatively, we can eliminate the counter term
[Fig. 1(b)], which is the “mass renormalization” of our
procedure, and perform the conventional calculation in
the basis with Hamiltonian, Hy (i.e., without OPEP).
In that case, only Figs. 1(a), 1(c), 1(h), and 1(i) con-
tribute. We find that Fig. 1(a) gives (V;?), while 1(c)
gives (V2GoV?) + (VEMO) where

1 .
VMO = 2., V2, (15)

and the notation (TMO) that we use is adopted from
Ref. [10]. In addition, Figs. 1(h) plus 1(i) give (VA) +
(VBY — (V,EMO) ' This sums to what we previously ob-
tained, plus OPEP and its iterate (V,’GoV;?); the two
approaches are therefore consistent and give the same
total result.

Finally, if we wish to define the entire V. (E) as the
OPEP to be used in the Schrédinger equation, we need
only calculate Figs. 1(h) and 1(i) to obtain the addi-
tional potential [to V(E)]. By not calculating 1(c) we
are explicitly defining Fig. 1(a) (including the energy-
dependent part) to be OPEP. The result is (V2)+(V,B)—
(V;EMOY and differs by —(V,EMO) from (VA) + (V,B),
our energy-independent-potential result obtained below
Eq. (14). The missing energy is contained implicitly in
the energy-dependent part of V;(E). Clearly, the defini-
tion of our potential is subjective and subject to theoreti-
cal prejudice, although the total energy is not dependent
on how we categorize it. We note again that V,oM© con-
tains two- and three-, and four-body terms.

IV. THE TMO POTENTIAL

Different implicit definitions of the potential have oc-
curred historically. Brueckner and Watson [16] ignored
the energy dependence of the non-overlapping (time-
ordered) pion exchanges and obtained (in the static
limit) the BW two-nucleon two-pion-exchange poten-
tial (VA + VB) — (V;EMO).  Taketani, Machida, and
Ohnuma [17] ( see also Sugawara and Okubo) treated the
disconnected graphs and obtained (Vi + V,2). That
is, the BW two-nucleon potential implicitly included

(E1 + E») (14)

r

the energy-dependent term in Eq. (6) in the defini-
tion of the potential, and the TMO two-nucleon po-
tential did not [30]. These two-body potentials have
been worked out many times before and recently by
Rijken [10], both in momentum space and configuration
space. For completeness, we present both forms in the
Appendix (see also Ordéiiez and van Kolck [15]). Accord-
ing to Rijken, the differences between the two potentials
are substantial. Although our notation unfortunately im-
plies that TMO calculated a correction to the BW poten-
tial, that work in fact preceded BW and calculated the
complete potential.

Weinberg [14] recently calculated the static three-
nucleon force in the leading order of chiral perturbation
theory. His explicit choice of not calculating Fig. 1(c)
leads to an implicit definition of OPEP that includes the
energy-dependent term, and thus his result for the ad-
ditional force can be shown (see the Appendix and the
discussion in the previous section) to be the three-body
parts of —(V,EMO) since V2 and V2 contain no three-
body terms. If one insists on an energy-independent
OPEP (which is the usual case) the transformation be-
tween the two forms (detailed above) leads to a vanish-
ing static limit, in agreement with CF. We note that
although CF and Weinberg used the same chiral La-
grangian (and hence must lead to the same result), CF
was not performed within the conceptual framework of
chiral perturbation theory (we were unaware of this in-
teresting development). Nevertheless, after transforming
to a conventional OPEP, the Weinberg (CF) result can
be stated as a “theorem”: In the static limit (M — oo)
this three-nucleon force vanishes in leading order in chiral
perturbation theory. What constitutes leading order and
how one goes beyond this is discussed in Refs. [14,15].
Although we have not dealt with the topic, this result
also applies to three-nucleon forces arising from the “con-
tact” (i.e., 6-function) terms that appear as surrogates
[1,14] for the sum of short-range two-nucleon potentials
(e.g., from p exchange). We note that the two-pion-
exchange Tucson-Melbourne three-nucleon force [11] con-
tains higher-order terms in the chiral expansion which do
not vanish in the static limit. The chiral perturbation
theory approach to such higher-order terms is demon-
strated in Ref. [15].

The qualitative reason for this result is that in the
energy-independent representation for the potential, this
two-pion-exchange three-nucleon force involves no loops,
and has the generic form V;2/A, where A is a large-mass
scale. For our simple case, A = M, which guarantees a
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vanishing static limit. This generic form is mandated by
chiral symmetry and is not what one obtains in non-chiral
models [23]. The concomitant smallness of three-nucleon
forces in few-nucleon systems seems to be confirmed by
recent calculations [1-4,25,26].

V. SUMMARY AND CONCLUSIONS

Recent calculations have reemphasized the important
role of the pion in the dynamics of few-nucleon systems.
Chiral constraints enforce the dominance of two- over
three-nucleon forces, and suggest [31] that many-pion ex-
changes between nucleons are less important than few-
pion exchanges, with OPEP the largest contribution of
all. Chiral perturbation theory calculations [14] demon-
strate the vanishing of the leading-order component of
the three-nucleon force in the static limit [12], if the
usual energy-independent definition is chosen for the two-
nucleon force. The latter problem is shown to be iden-
tical to one encountered many years ago in treatments
of the two-nucleon force [16,17,30]. If one chooses an
energy-independent OPEP, the two-pion-exchange TMO
potential (as defined herein) should be included together
with the BW potential in the Hamiltonian.
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APPENDIX

In this appendix, we present explicit forms for various
potentials that were dealt with schematically in the body
of the paper. We present results in both configuration
space and in momentum space. Additional configuration-
space forms (involving form factors) can be deduced using
the tricks illustrated in Appendix B of Ref. [10]. Ignoring
such form factors leads to the long-range behavior of the
potential.

The one-pion-exchange potential has the form

Vo= S 2 ()(el) - Vi) e () - Vi)

Ti#j
xhg(m,,a:,-j), (Al)
while
X f2
A~ OROICORMICOR
T i#j
Xhl(mﬂ-:tij), (A2)

where in the limit of a pointlike pion-nucleon form factor
(F(q2%) — 1) we have

3 2(~2,12)p1q°2 —z
ho(2) E47l'/ (d g F(a'my)e .- , (A3)

2m)® (@®+1) z
and
_ d’q F2(q’m})e’d® 2
hule) = 4”/ e} @ et (A

where Kj(z) is the modified Bessel function. Together
with Eq. (3) these forms can be used in Eq. (8) to produce

A _ f d 111 d a9 eilar+aaz)zi; 1 1 2
where a;; = 3(o (i) - q1 x q2)(0(j) - q1 X qz2) and b;; = 27(3) - 7(j)(q1 - g2)?. This leads to
VA = Z O ho(mazij)hi(mazl;), (A6)
T i#j
where
O = 30() - (Viy x Viy)a(d) - (Vg x Vi) +27(i) - 7(3) (V5 - V)2, (A7)

and the prime indicates which x;; is to be differentiated (whereupon, set x;; to x;;). Similarly we can develop VE,

which leads to

d3Q1 d3q2 e“ll X;ij ezqz x
Vin = 2 Z/ (2m)3 (27)3 E2E2(E, + E3)

f ZO g9(xij5x )

i#j

(atJ + bl])FZ(Q1)F2(Q2) (A8)

(A9)
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where

d3q1 d3q2 eiql-zeiqz'z’FZ(qZ)FZ(qZ)
oy — 1 2
9(z2) / @m)? (2n)3  E’ERX(Es+ Ba) (A10)

A convolution representation for g can be written using the identities [10]

1 2 [ dA
- - -z A
E\Ey(Evn+E;) /0 (E? + 22)(EZ + )?) (A1)

(which can be easily proven using partial fractions), and

182/ d) B 1 1 (A12)
meOma 7w Jo (B2 +X2)(EZ+A?) EZEX(E:+BE,) EZE3 ESEY

which leads to

g(z2") = {(L] 1.9 [3 /Ooo (M2 + A2)ho(y/ME + m22)ho(v/X2 + m22')| + % (A13)

4m)2 | my Omy, |7

Adding V4 and V2 together to form V2 leads to a simple and compact form:

Vo = ) O h(z; 2 (A14)
1£]

with

4 oo
h(z;2') = fo 9 2 / dA(m2 + A®)ho(1/A2 + m22)ho(\/A2 + m22'), (A15)
0

2mS Om, =«

where we should take z' — z after differentiation. For the case of pointlike pion-nucleon form factors, the integral in
(A14) is easy to perform after differentiation:

WP (2;2") = — fs [Z+z’

mmi | 22!

J Ko[ma(z + 2'))]. (A16)

Note that V0. contains only central and tensor contributions and is local. Performing the derivatives in Eq. (A14)
leads to the results of Ref. [17], and to those of Ref. [10] when the static TMO and BW potentials of the latter work
are combined.

We can easily calculate the two- and three-nucleon parts of V,IMO:
™o _ fo STMO ,
Van'® = 505 D PiMOho (i) ha (), (A17)
T i#]

where the combined spin-isospin operator is given by

PIMO = (3 -27(5) - T()(Vi5 - V5,)? = 0(i) - (Vij x Vij)a(j) - (Vij x V). (A18)
Similarly,
VRO = S8 S QIMOhg (o s (i) (A19)
T iFtjEk
where
VIO = (0(4) - Vo (k) - Vi)V - Vir(j) - 7(k) — o(i) - V; x Vi (i) - 7(5) x 7(k)]. (A20)

The three-nucleon potential derived by Weinberg [14] is the negative of V,3MO. If one insists on an energy-independent
OPEP, V,XMO should be added to that result and the sum vanishes to this order.

Finally, we present the results for the seagulls depicted in Figs. 1(j)-1(1), plus the double seagull not considered
in CF or Fig. 1. The latter involves two Adler-Weisberger interactions and generates only a two-nucleon potential.
Ignoring the zero-range singularities is equivalent to renormalization in effective field theories such as the one we are
using. The static part of Figs. 1(j)-1(l) gives a two-nucleon potential:
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VAW _ —i/ d*q / &gy {552 (a1 + a2), [Jg (1), J2(—a2)]}

(2m)3 J (2m)3 (2E1)(2E2)(E1 + E»)
4 3 (q1+q2) T
=_2f ) // d*q d&q € iq1 - Q2 (A21)
Yy (2m)3 (2m)°  E\E3(E) + E)
4fo
= ,".gAms ; ])VU thl(:l:”, 1_7)

and Eq. (A11) can be used to produce
i(z7) = mi / dA(m2 + N2)ho(y/NE F m22)ho(y/ N2 + m22),
™ JO

where we have assumed that the introduction of form factors must have the product form given in Eq. (A10). Ignoring
any such form factors then leads to

: Ky [ma(z + 2')]
P, ) — LIm\e T < )]
P4 (z;2") o , (A22)
where, as before, we equate z and 2’ after differentiating.
The double seagull leads to the static two-nucleon result:
yaw _ _1 [ Pa / dgx 558 (a1 + 92) 552 (—a1 — @2) (Br — B»)?
(27f)3 (2m)3 (2E1)(2E2)(E1 + En)
dq d3qy ellnta)=i (B — By)?
__I A23
#J )-7() / / ()3 (21)°  ELE(Ey + E2) (A23)
= 27I'g m3 ZT(Z) T(J)-f("l:"d"r'z])
T oi#j
Using (E; — E2)?/[E1E2(Ey + E2)] = [E{' + E; ') — 4/(E1 + E»), and the identity
1 2 = dA\?
-2 , A24
(B1+E;) L (E% + X2)(E2 + \2?) (A24)

we find that ignoring the bracketed terms above Eq. (A24) [E]' + E; '] (because they have zero range) leads to

flz2) = —— / AANE(m2 + A2)ho(+/XE + m22)ho(y/2E + m22)
1]

My

Ignoring any form factors then produces

2
fP(z2) = _;2 (8;932' - )Kl[m«(Z+z )l- (A26)

Performing the derivatives in Egs. (A21) and (A26) leads
to the (static) results in (the second of) Ref. [17], if we
make the identifications: g = 4w f2 and Ay = 4w fZ/g% ~
0.6, compared to their phenomenological value of Ay ~
0.4. These results also agree with Ref. [15], who, to the
best of our knowledge, performed the first chiral calcula-

(A25)

tion. See also Ref. [32].

Our complete results for the static two-pion-exchange
two-nucleon potential (to be used with an energy-
independent OPEP) are given by the sum of the TMO
and BW potentials in Eq. (A14) [V2] plus Eq. (A21)
[VAW] plus Eq. (A23) [VAW']. Although none of these
results are new [15,17], we have presented in this ap-
pendix a succinct derivation with compact results in both
momentum and configuration spaces. The static two-
pion-exchange three-nucleon force in the approximation
we have adopted in this work vanishes.
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