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Properties of the rho meson in nuclear matter
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We calculate the vector-isovector hadronic current correlation function in the presence of nuclear
matter. We Snd that the rho mass decreases by about 20'Fo at nuclear matter density and the rho
width is reduced by about 35'%%. These results are in general accord with the results of calculations
made using +CD sum rules. In our calculations, and in the /CD sum-rule calculations, the main
eKect considered is reduction of the value of the quark condensate in the presence of matter. That
reduction is here assumed to be 35%%uo at nuclear matter density.

PACS number(s): 21.65.+f, 14.40.Cs

I. INTRODUCTION

Recently, we have seen several calculations made of
the properties of the rho meson in nuclear matter [1—3].
We are here interested in the calculation of the vector-
isovector hadronic current correlation function that was
studied in Refs. [1,2] using /CD sum-rule techniques.
The imaginary part of the correlator exhibits a large peak
at P = m, where m~ is the rho mass. In the sum-rule
analysis, this peak can be represented by a delta func-
tion, A6(P2 —m2), as in [1],or a more complex form may
be used that takes into account the rho width, as in [2].
The sum-rule analysis allows for a determination of the
rho mass in terms of a number of vacuum condensates.
Since the value of these condensates changes in the pres-
ence of nuclear matter, the value obtained for the rho
mass becomes dependent upon the matter density. (We
will denote the density-dependent rho mass as m' in the
following discussion. )

In the sum-rule calculations, the main efFect, due to
the presence of nuclear matter, is a reduction of the
value of the quark condensate. Some correction terms,
linear in the matter density, can be calculated in a model-
independent manner, with the result depending upon the
value chosen for the pion-nucleon sigma term, 0~. For
example, in the case of the up-quark condensate, we have

(qq),
' = (qq)o+ 2(qq)o(NlqqlN)s . (1.2)

( ).= ( ).+
2m

to first order in the matter density, p. Here m is the av-
erage of the current masses of the up and down quarks
and (uu)o is the vacuum value of the up-quark conden-
sate. The work of Refs. [1) and [2] takes into account
a number of additional condensates, however, Eq. (1.1)
describes the most important efFect. There remains the
question as to how Eq. (1.1) is to be used in the sum-rule
calculations. For example, in Refs. [1,2] a very impor-
tant role is played by the four-quark condensates. These
are evaluated in a Hartree, or vacu»m-saturation approx-
imation. What then appears is the quantity (qq), which
is evaluated to first order in the density as [2]

Here lN) denotes the state of a nucleon, with normal-
ization (N'lN) = (2z) 6(p —p'). Since one can always
question the use of the factorization hypothesis for the
four-quark condensates, we believe it is of value to cal-
culate meson properties using other models and in this
work we will present an alternative approach. Note that,
in the case of the nucleon, the baryon density, (qp q)~,
plays a very important role. Because of cancellations be-
tween self-energy effects due to (qq)o and (qpoq)p, the
nucleon stays close to its mass shell [4]. This feature has
a direct analog in relativistic nuclear physics, where the
u and u fields play a role analogous to that of the scalar
and vector condensates. In contrast, meson properties
are largely unaffected by the presence of the vector con-
densate, since the shift in the quark energy due to the
vector condensate is cancelled by the corresponding shift
in the antiquark energy.

Since the main effect being described in the /CD sum-
rule calculations is a mean-field effect, it is natural to
ask whether similar results may be obtained using quark
models, such as that of Nambu —Jona-Lasinio (NJL), that
describe mass generation through the breaking of chi-
ral symmetry in the ground state of the system [5]. We
have recently created a generalized version of the NJL
model that contains a description of confinement [6]. We
were then able to calculate hadronic current correlators
for currents carrying various quantum numbers. Indeed,
our studies of the vector-isovector correlator [7] and the
axial-vector isovector correlator [8] gave excellent fits to
the experimental data. Note that the imaginary part of
the correlator may be related to the ratio of the cross
section for e+ + e ~ hadrons to the cross section for
e+ + e —+ p+ + p, in the case of the vector-isovector
channel [9]. For the axial-vector correlator, an analysis
of ~ decay leads to an extraction of data that allows for
the specification of the imaginary part of the correlator
[IO].

The organization of our work is as follows. In Sec.
II we review our model of coupled-channel quark-hadron
dynamics as it pertains to the calculation of hadronic
current correlation functions. In Sec. III we consider the
density dependence of various functions that are used to
construct the correlation function. We also provide val-
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ues for the rho mass and width at nuclear matter density.
Finally, in Sec. IV, we present some further discussion of
our results.

OUPLED-CHANNEL QUARK-HADRON
MODEL

Equation (2.7) serves to separate C( )(P2) into a "back-
ground" term, J(~)(P ), and a resonant term, C( )(P2)
[7]. We have also developed methods to extend our
model, so that Eq. (2.7) is valid for all P [11]. In that
case, we can write

(2 8)

Our generalization of the NJL model to include a de-
scription of confinement has been extensively discussed
in earlier work [6—8]. Therefore, we here limit ourselves
to a summary of the equations that are necessary to un-
derstand the calculation we report upon.

We may define a vector-isovector current

~."(*)= q(*)~"~-q(*) (2 1)

—*&(",")(P').~ = f~'*" '(%2'()."(*)g(o)))o) (2 2)

and put

C("p) (P') s = g""(P)C—(p) (P') b s, (2.3)

where

g""(P) = g"" —P"P"/P (2.4)

At this point we drop reference to the isospin indices. It
is useful to define tensors, J(")(P) and C("")(P), with

J("")(P)= —g""(P)J( )(P ) (2 5)

and

and, in terms of this current, we define the correlation
function in vacuum [7]

K("")(P)= g""(P—)K(p)(P') . (2.9)

In Fig. 1, the wavy lines denote pions and the cross-
hatched areas denote vertex functions that implement
our model of confinement. Note that the qq cut that
would appear in K(~)(P2), in the absence of a model of
confinement, has been eliminated in our model. There-
fore, we are able to obtain ReK(~)(P ) from ImK(~)(P )
by use of a dispersion relation [7].

We found that C(p)(P ) could be expressed in terms

of J(~)(P2) and K(~)(P2):

J(p) (P2) + K(p) (P2)p2 P P

1 —Gv [J(~)(P2) + K(~) (P2)]
(2.10)

Here, G~ is a coupling constant of an extended NJL
inodel, whose Lagrangian is [7]

c(x) = q(x)[i P —m ]q(z)
Gs+,'([q(*)q(~)]'+ [q(~)i»~q(*)]')
Gv—,([q(*)~"~q(*)l'+[q(*)»~"~q(~)]')

where C( ) (P ) is equal to J(z)(P2) in the low-energy
region where the NJL model is applicable

Now, again making reference to Fig. 1, we define a
tensor

C(p)(P) = —g""(P)C(p)(P') . (2 6) (2.11)

The tensor J(")(P) is defined in Fig. 1. Thus, we write
(~)

If we recall Eq. (2.7), we see that we can write

C(),)(P ) = J(),)(P ) + C(),)(P ) . (2.7)
Gv J( )(P ) + K(p) (P )[1+Gv J( ) (P2)]

C(p) (P') =
D(.)(P')

Vp o ~ ~ ~

V (2.12)

"(p)(')
where

D(p)(P ) = 1 —Gv[J(p)(P ) + K(p)(P )] . (2.13)

Finally, we note that we have

-iK("')(P)

(b)

FIG. 1. (a) The basic quark-loop integral that appears in
the study of the vector-isovector sector of the NJL model.

(b) The calculation of the tensor K""(P) is indicated in a
()o)

schematic fashion. The cross-hatched areas denote vertex
functions for a confinin poetutial, as calculated in Ref. [7j.

ImK(p) (P2)
ImC(p) P

ID(p) (P') I'
(2.14)

The values obtained for ImC(~)(P2)/4P2 in the ab-
sence of matter are shown in Fig. 2 [?]. In our ear-
lier work, we used mq ——302 MeV) t & 7 58 GeV
m = 5 MeV, and A3 ——702 MeV. Here, A3 is a cutoH'

q
used for all three-momenta that appear in loop integrals.
(We also found that g ~~

= 3.05.)
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FIG. 2. The figure shows values of ImC& }(P )/4P~. The
data points are taken from the compilation of Ref. [10]. The
solid line is a (least-squares) phenomenological fit to the data
made in Ref. [10]. The dash-dotted line is a continuum con-
tribution suggested by the work of Shuryak [9]:

Dirac hole theory. The energy of a negative-energy state
in the presence of the self-energy E = a + gob is e(p) =
b —[p2 + (m')2]~/2, while for a positive-energy state one
has e(p) = b+[p +(m') ]~/2. If we excite a particle from
a negative to a positive-energy state, b does not appear
in the expression for the energy required, e(p) —e(p). In
the light of these remarks, we will consider the various
functions defined here to be independent of P . g, since
such dependence would arise only &om the p b terra of
the quark self-energy. All studies of the modification of
rho properties due to mean-Beld effects in nuclear matter
have used the same approximation [5]. (For the general
form of the rho propagator in matter, we again refer the
reader to Ref. [12].)

Note that, in the NJL model, the value of the con-
stituent quark mass, mq, is proportional to the vacuum
quark condensate in the chiral limit. In our previous
analysis, we found that the condensate is reduced by
about 35%%uo at nuclear matter densities [13]. (This re-
sult depends directly on the value assumed for cr~, the
pion-nucleon sigxna term. An analysis of experimental
data yields o~ = 45 + 8 MeV [14].) Therefore, we may
consider

Here, we have taken ~so = 1.4 GeV and 8 = 0.2 GeV. The
dotted line represents ImC~~}(P )/4P, the sum of the reso-
nant and continuum contributions.

m;=m,
~

1 —035
( p

PNM p
(2.15)

Here we will concentrate on the modification of
ImC(~}(P2) in the presence of nuclear matter. The pres-
ence of nuclear matter complicates the description of the
rho propagator since there is an additional four-vector
in the problem, g". That four-vector describes the How
of the xnatter and in the matter rest frame we write
g" = (1,0, 0, 0). Therefore, all the functions of the theory
can depend upon two variables, P and P g. A complete
analysis of the rho propagator, with the rho self-energy
developed as a function of two variables was given in Ref.
[12]. In that work we calculated the modification of the
rho propagator due to the excitation of nucleon particle-
hole states. The results could be expressed as a function
of [P[ and Pe, for example, in the matter rest frame.

The problem under study here relates to the modifica-
tion of the rho properties due to the (Lorentz) scalar and
vector mean fields present in nuclear matter. These fields
may be taken to couple to the quark and antiquark in the
rho meson and a self-energy, Z = a+p b, may be inserted
in the quark propagator: S(p) = [P—(mq+a) —p b] ~. It
is easily seen that the calculation of the quark-loop inte-
grals J("}(P,P.g) with propagators such as S(p) yields

a result independent of the vector self-energy terxn, p b.
Therefore, we may take J( "}(P,P.g) ~ J(""}'(P), where
the asterisk is a rexninder that m~ has been replaced by
m* = mq + a in the integrand. Similar remarks may
be made for the quark-loop integrals that appear in the
calculation of K&""}(P~,P . g), so that we may also put
K(""}(P',P .g) ~ K(""}'(P').

One way to understand why the term p b plays an
ixnportant role when calculating properties of the nucleon
in nuclear matter and drops out of the problem when
calculating the properties of a meson is to consider the

III. DENSITY' DEPENDENCE OF VARIOUS
AMPLITUDES

In this section we present the results of our calcula-
tions. In Fig. 3 we show the value of J&~}(P2), that we
have obtained previously, as a solid line [7]. The value of
this integral is increased when we replace mq by m'. Our

)
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Q 0
CL(~

I . I

0.4 0.8
P (GeV }

1.2

FIG. 3. Values of J~(P ) (solid line)aud J&' }(P ) (dashed
line) are shown.

where p is the baryon density of the medium and p~M ——

0.17 fm is the density of nuclear matter.
In our mean-field analysis, we need to determine the

dependence of various quantities on m'. For example, we

may define J&' }(P2), K(' }(P2), f ', f', g', C(' }(Pz),
etc. In our earlier work [12] we have seen that the ratio
(f'/f ) is equal to the square root of the ratio of the
in-medium condensate to its vacuum value. The same is
true for (g' /g qq), since the Goldberger-Trieman rela-
tion, mq = g'qq f', is true in matter, in the chiral limit.
Therefore, we have used g' = g„qq(m'/mq)~/z in our
calculations. With g qq

——3.05, we have g = 2.46, if
(m'/mq) = 0.65. [See Eq. (2.10.]
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result for J(')(P2) is shown as a dashed line in Fig. 3.
Note that the position of the resonance may be found by
setting ReD(~)(P2) = 1—G v[ReK(~) (P )+J(~) (P2)] = 0,
or ReD( )(P ) = 1 —G~[ReKt )(P ) + J(')(P )] = 0.
Since ReK(~) (P ) and ReK('

)
(P2) are positive, they pro-

vide a downward shift in the resonance position of about
120 MeV [7].

In Fig. 4, we exhibit ReK(~) (P2), ImK(~) (P2),
ReK(')(P ), and ImK(')(P2). We can obtain some es-

timate of the modification of the resonance width by
forming R = ImK(' )(m'2)/ImK(~)(m2). Since we find
m' = 620 MeV, we have R = 0.65, which leads to
I"/I'~ 0.65. We also find that I'~ = 150 MeV and
I" = 97 MeV. [See Eqs. (3.1)—(3.5).]

Finally, in Fig. 5 we show values obtained for
ImC~(P2)/4 [solid line] and ImC(' )(P )/4 [dashed line].
Here, we clearly see the downward shift of the rho mass
and reduction of the width. It is useful to note that, for
P2 ( 0, we can approximate our results by the form [7]

0.8
CD

U

0.4
CL

early. A more precise characterization could be made by
replacing (P2/m2)I'~ in Eq. (3.3) by

P2 -
4

2-3/2 -
4 2- —3/2

P P
F, ,

L~ I

0 0.4 0.8 1.2
~P2(GeV)

FIG. 5. The solid line shows ImC(~)(P )/4 and correso-

ponds to the values of imC(~)(P )/4P shown in Fig. 2. The
dashed line is ImC('

) (P )/4, as calculated in this work. [The
value of m~ is 620 MeV, so that (m~/m~) = 0.81. We also
find I" = 97 MeV, so that I"/I' ) = 0.61.]

and

C(p) (P2) f2m2

4 P2- m2
P

(3 1) (3.4)

with F~ being a constant. One way to extract the value
of F~ is to evaluate

4 P2 —(m')' (3.2) C(p) (m') f2m'
Im

4
=

F, (3.5)

Thus, we have C(~)(0)/4 = f2 and C(*)(0)/4 = (f')2.
Values found for the various parameters are f~ = 0.235
GeV, m~ = 0.770 GeV, f' = 0.283 GeV, and m'
0.620 GeV. (These values are collected in Table I.) More
generally, we can write

C(.)(P') f2m2

P —m~+ie(P* —4m')m (
—', I',

P

and recall that f2 is equal to the value of ReC(~)(0)/4.
[See Eqs. (3.1), (3.2).] Using this procedure, we obtain
F~ = 150 MeV and F' = 97 MeV, as quoted above. We
also see that f'/f~ = 1.2. Our result for (m'/m~) = 0.80
is in accord with the result of Ref. [1]where the reduction
in the rho mass &om the vacuum value was found to be
18' (for p = p~sr).

It is also worth noting that, in the limit that F~ -+ 0,
we have

(3.3)

with a corresponding expression for C(')(P2)/4. Here,(s)
we have assumed that the width depends upon P lin-

C (P2) wf mb(P —m)4' P P P (3.6)

0.04-
and

CU

CL

-0.4

0.02—

I

0 0.4 0.8
P (GeV j

1.2

(3.7)

TABLE I. Properties of the rho meson in vacuum and in
nuclear matter. (The first set of values is taken from Ref. [7].)

FIG. 4. The solid line shows ImK(~) (P ) while the
dash-dotted line shows ImK( )(P ). The dotted line shows

ReK(~)(P ), while the dashed line shows ReK(' )(P ). The
small arrows denote the values of mp 0 59 GeV and

(m~) = 0.38 GeV [Here en~ i.s the rho mass at nuclear
matter density predicted in this work (m, ~ = 0.62 GeV).]

mq

p=0
0.770 GeV
0.235 GeV
150 MeV

302 MeV

p= pNM
0.620 GeV
0.282 GeV

97 MeV

mq = 196 MeV

Expt.
0.770 GeV

151.5+1.2 MeV
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IV. DISCUSSION

m(p) =m~~ 1 —C p

PNM )
(4.1)

with C = 0.18. (The authors quote an uncertainty in
the value of C of about 30% due to uncertainty in the
value of m and of 0~.) This reduction in the rho mass
is in accord with our result. In Ref. [2], the rho mass
at nuclear matter density is given as 530 MeV, which
represents a larger reduction than that obtained in [1]
and in our work.

Probably the greatest uncertainty in the sum-rule stud-
ies arises from the use of the finite-density factorization
approximation. For example, one has relations of the
form

16
((eV&~s& e)(e~"~s& e))p -—

9 (ee), (4.2)

We have presented a calculation of the modification of
the rho mass and width using our generalized version of
the NJL model. The results may be compared to those
obtained in /CD sum-rule studies. For example, in Ref.
[1] the result for the rho mass in matter is

whose validity is unknown [2). The authors of Ref. [2]
remark that if the four-quark condensates do not depend
upon density, but are given by their vacuum values (ob-
tained by use of the mean-field approximation), the rho
meson mass does not decrease in matter. A similar prob-
lem arises in the work of Jin et uL [4], where the results
for the scalar part of the nucleon self-energy are strongly
dependent upon the treatment of the density dependence
of the four-quark condensate. One disturbing feature
of these results is that one makes closest contact with
the self-energy of the nucleon used in relativistic nuclear
physics in the case the four-quark condensates are re-
placed by their vacuum values (as obtained in the mean-
field approximation). Given these uncertainties in the
/CD sum-rule calculation of density-dependent quanti-
ties, we believe it is valuable to apply other models in
the calculation of such quantities. One may hope that
experimental data will provide some guidance in these
matters [15].
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