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We derive closed form kaon-nucleon scattering amplitudes using the "quark Born diagram"
formalism, which describes the scattering as a single interaction (here the OGE spin-spin term)
followed by quark line rearrangement. The low energy I=O and I=1 S-wave KN phase shifts
are in reasonably good agreement with experiment given conventional quark model parameters.
For ki b ) 0.7 GeV, however, the I=1 elastic phase shift is larger than predicted by Gaussian wave
functions, and we suggest possible reasons for this discrepancy. Equivalent low energy KN potentials
for S-wave scattering are also derived. Finally we consider OGE forces in the related channels KA,
K'N, and K'6, and determine which have attractive interactions and might therefore exhibit
strong threshold enhancements or "Z'-molecule" meson-baryon bound states. We 6nd that the
minimum-spin, minimum-isospin channels and two additional K'6 channels are most conducive to
the formation of bound states. Related interesting topics for future experimental and theoretical
studies of KN interactions are also discussed.

PACS number(s): 13.75.Jz, 12.39.—x, 14.20.Jn, 25.80.Nv

I. INTRODUCTION

Kaon-nucleon collisions allow one to address many in-
teresting problems in nuclear and hadron physics [1]. (By
"kaons" we refer to the K+ = u8 and K = d8, generi-
cally K, as distinct &om the E antikaons K = 8u and
K = sd. ) Three familiar examples which we shall dis-
cuss below are (1) the origins of nonresonant "nuclear"
forces in a system distinct &om NN, (2) nuclear struc-
ture physics, using kaons as weakly scattered probes,
and (3) searches for possible exotic Z* baryon resonances
which couple directly to KN. More recently it has be-
come clear that an understanding of KN scattering in
nuclear matter is important in other areas, such as the
interpretation of strangeness production in nuclear colli-
sions and in two-kaon correlation measurements [2].

Elastic KN scattering is a natural system for the
study of nonresonant nuclear forces. Since the valence
kaon wave function contains an 8 antiquark which can-
not annihilate against the nonstrange nucleon state, di-
rect production of conventional baryon resonances is ex-
cluded. KN scattering is further simpli6ed by the ab-
sence of one-pion exchange, so one can study the Don-
resonant, non-OPE part of hadron scattering in relative
isolation. Theoretical studies of KN nuclear forces are
especially appropriate because there is already consider-
able experimental information on the elastic amplitudes
and two-body inelastic reactions such as KN ~ K'N
and KN -+ Kb, [1,3—5]. These experimental amplitudes
provide stringent tests for models of hadronic interac-
tions. The dominant S-wave elastic phase shifts are mod-
erately well established, and the higher partial waves up

to L=4 have been determined or estimated [5]. The basic
features of the elastic reaction are a strong repulsion in
the I = 1 S wave, a weaker repulsion in the I=O S wave,
and an important spin-orbit interaction which is evident
in the P waves. The important low energy behavior of
the I=O S wave, in particular the scattering length, is
unfortunately not yet very well known. The experimen-
tal situation should improve considerably with the devel-
opment of new hadronic facilities such as DA@NE and
KAON [6,7].

KN scattering also has applications in nuclear physics;
since the kaon-nucleon cross section is relatively small,
kaon beams can be used as probes of nuclear structure. It
would obviously be useful to understand the mechanism
and properties of the kaon-nucleon interaction for this
application. In view of this application one topic in this
paper will be the derivation of effective low energy KN
potentials &om the nonrelativistic quark potential model.

Another reason for interest in KN collisions is the pos-
sibility of producing Qavor-exotic Z' baryon resonances.
If discovered, these might be resonances with the quark
valence structure q s [8], where q = u or d. Such mul-

tiquark hadrons were widely predicted in the early days
of the quark model [9], but it now appears that mul-

tiquark basis states usually do not support resonances,
due to the "fall apart" effect [10,11]. The known ex-
ceptions are deuteronlike "molecule" states of hadron
pairs, which should perhaps be classified as unusual nu-

clear species. (Nuclei themselves are excellent examples
of the tendency of multiquark systems to separate into
hadronic molecules. ) In the meson-meson sector two KK
molecule states are reasonably well established [12], and
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there are several other meson-meson candidates [13]. In
the antikaon-nucleon sector the A(1405) is an obvious
candidate EN molecule, and there presumably are other
molecule states in channels with attractive interactions.
Both the elastic reaction KN -+ KN and inelastic pro-
cesses such as KN -+ K*N and KN —+ KA can be stud-
ied for evidence of exotic Z' baryon resonances. With a
realistic model of hadronic interactions we might reason-
ably expect to predict the quantum numbers of exotic
meson-baryon molecular bound states, should these ex-
ist.

In this paper we apply the "quark Born diagram" for-
malism to KNscattering. In this approach we assume
conventional nonrelativistic quark model wave functions
for the asymptotic hadrons, and calculate the Hamilto-
nian matrix element for scattering due to a single inter-
action between constituents in difFerent incident hadrons.
To form color singlet final states at lowest order one must
then exchange constituents. The full Born amplitude
is obtained by summing over all such processes coher-
ently. (Similar constituent exchange mechanisms have
been proposed for high energy hadron scattering [14],
and there is strong experimental evidence in favor of this
mechanism from large-t exclusive reactions [15].) This
nonrelativistic Hamiltonian matrix element is then com-
bined with relativistic phase space and kinematics to give
results for difFerential cross sections, partial wave ampli-
tudes and other scattering observables. In previous work
we derived the elastic scattering amplitudes for I=2 arm

[16], I=3/2 Km [17] and I=1 KK [16]. (These cases
were chosen because they are &ee of valence qq annihi-
lation processes, which are known to be important if al-
lowed. ) We found good agreement with experimental arm

and Km S wave phase shifts given conventional quark
model parameters. We have also applied similar tech-
niques to pseudoscalar-vector and vector-vector meson
channels [18],and the results may have important impli-
cations for meson spectroscopy [13]. In Appendix C of
[16] we presented a diagrammatic representation of these
techniques, with associated "Feynman rules" for the scat-
tering diagrams. KN elastic scattering is also annihila-
tion free and afFords a nontrivial test of the quark Born
formalism.

KN elastic scattering has previously been the subject
of numerous theoretical investigations. Meson exchange
models have been applied in several studies [19],but these
are difficult to justify fundamentally because the range
of heavier meson exchange forces ( 0.2 fm) is much
smaller than the minimum possible interhadron distance
for two distinct hadrons (= 1 fm) [11]. These models
typically have many kee parameters, which are not well
established experimentally and are fitted to the data.
Thus one is in efFect simply parametrizing experiment.
This type of model may be of theoretical interest as a
parametrization of more fundamental scattering mecha-
nisms which operate at the quark and gluon level, as it
may be possible to relate the predictions of these difFerent
approaches.

A quark and gluon approach to scattering using the
P matrix and bag model wave functions was proposed
by Jaffe and Low [20]. They suggested interpreting the

multiquark clusters of the bag model not as resonances,
but instead as the short-distance parts of hadron-hadron
scattering states. In principal this approach can be used
to predict phase shifts, but in practice it has mainly been
used to interpret experimental phase shifts in terms of
P-matrix poles. This approach has been followed for
KN by Roiesnal [21], who concluded that the KN data
could indeed be interpreted in terms of poles approxi-
mately at the energies predicted by the bag model, but
that the pole residues (coupling strengths to asymptotic
KN channels) did not agree well with predictions. A
more recent bag model calculation of KN scattering by
Veit, Thomas, and Jennings [22] used the cloudy bag
model, which combines quark fields (in the baryon) with
fundamental pseudoscalar meson fields in an efFective la-
grangian. This composite model leads to an I = 1 8-wave
phase shift and a scattering length which are very similar
to our result, but their I=O phase shift is much smaller
than experiment. Although this cloudy bag approach
gives promising numerical results, it does not provide us
with an understanding of the scattering mechanism at
the quark and gluon level.

Studies of the dominant S-wave KN scattering ampli-
tudes in terms of quark model wave functions and quark-
gluon interactions have been published by Bender and
Dosch [23] (adiabatic approach), Bender, Dosch, Pirner,
and Kruse [24] (variational generator coordinate method,
GCM) and Campbell and Robson [25] (resonating group
method, RGM). The large spin-orbit forces evident in
the KN P-wave data have also been studied using simi-
lar quark model techniques, first qualitatively by Pirner
and Povh [26] and later in detail by Mukhopadhyay and
Pirner [27] (using GCM). The assumptions regarding dy-
namics, the scattering mechanism, quark model wave-
functions and the parameters used in these calculations
are very similar to our assumptions in this paper. The
most important differences are that (1) our techniques
are perturbative and allow analytic solution, and (2) we

disagree about the size of the OGE contribution to KN
scattering. Specifically, we find that OGE alone sufBces
to explain the observed I = 1 KN scattering length,
whereas Bender et aL [24] conclude that OGE is too
small, and that a Fermi statistics efFect is dominant in
I = 1. Campbell and Robson [25] similarly found that
the experimental I=1 phase shift was larger than their
predictions, which were based on generalizations of Gaus-
sian wave functions and a full OGE and confining inter-
action.

II. CALCULATION OF KN AND RELATED
SCATTERINC AMPLITUDES

A. Hamiltonian and hadron states

Our technique involves a Born order calculation of the
matrix element of the Hamiltonian between asymptotic
hadron states in the nonrelativistic quark model. We
stress that the Born approximation is not necessarily a
bad one for several reasons. We have choosen a sys-
tem which is known to interact weakly, which has no
pion exchange contribution, and which most likely has
no s-channel resonance formation. Further support is
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Hscat = )
a,i(j

b(P;, ) 8, S,.
3mimj

provided by hadron spectroscopy where very little Bavor
mixing is evidenced. Comparison of previous perturba-
tive results for mar and Kvr phase shifts show excellent
agreement with experiment [16,17] and the nonperturba-
tive work of Ref. [12]. The Born amplitude for elastic
pp scattering also agrees very well with a full variational
resonating group calculation [18]. Finally, we do not use
the Born amplitude to make direct predictions, rather
we extract an effective interaction and iterate it, thereby
incorporating some of the nonperturbative physics.

In the KN case the dominant interaction was previ-
ously found by Bender et al. [24] to be the spin-spin
"color hyperfine" term. A similar conclusion has been
reached for the NN interaction [11,28]. Here we shall
adopt this approximation and neglect the other OGE and
confining terms. Thus, our scattering amplitude is pro-
portional to the matrix element of

between asymptotic KN states. (P; is the color matrix
for quark or antiquark i, which is A /2 for quarks and
—(AT) /2 for antiquarks. ) Although we shall quote re-
sults for arbitrary asymptotic hadron wave functions, we

shall specialize to Gaussian wave functions for our nu-

Inerical results, as these allow closed form derivation of
scattering observables. Our momentum space Gaussian
wavefunctions for the kaon and nucleon are conventional
quark model forms,

J rel
(t'kaon(prel) =

3/4p3/2 P 8p2

(mqPq —mqPq)

(m, + mq)/2

and

(pl+p&+p3 pl'p& p&'ps p3'pl))
(t'nucleon(P1 & P2 & P3) 3/2 3 P (4)

The parameters cr and P are typically found to be = 0.3—0.4 GeV in hadron phenomenology. These are relative mo-

mentum wave functions, and have an implicit constraint that the constituent momenta add to the hadron momentum.
In the full momentum space wave function there is an overall delta function that imposes this constraint;

@kaon(pq& Pq& Ptot) 4'kaon(prel) b(Ptot Pq Pq)

4'nucleon(pl&P2&P3& Ptot) (t'nucleon(pl& P2&3P) (bPttopi P2 P3)

The normalizations are

(s -(pl. )le~-(p-)) = ffff d. d.d'd. '. -( -p ;—p )ps( —pp.p") =d(p" p.,)-
aIld

(s„„,(.„(p,'„)~s,„.&.„(pq,q)) = fffffj dp, dp&dpsdp, 'p&'dp&'s'„„. „„(p&',p&', p&';,'„)
/~ ~ ~ 7)X 4 nucleon (Pl & P2 & P3 & Ptot )

= b(Ptot —Ptot) (8)

Since these state norrnalizations are identical to those
used in our previous study of Kx scattering [17] we can
use the relations between amplitudes and scattering ob-
servables given in that reference.

The color wave functions for the asymptotic hadrons
are the familiar color singlet states

Our spin-aavor states for the meson and baryon are
standard SU(6) states, but we have found it convenient
to write the baryon states in an unconventional manner,
as the usual quark model conventions are unwieldy for
our purposes. First, to establish our notation, the spin-
Qavor K+ state is

1
lmeson) = ) h„- ltt)

i,x=1,3
lK+& =

I lan+3-& —lu-'+&
I

.1 t'

and

lbaryon) = ) e;~k lijk) .
i,j,%=1,3 6

(io)

For quark model baryon states it is conventional to assign
each quark a fixed location in the state vector, as though
identical quarks were distinguishable fermions. One then
explicitly syrnmetrizes this state. Thus for example one
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writes the normalized 6+(8, = +3/2) state as

1
I&+(+8/2)) =

I
lu+u+d+) + Iu+d+u+) + Id+u+u+) I

(12)

and treats each basis state as orthogonal. Note, however,
that this is not the usual way to represent multifermion
states. In standard field theoretic usage each of these
basis states is identical to the others, to within an overall

I

phase. In this language the normalized b, +(+3/2) state
is simply

1
I&+(+3/2)) = l~+u+d+)

2

which we could equally well write as Iu+d+u+)/~2 or

Id+u+u+)/~2. The advantage of using field theory con-
ventions becomes clear in calculating nucleon matrix ele-
ments. For example, the usual quark model proton state
1S

IP(+1/2)) =
I
2lupu+d ) —Iupu dp) —Iu u+d+) +2lu+d up) —lupd+u ) —Iu d+up)

+2ld upu+) —
Id+urdu ) —Idpu u+) I

~18, (14)

and in comparison this state in field theory conventions
1S

f (KNIH„~ilKN);—:hy; b(Pj —P;) (16)

IP(+1/2)) = u+u+ d
lu+u d+) .

Use of the latter form, with all permutations of quark
entries allowed in matrix elements, reduces the number
of P -+ P terms from 81 (many of which are zero) to
4. Of course the results are identical, as these are just
diferent conventions for the same state.

B. Enumeration of quark line diagrams for KN

Now we consider KN scattering. As explained in
Ref. [16],we begin by determining the matrix element of
the scattering Hamiltonian (1). First we factor out the
overall momentum conserving delta function and then
derive the remaining matrix element, which we call hy;,

We will discuss one part of the calculation in detail
to explain the techniques, and then simply quote the
full result. Specializing to the spin up I = 1 case
K+P(+1/2)~ K+P(+1/2), we require the matrix el-

ement of the scattering Hamiltonian (1) between ini-

tial and final K+P states with color and spin-flavor
wave functions given by (9,10) and (11,15), respec-
tively. Since the kaon and proton states (11) and (15)
are each the sum of two terms, the full amplitude for
K+P(+1/2) ~K+P(+1/2) is a weighted snm of 16 sub-
amplitudes. We shall consider the subamplitude for

lu+i )(Iu+u+d )/~2) -+ luna )Iu+u d+), which we

call h&, , in detail for illustration.
We begin by constructing all allowed quark line dia-

grams and their associated combinatoric factors. First
we arrange the initial and final states with their normal-
izations on a generic scattering diagram,

Now we connect the initial and final lines in all possible ways consistent with Savor conservation. For the d quark
and the s antiquark this choice is ~~n~que. For the final meson s u quark, however, there are two choices for which
initial baryon's quark it originates Erom. Similarly the initial meson's u quark can attach to either of two final baryon
u quarks. Thus we have four quark line diagrams. We may iminediately simplify the diagrams; since the baryon wave
functions are symmetric, we may permute any two initial or final baryon lines and obtain an equivalent diagram. We
use this symmetry to reduce all diagrams to a "standard form" in which only the meson's quark and the upper baryon
quark are exchanged. The two choices for the initial baryon s spin up u+ quark are thus equivalent, and contribute an
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overall combinatoric factor of two. The 6nal baryon's quarks, however, give inequivalent diagrams, one being nonBip
[u+(K) m u+(P)] and the other spin Hip [u+(K) ~ u (P)]. (No polarization selection rules are being imposed yet,
only favor conservation. ) Thus our amplitude leads to the line diagrams

We next "decorate" each of these line diagrams with all possible single interactions (1) between a quark (or
antiquark) in the initial meson and a quark in the initial baryon. There are six of these per line diagram (two choices
in the meson times three in the baryon), so we have a total of twelve scattering diagrams to evaluate. However, in

this case all but one are trivially zero. Note that in the first line diagram we must Hip the spins of u and d quarks
in the initial baryon to have a nonzero contribution. This, however, is not part of our scattering interaction, which

operates between pairs of constituents in different initial hadrons. The S, S~ interaction either Hips a pair of spins in
different incident hadrons (through S+S or S S+ terms) or leaves all spins unchanged (through S,S,). Thus, the

transition in the Grst line diagram cannot occur through a single 8; S~ interaction. For the second diagram, however,
there is a single nonvanishing transition, in which the initial meson s u+ quark and the baryon s d quark interact
through the spin Hip operator;

8+ =
I

I

S
I

I

I

I

I

I

d+

C. Independent quark and gluon diagrams and their spin and color factors

Finally we require the spin, color, overall phase, and spatial factors associated with this and the other independent

diagrams. There are only four independent quark and gluon diagrams, since all others can be obtained &om these by
permutation of lines. These four diagrams are

Dg

I

I

I

I

I

(20)
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D2

I

I

I

I

I

I

I

I

I

I

L

(21)

D3 (22)

D4

I, ),(Dg) =+4/9, (24)

I, i„(D2) = —2/9,

The spin factor is simply the matrix element of S, S~
for scattering constituents i and j, evaluated between the
initial and final (qq)(qqq) spin states. This is 1/2 if both
spins i and j are antialigned and both fiip, +1/4 if the
spins are aligned and neither Hips, and —1/4 if they are
antialigned and neither Hips. All other cases give zero.
All spectator spins must not Hip or the overall spin factor
is trivially zero.

The color factor can be evaluated using the states (9),
(10) and standard trace techniques, as in (51) of Ref. [16].
The result for each diagram is

efficient of each diagram's spatial overlap integral. Thus,

hya = ~1& ~2& ~3) ~4

represents

&fi = ~1 lepace(D1) + tpz lepace(Dz) + ~s lepace(D3)

+ .I.,-.(D.) (29)

This notation is useful because the diagram weights (m;)
are group theoretic numbers that obey certain symme-

tries, whereas the spatial overlap integrals are compli-
cated functions that depend on the specific spatial wave

functions rather than the symmetries of the problem.
As an illustration, our practice subamplitude h&,. is

I, $,(Ds) = —4/9, (26) h~~ ——~2 (
—

)
.
(

——
~

.I.q . (Dm), (30)

I, ~,(D4) =+2/9. (27) (using the spin and color matrix elements given above),
which we abbreviate as

D. "Diagram weights" for KN scattering

We conventionally write the meson-baryon hy; matrix
elements as row vectors which display the n»merical co-

by~ —— 0, —,0, 0

This completes our detailed derivation of h& for the sub-
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process ltt+s-) (ltt+tt+"-)/~2) ~ ltt+s-) ltt+tt —"+).
Proceeding similarly, we have derived the weights for

the full KX elastic scattering amplitudes, given the
states (ll) and (15) and their isospin partners. These
are

b.f, (I=O)= 0, —,0, — (32)

and

1 1 1 1
hy; (I = 1) = 3' 18' 3' 18 (33)

For numerical estimates of these amplitudes we require
the spatial overlap integrals, which we shall evaluate ex-
plicitly with Gaussian wave functions.

E. Spatial overlap integrals

The spatial overlap integrals represented by the four
diagrams Dz. . .D4 may be determined using the di-

agrammatic techniques discussed in Appendix C of
Ref. [16]. These are formally 30-dimensional overlap in-

tegrals (three dimensions times ten external lines), but
twelve integrations are eliminated by external momen-
tum constraints and an additional nine are elixninated by
the unscattered spectator lines. This leaves a nontrivial
9-dimensional overlap integral for each diagrams We give
the initial meson a label A, with three-momentum also
called A and quark three-moxnentum a and antiquark
momentunl a, and we similarly label the initial baryon

B, the final xneson C, and the final baryon D. Since we

choose to evaluate these integrals in the c.m. frame we

use the momentum substitutions B = —A and D = —C.
We also introduce a nonstrange to strange quark mass ra-
tio p = mg/m, . With these substitutions the four spatial
overlap integrals are

8ma, 1 ( 2pA&, ( 2C
1»ace(Dl) =+ 2' s «dbl "b2 0'& I

2a
l

(t)c I
2a+

Sq 2' 1+p) 1+p
x Qrl (bl + A —C, b2) —A —bl —b2),

—2A
l

)t)~(bl) bg) —A —bl —bs)

(34)

8~~. 1 - - ( 2A i . ( 2pC~
I,i, „(D2) =+ z' s dbldcddl ))t)g

l
2c — —2C

l
()b&

l
2c —

l
)It)~(bl)c, —A —bl —c)

Sm~ (2n) s 1+p ) k I+pr
x()t)~(dl A C + bl + c —dl, A —bl c) (35)

(36)

8~~, 1 - ( 2pAI . ( 2pC)
I,p „(D3)—+ 2 p s dadbl dc P~

l

2a —
l P& l

2c —
l

4)z(a —A+ C, b2, —a —b2 —C)
Sm,'(2m)' (, 1+py q 1+p~

xy~(a, b„a—b, —C)—,

8+a, 1 „- ( 2pA ), ( 2pC l
I,~ „(D4) =+ 2'p s dadbldc p~ l

2a —
l Q l

2c —
l

p~(bl)c, —A —bl —c)
Sm2 (2n)s (, 1+p) ( 1+p)

x(t)&(A —C —a+ bl + c, a, —A —bl —c) . (37)

lsignature ( 1) (38)

Note that a diagram in nonstandard forxn, such as the
kaon's quark line crossing to the second baryon quark,
can have a (+1) signature; in the full hy; matrix element

There are many equivalent ways to write these integrals
which arise &om difFerent choices of the variables elimi-
nated by momentum constraints.

Note that the overall coeS.cients of these integrals are
positive, although the coefBcient of K„ t (1) is negative.
This is because there is an overall phase factor of (—1)
for each diagram D~. . .D4, due to anticommutation of
quark creation and annihilation operators in the matrix
element. Here we incorporate this phase, which we call
the "signature" of the diagram [16], in the spatial overlap
integrals. The signature is equal to (

—1)~, where N
is the number of fermion line crossings. For diagrams
Dq. . .D4 above N = 3, so the signature is

I

this is compensated by a change in sign of the color factor.
We explicitly evaluate these overlap integrals using the

Gaussian wave functions (2) and (4). For Gaussians the

integrals factor into products of three 3-dimensional in-

tegrals, and the results are all of the form

J.e .,(D, ) = '
eu exp (

—(A; —B'u)P,'
Sm2 (2~)s

(»)

where P, is the modulus of each hadron's three-

momentum in the c.m. frame, p = cos(8, ) where 6),

is the c.m. scattering angle, and the constants g, , A;
and B; are functions of a, P, and p. B; ) 0 implies for-

ward peaked scattering and B; & 0 is backward peaking.
The pure exponential dependence in P, and P, p, is

a consequence of the Gaussian wave functions and the

contact interaction. Introducing the ratio g = (n/P),2
these constants are
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gg —1) (4o)

2p + 4p + (3g + 2)
6(1+p)2~2

(41)

Bg ——Ag, (42)

( 12g
n2=17 (43)

(40g+ 3)p2+ (32g+ 6)p+ (2lg2+ 28g+ 3)
6(7g+6)(1+ p) a (44)

(—8g + 1)p + 2p+ (7g2 + 8g + 1)
2(7g+ 6)(1+p)2a2 (45)

3/2

kg+3 (46)

(log+ 6)P'+ (8g+»)P+ (7g+ 6)
6(g+3)(1+p) ~ (47)

(—g + 1)p + 2p + (g + 1)
(g+ 3)(1+p)'~' (48)

( )s/2

E(2g+ 3)(g+ 2) &

(49)

A4 ——(20g +40g+3)p + (4g + 14g+6)p+ (5g +10g+ 3)
(2g + 3) (g + 2) (1 + P) o'

(50)

(—4g —8g+ 1)P'+ (—4g' —6g+ 2)P+ (g'+ 2g+ 1)
2(»+ 3)(g+ 2)(1+p)'~' (51)

These results were derived at MIT and ORNL [29] in-
dependently ming MAPLE and MACSYMA algebra pro
grams, respectively.

Some important properties of these diagrams, specifi-
cally which are forward peaked or backward peaked pro-
cesses, and which diagrams dominate at high energies,
can be inferred by inspection. The leading diagram in
the high energy limit is Dq, which is a forward peaked
exponential in t. The other diagrams are exponentially
suppressed in 8 and are also forward peaked, with the
single exception of D4. Note that for plausible values of
g 1 and p 0.6 this diagram leads to a backwards
peak (B4 ( 0). These properties have a simple com-
mon origin; since we are scattering through a hard delta
function interaction, the only angular dependence comes
from overlap suppression due to the spectator lines. A
spectator line which is required to cross into the other
hadron gives an especially large suppression at high en-
ergies and small angles. The amplitude for a crossing
spectator line is maximum for backscattered hadrons; in
this case the crossing spectator is actually continuing to
move in a new hadron with the same momentum vector
as the hadron it originally resided in.

The first diagram Dq has no crossing spectators, so it is
not suppressed in s; only the hard scattered constituents
are required to cross into different hadrons. In diagrams
D2 and Ds one spectator line is required to cross to a dif-
ferent hadron, so there is some suppression with increas-
ing s. Since boo spectators do not cross, they dominate
the angular dependence, and the scattering is forward
peaked. Diagram D4, the backward peaking process, is
qualitatively difFerent because two spectator lines are re-
quired to change hadrons, and only one spectator does
not cross. In this case "backwards" meson-baryon scat-
tering actually corresponds to forward scattering for the
two crossing spectator lines, which is obviously preferred.
This description attributes backward peaks, which might
otherwise appear counterintuitive, to the obvious mech-
anism of "minim»~ spectator suppression" at the quark
level.

F. KN phase shifts and scattering lengths

Given the diagram weights (32)—(33) and our results
(40)—(51) for the Gaussian overlap integrals, we have
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completed the derivation of the Hamiltonian matrix ele-
ment hf; for KN elastic scattering. Since we have used
the same normalization for KN states as in our previous
discussion of Km scattering [17] we can use the same re-
lations derived there to relate hf, to scattering variables.
First we consider the elastic phase shifts, which are given
by

and

4a, MKMN 1 ( 12g

3m' (Ma + MN ) 6 (7g + 6 j
12g

E(»+ 3)(g+ 2) )
(56)

gKN & c m .K. N bKNP ( )d
(@ @ )

yg z P v

Using the integral f e "Pi(IJ,)dp, = 2i~(b), we find

4

xi'(B;P~ ),

(s2)

(s3)

The basic features of the low energy KN interaction, a
repulsive I = 1 S wave and a repulsive but less strong
I=O S wave, are already evident in these formulas. (The
parameter g = (a/P)~ is constrained by quark model
phenomenology to be comparable to unity. ) Detailed nu-

merical results for the scattering lengths and phase shifts
and a comparison with experiment are presented in the
next section.

where one specifies the isospin state I = 0 or I = 1
through the choice of the diagram weights (m;).

As we approach the KN threshold the S-wave phase
shift is asymptotically linear in P, , and the coefficient
is the scattering length al. Since the exponential and the
io Bessel function are both unity in this limit, we recover
a relatively simple result for the KIV scattering length,

44e, MgMg ).
3m2 (Mg + Mg) . - (s4)

40., Mg M~
3mq (M~+ MN)

1 1 & 12g ) 1 f 6
x — + —

i
+ —p3 18 E7g+ 6) 3 Eg+ 3)

1 t' 12g
18 i(2g+ 3)(g+ 2) p

(ss)

Since the coefficients (g;) are relatively simple functions,
we can write these scattering lengths as simple functions
of o., /mz, p = m~/m„ the meson-baryon relative scale
parameter g = (n/P)2 and the physical masses M~ and
MN. The results are

III. COMPARISON WITH EXPERIMENT

A. Scattering lengths

Before we discuss our numerical predictions we first
review the status of the experimental scattering lengths.
Since there are unresolved disagreements between anal-

yses in the I = 0 channel, we have compiled relatively
recent (since 1980) single-energy S-wave phase shifts for
our discussion. These are in chronological order, Martin
and Oades [30] (Aarhus and UC London, 1980); Watts et
aL [31] (QMC and RAL, 1980); Hashimoto [32] (Kyoto
and VPI, 1984); and Hyslop et al. [5] (VPI, 1992). The
I = 1 data set analyzed by Amdt and Roper [33] (VPI,
1985) was incorporated in the 1992 VPI simultaneous
analysis of I = 0 and I = 1 data, so we shall not con-
sider it separately. The energy dependent parametriza-
tions of Corden et al. [34] and Nakajima et ut. [35] are
not included in our discussion.

In Fig. 1 we show these experimental I = 0 and I = 1

S-wave phase shifts versus P, = lP, l. The linear low

energy behavior which determines the scattering length
is evident in the I=1 data, and Hyslop et al. cite a fitted
value of ai N& ———0.33 fm. Previous analyses (summa-
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FIG. 1. Recent experimental I = 0, 1 KN
S-wave phase shifts. Inelastic thresholds are
also shown.
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rized in [1] and [5]) have given values between —0.28(6)
fm [36] and —0.33 fm [5,37]. A more useful way to present
the S-wave phase shift data is to display bsI/P, versusPz; the intercept is the scattering length, and the slope
at intercept determines the effective range. In Fig. 2 we
show the S-wave phase shifts in this manner; an I=1
scattering length of about —0.31(1) fm is indeed evident,
which we shall take as our estimated experimental value.

Unfortunately the I=O scattering length is much less
well determined, as is evident in Figs. 1 and 2. Previous
(favored) solutions up to 1982 are summarized in Table
2.3 of [1], and range between +0.02 fm and —0.11+0'04
fm. There appear to be two sets of low energy values
in the data of Fig. 1, a smaller phase shift from the
Aarhus-UCL and QMC-RAL collaborations and a larger
one &om &om the Kyoto-VPI and VPI analyses. Be-
low P, = 0.4 GeV the Kyoto-VPI and VPI results
are larger than Aarhus-UCL and QMC-RAL by about
a factor of two. The VPI group actually cite a scat-
tering length of af~o = 0.0 fm, although this requires
rapid low energy variation below the first experimental
point [compare their Fig. 1(a) with the I=1 phase shift
in their Fig. 2(a), which is constrained by experiment
at lower energy and shows the expected gT& b oc P,
S-wave dependence]. Since the I=1 phase shift is close
to linear for P, ( 0.4 GeV (k~ b ( 0.7 GeV), we will
assume that the zero I=O scattering length quoted in [5]
is an artifact of their fit, and that the actual I=O phase
shift is approximately linear in P, for P, & 0.4 GeV.
We can then read the I=O scattering length from the in-
tercept in Fig. 2. From the figure we see that a naive
extrapolation to threshold leads to scattering lengths of
about —0.09(1) fm and —0.17(2) fm, respectively, from
the two sets of references. In summary, the experimental
phase shifts shown in Fig. 2 suggest to us the scattering
lengths

Vfe emphasize that the I=O values are our interpretation
of the data from Fig. 2, and the references cited quote
smaller scattering lengths that we believe the data does
not support. As the values of the I=O scattering length
and low energy phase shifts are controversial, an accurate
determination should be a erst priority at a kaon facility.

To compare our predictions with experiment we 6rst
use a "reference parameter set" with conventional quark
model parameters. The hyperfine strength is taken
to be a, /m2 = 0.6/(0. 33)z GeV 2, and the non-
strange to strange quark mass ratio is p = m~/m, =
0.33 GeV /0. 55 GeV = 0.6. The remaining parameter
in the scattering length formulas is g = (o./P)2, the ra-
tio of baryon to meson width parameters squared. These
parameters are rather less well determined phenomeno-
logically. For baryons, values in the range a = 0.25—0.41
GeV have been used in nonrelativistic quark model stud-
ies [38—40]. Isgur and Karl [41] originally used a = 0.32
GeV for spectroscopy, but Copley, Karl, and Obryk [42]
had earlier found that the photocouplings of baryon res-
onances required a somewhat larger value of a = 0.41
GeV, which may be a more realistic estimate [38,39) be-
cause it is less sensitive to short-distance hyper6ne ma-
trix elements. This larger value was also found by Koniuk
and Isgur [43] for baryon electromagnetic transition am-
plitudes. Here we take o. = 0.4 GeV as our reference
value. For mesons, studies of various matrix elements
have led to values of P = 0.2—0.4 GeV [39). In our pre-
vious study of I=2 mm scattering we found a best 6t to
the S-wave phase shift data with P = 0.337 GeV. Here
we use a similar P = 0.35 GeV as our reference value;
if the quark Born formalism is realistic we should use
essentially the same meson parameters in all reactions.

With our reference parameter set and physical masses
M~ ——0.495 GeV and MN ——0.940 GeV, our formulas
(55) and (56) give

I=0(expt. )
Aarhus —QMC —RAL —UCL

= —0.09(l) fm,

afNz(expt. ) = —0.31(1) fm;

and

al z(ref. set) = —0.35 fm (58)

a~~(expt. )
Kyoto —VPI

= —0.17(2) fm . (57)
ai 0(ref. set) = —0.12 fm .

In view of our approximations, the parameter uncer-
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plotted to show scattering lengths.

-Q 4 I I I I I I I I

0.2 0.4

p
' {Gev')

0.6 0.8



1176 T. BARNES AND E. S. S%ANSON

B. S-wave phase shiSs

The S-wave KN phase shifts predicted by (53) with
0 given the "reference parameter set" cr, /m2

0.6/(0. 33)2 GeV, p = m~/m, = 0.6, cr = 0.4 GeV, and

P = 0.35 GeV are shown as dashed lines in Fig. 4. As
we noted in the previous section, this parameter set gives
reasonable scattering lengths, although the I=O scatter-
ing length is not yet very well established experimentally.

At higher energies the reference parameter set predicts
an I=1 phase shift that retreats more quickly with energy
than is observed experimentally; in Fig. 4 we see a rapid

0.8 I I I
I

I

KN/ KN

0 1

0.2

0.5 1.5
a/P

2.5

FIG. 3. Ratio of S-wave KN scattering lengths vs wave-
function parameter u/P.

tainties, and the uncertainties in the I=O data, these
scattering lengths compare rather well with experiment.
Note that our conclusions diH'er from those of Bender et
aL [24], who reported that the OGE contribution to I=1
scattering was too small to explain the observed S-wave
phase shift. We discuss this disagreement further in the
Appendix.

Now suppose we attempt to fit our estimated experi-
mental values of the scattering lengths (57) by varying
our parameter set. It is useful to fit the ratio al~ o/al +i,
since this involves only p and the width parameter g.
We have fixed p = 0.6, and in any case we find that
al++z/al++i is insensitive to p, so only g remains as an
important parameter. In Fig. 3 we show the predicted
ratio of KN scattering lengths as a function of n/P. The
two experimental ratios assuming the values in (57) are
also indicated. The larger ratio a&++~/al i = 0.17/0.31
requires a/P = 1.91, rather far Rom typical quark model
values. Fitting the smaller ratio a&++~/al i ——0.09/0. 31
requires o./P = 1.02, which is more representative of
quark model parameters. An accurate determination of
the I=O KN scattering length through direct low energy
measurements, rather than by extrapolation, would be a
very useful experimental contribution; this would allow
a more confident test of our results and those of other
models (as shown for example in Table 6-4 of Hyslop
[37]).
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FIG. 4. I = 0, 1 KN S-wave phase shifts from two param-
eter sets. Dashed lines = reference set, solid lines = Stted
set.

departure of theory and experiment above P, = 0.4
GeV (ki b = 0.7 GeV). This is near the opening of the
inelastic channels Kb and K N, as indicated in Fig. 4.
Two possible reasons for this discrepancy are (1) inelas-

tic e6ects of the channels XA, K'N, and K'4, which
should become important just where theory and experi-
ment part, and (2) short-distance components in the me-

son and baryon wave functions that are underestimated
by the smooth Gaussian wave functions (2) and (4).

Although inelastic eKects are certainly important ex-
perimentally [3,4), the most important low energy inelas-
tic process is P wave Kb, p-roduction [4]. Hyslop et al.

[5] similarly find relatively small inelasticities in the I=1
EN S-wave, with g & 0.9 for P, & 0.68 GeV. At the
end of this range our predicted phase shift given the refer-
ence parameter set is only about half the observed value,
so it appears unlikely that the discrepancy is mainly due
to inelastic channels.

A second possible reason for the discrepancy is a de-

parture of the hadron wave functions from the assumed

single Gaussian forms at short distances; both the meson

qq states and the baryon qq substates experience attrac-
tive short-distance interactions from the color Coulomb
and hyperfine terms (for spin singlets), which will lead to
enhancements of the short-distance components of their
wave functions and increased high energy scattering am-

plitudes. If this is the principal reason for the discrep-

ancy, we would expect a global fit to the S-wave phase
shifts to prefer a smaller hadron length scale. In Fig. 4

we show the result of a three-parameter 6t to the full

1992 VPI I=0,1 energy independent S-wave data set [5],
letting a, /m2, cr and P vary and holding p = 0.6 fixed.

The fit is shown as solid lines, and is evidently quite
reasonable both near threshold and at higher energies.
The fitted parameters are a, /m = 0.59/(0. 33) GeV
o; = 0.68 GeV and P = 0.43 GeV; the hyperfine strength
is a typical quark model result but the width parame-
ters a and P are about 1.5 times the usual quark model

values. Thus, a fit to the S-wave VPI data using single

Gaussian wave functions requires a hadron length scale
about 0.7 times the usual scale. This result is largely
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independent of the data set chosen, since it is driven
by the large I=1 phase shift, which shows little varia-
tion between analyses. Evidently the predicted S-wave
phase shifts at higher energies are indeed very sensitive
to the short-distance parts of the wave function; this sup-
ports our conjecture that the discrepancy at higher ener-
gies is an artifact of our single Gaussian wave functions.
A calculation of these S-wave phase shifts using realis-
tic Coulomb plus linear plus hyperfine wave functions is
planned [38] and should provide a very interesting test of
the quark Born formalism.

C. Higher-I partial waves, spin-orbit
and inelastic ePects

In addition to the S-wave phase shifts, higher-L KN
elastic phase shifts and properties of the inelastic reac-
tions KN w K'N, KN + KA, and KN + K'6 have
been the subjects of experimental investigations. These
studies have found important effects in the L )0 partial
waves which are beyond the scope of the present paper.

One especially interesting efFect is a remarkably large
spin-orbit interaction in the I = 0 KN system; the L=l
states have a large, positive phase shift for J=l/2 and a
weaker, negative phase shift for J=3/2 (see [5] and refer-
ences cited therein). This spin-orbit interaction cannot
arise in our quark Born amplitudes given the approxima-
tions we have made in this paper; since we have incor-

I

porated only the spin-spin hyperfine interaction in single
hadronic channels, our phase shifts (53) are functions of
the total hadronic I and S but not J. Some but not
all of this spin-orbit interaction may simply require in-
corporation of the OGE spin-orbit term; Mukhopadhyay
and Pirner [27] found that the quark spin-orbit interac-
tion was sufEcient to explain the sign and magnitude of
some of the weaker KN spin-orbit forces, but that the
I = 0, J=l/2 phase shift was much too large to be ex-
plained as an OGE force. The strong KN spin-orbit
forces might conceivably be due to couplings to inelas-
tic channels; since the available mixing states and their
couplings to KN are J-dependent, they might lead to
effective spin-orbit forces at the hadronic level, even if
we do not include spin-orbit forces at the quark level.
We hope to treat this interesting possibility in a future
study of coupled channel effects using the quark Born
formalism.

Since we do not have a model of the large spin-orbit ef-

fect it is not appropriate to include a detailed discussion
of our predicted amplitudes and cross sections at higher
energies, where higher partial waves are important. In
the interest of completeness, however, we will briefiy dis-
cuss our predicted difFerential cross section at high en-

ergy, since we previously noted that we found an expo-
nential in t in I=2 nx scattering, reminiscent of diffrac-
tion in magnitude but not in phase [16]. The difFerential
cross section in this unequal mass case is related to the
hf; matrix element (29) by

do.—= 4x
dt

-2
s —(M~ —Mg )

ibad;i
82 8 —MN+MK 2 8 MN —MK 2

(60)

dO 4' (la 2lim —= '
wz exp(Aqt) .~~~ dk gm4

q
(61)

Thus we again find an exponential in t at high energy,
with a slope parameter (41) that is numerically equal to

For KN scattering in the high energy limit only the con-
tribution from diagram Dq (20) survives, and we find

I

the high energy limit, since it has mz ——0; unfortunately
there is no I=O high energy data to compare this pre-
diction with. A serious comparison with high energy
scattering will presumably require the use of wave func-
tions with more realistic high momentum components as
well as the incorporation of inelastic channels, which may
strongly affect the elastic amplitudes.

6 = Ag ——3.7 GeV (62) IV. KN EQUIVALENT POTENTIALS

given our reference parameter set. This is similar to the
observed difFractive I=1 KN slope parameter [44] of

b(expt. ) —5.5 —5.9 GeV (63)

The normalizations of the theoretical and experimental
I=1 high energy differential cross sections, however, dif-
fer by about an order of magnitude, and are 1.8 mb
GeV 2 (reference parameter set) versus 15 mb GeV
(experiment [44]). We noted a similar tendency for the
reference parameter set to underestimate high energy am-
plitudes in our discussion of the S-wave phase shifts,
which we attributed to the single Gaussian wave func-
tion approximation. One interesting prediction is that
I=O KN scattering should have no diffractive peak in

SuKciently close to threshold our quark Born scatter-
ing amplitudes can be approximated by local potentials.
These potentials are useful in applications such as mul-
tichannel scattering and investigations of possible bound
states, which are easiest to model using a Schrodinger
equation formalism with local potentials. There are
many ways to define an equivalent low energy potential
kom a scattering amplitude such as hy;., several such
procedures are discussed in [18,45] and in Appendix E of
[16]. Of course efFective potentials extracted using differ-
ent definitions can appear to be very different functions
of r although they lead to similar low energy scattering
amplitudes.

One approach to defining an equivalent potential is to
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derive a potential operator V ~(r) which give the scatter-
ing amplitude hy; in Born approximation. This "Born-
equivalent potential" technique is discussed in Ref. [45]
and in Appendix E of [16];it has been tested on the OGE
interaction, &om which one recovers the correct Breit-
Fermi Hamiltonian at O(v2/c2) [45]. To derive the Born-
equivalent potential we reexpress our scattering ampli-
tude in the c.m. frame as a function of the transferred
three-momentum q = C —A and an orthogonal variable
'P = (A+ C)/2. We then expand the scattering ampli-

tude in a power series in 'P and equate the expansion to
the Born expression for nonrelativistic potential scatter-
ing through a general potential operator V,~(r), which
may contain gradient operators. The leading term, of
order Po, gives the Born-equivalent local potential V (r)

In this meson-baryon scattering problem our Hamilto-
nian matrix elements are of the form

Sea, 1
4

hy; = ', , ) m;q; exp —(A; —B;p)P,

(64)

Making the required substitutions P, = 'P + P/4
and P, p, = 'P2 —q /4 and Fourier transforming with
respect to jas in [16]gives the equivalent low energy KN
potential

one would expect for a short range "nuclear" core. The
potentials at contact are rather similar in this formalism,
and the relative weakness of I=O scattering is a result
of its shorter range. This is an effect of the backward

peaking diagram D4, which leads to a very short range
potential with a large value at contact, and carries higher

weight in I=O scattering.
Although these Born-equivalent potentials are conve-

nient for use in a meson-baryon Schrodinger equation,
the actual KN potentials are so strong that they repro-
duce some features of the interaction only qualitatively.
For example, the Born diagrams give an I=1 scatter-
ing length of —0.35 fm, but the Born-equivalent poten-
tial (65) for I=1 in the Schrodinger equation for KN
leads to a scattering length of only about —0.22 fm. The
discrepancy is due to higher order effects of Vz&~(r) in

the Schrodinger equation; we have con6rmed that the
ratio of hy; and V~~(r) scattering lengths approaches
unity in the small a, limit. In a multichannel study one

might modify VIt,-~(r) (65) to give the input hy, scat-

tering lengths, perhaps through a change in the overall

normalization, as a way of providing a more realistic po-
tential model of the quark Born amplitudes.

V. RESULTS FOR KLL, K'N, AND K'lL;
PROSPECTS FOR 2' MOLECULES

xexp —r A., +g; . 65

Thus our Born-equivalent meson-baryon potentials are
sums of four Gaussians, one from each inequivalent quark
Born diagram, weighted by the diagram weights of that
channel.

The potentials for I=O and I=1 with our reference
parameter set o., = 0.6, mq = 0.33 GeV, p = mq/m, =
0.6, a = 0.40GeV, and P = 0.35GeV are shown in Fig. 5.
They are repulsive and have a range of about 0.3 fm, as

The channels KE, K'N, and K'6 are interesting in

part because they may support molecular bound states
if the effective interaction is sufficiently attractive. In
contrast the low energy KN interaction is repulsive in

both isospin states. These "Z* molecules" would appear
experimentally as resonances with masses somewhat be-

low the thresholds of 1.7 GeV, 1.85 GeV, and —2.1
GeV. Even if there are no bound states, attractive inter-

actions will lead to threshold enhancements which might

be misidenti6ed as Z' resonances just above threshold.
Plausible binding energies of hadronic molecules can be

estimated from the uncertainty principle and the mini-

mum separation allowed for distinct hadrons as E~
1/(Mh ~ x 1 fm ) 50 MeV. In comparison, the best es-
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FIG. 5. KN equivalent potentials. Param-
eters are o., = 0.6, mq ——0.33 GeV, p = 0.6,
n = 0.40, and P = 0.35 GeV.
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tablished molecules or molecule candidates have binding
energies ranging from 2.2 MeV (the deuteron, which has a
repulsive core) through 10—30 MeV [the fs(975), ao(980),
and A(1405)]. [The fs(1710), with a binding energy rel-
ative to K'K' of about 75 MeV, appears plausible but
is a more controversial candidate [13].] Finally, the state
f2(1520) seen by the Asterix [46], Crystal Barrel [47], and
Obelix [48] collaborations in PP annihilation is an ob-
vious candidate for a nonstrange vector-vector molecule,
with a (poorly determined) binding energy relative to pp
threshold of perhaps 20 MeV.

Several candidate Z' resonances which might be
meson-baryon molecule states have been reported in
KN partial wave analyses. The 1986 Particle Data
Group compilation [49] (the most recent to review the
subject of Z' resonances) cited two I=O candidates,

[Zo(1780), 2 ] and [Zs(1865), 2 ] and four I=1 pos-

sibilities, [Zq(1725), z ], [Zq(1900), 2 ], Zq(2150), and
Zq(2500). However, the evidence for these states is not
strong, and the PDG argue that the standards of proof
must be strict in this exotic channel. For this reason
these states were only given a one star "Evidence weak;
could disappear. " status. The 1986 PDG also noted that
"The general prejudice against baryons not made of three
quarks and the lack of any experimental activity in this
area make it likely that it will be another 15 years be-
fore the issue is decided. " The 1992 PDG compilation
[50] makes a similar statement, with "15 years" revised
to "20 years. "

In their recent analysis of the data Hyslop et al.
[5] summarize some previous claims and report ev-

idence for "resonancelike structures" [Zo (1831),2 ],
[Zo(1788), z ], [Z~(1811), 2 ], and [Z~(2074), 2 ]. The
negative parity candidates Zs(1788) and Zq(2074) have
quantum numbers and masses consistent with 8-wave
K'N and K'4 molecules, respectively. We would not
normally expect P wave molecule-s; odd-L is required to
couple to positive panty KN channels, and the centrif-
ical barrier suppresses binding due to these short range
forces. However, threshold effects which resemble reso-
nances might arise in the full multichannel problem, and
the very strong spin-orbit force evident in the Poq and Pos
KN partial waves may be sufhcient to induce binding in
some channels. A clarification of the status of Z' candi-
dates through the determination of experimental ampli-
tudes for the processes KN ~ K'N, KN + KA, and
KN + K*A in addition to the elastic KN reaction will
be an important goal of future studies at kaon factories.

All the S-wave (I, J+) quantum numbers, in which
molecule bound states are a priori most likely, are as
follows;

K'6( 2.0—2.1 GeV):
I' 5-l

)
f 3

3
"i'2 )' '

/, 5-l

t'

2 )

K~~ 2
E '2) +3, —1)+3, —1 (66)

a = —038 fm. (67)

-3, +1, -3, +1 (68)

a =+0.13 fm. (69)

( 3lK'Ni1, —i= — +7, +1, —5, 0'2) 27 (70)

a = —0.08 fm .

( 1) 1K'N
I

1, —
I

= — + 26, +5, +2, —3
g '2) 54

a = —0.39 fm . (73)

We can use our detailed model of meson-baryon scat-
tering in the (qs)(qqq) system (q = u, d) to identify chan-
nels which experience attractive interactions as a result
of the color hyperfine term. These we again show as
weight factors which multiply each of the four diagrams
Dq. . .D4 Sinc.e the overlap integrals these weights mul-

tiply are all positive and. of comparable magnitude, the
summed weight can be used as an estimate of the sign and
relative strength of the interaction in each channel. Pos-
itive weights correspond to a repulsive interaction. Our
results for the hy, "diagram weights" for all Kb„K'N,
and K'b, channels in (I, St,t) notation are given below.
We also give the numerical values we find for the scatter-
ing length in each channel given our reference parameter
set and masses M~ = 0.895 GeV and M~ ——1.210 GeV:

K&(=16—17«V):
~

2, — ~;~ 1, —( 3

q
'2 ) '

E
'2

K'N] 0, —
~

=-3 1
g'2) 9 +1, +1, i1, 0 (74)

K N( 1.75—1.85 GeV): ( 3 ) (
7 j )

a = —0.22 fm .

( 3 i ( K'N/0, —/= — 4 +5 4
E '2) 18 (76)
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a = +0.15 fm . (77) and

K'4
~

2, —
~

= — +1, —1, —1, +1
5)
2) 3

a = +0.14 fm .

K'bi2, —i= — +11, —1, —1, —9
( 31

~ '2) 18

a = -0.20 fm .

(K'b,
i

2, —
i

= — +7, +1, +1, +3

a = —0.86 fm .

K*S(1,S...) = -- K'n(2, S...)

( 51K'x~1, —
~

=-'2) 9

(78)

(79)

(8o)

(s1)

(82)

(83)

(s4)

(85)

K*A:

although their weights sum to zero, variations in the de-
tailed overlap integrals lead to attractive OGE-hyper6ne
forces in these two channels as well.

For our reference parameter set we 6nd no molecular
bound states; the attractive forces are too weak to induce
binding. The experimental situation at present is rather
confused; some references claim evidence for resonances
in several channels (see for example [5,32,37]), whereas
other references such as [30) and [31] conclude that the
same phase shifts are nonresonant. Our results do not
support the most recent claims of resonances [5], since
the S-wave quantum numbers of our attractive channels
do not correspond to those of the negative parity can-

didates [Zo(1788), 2 ] and [Zq(2074), 2 ]. However, our
negative result may be an artifact of our approximations,
including the neglect of spin-orbit eEects and couplings
between channels. The spin-orbit eKects are known &om
experiment to be very important, and might be sufficient
to lead to Z*-molecule bound states or strong threshold
enhancements in the attractive channels. Our negative
result is based on strong assumptions on the form of the
interaction; this should be relaxed in future theoretical
work, and should not be used to argue against experi-
mental searches for possible Z' meson-baryon molecules.

a = —005 fm. (86) VI. SUMMARY AND CONCLUSIONS

( 3&K'b, i1, —[=-
( '2) 54

—11 +1 +1 +9 (s7)

a = +0.07 fm . (88)

—7, -1, -1, -311 1

2) 27

a = +0.29 fm . (90)

K6: 311—

K*X:
/

0, —
/

K'A: t'

2)
The two exceptions to this rule are the K'4 channels

K'4:
/

2, —
/

Evidently attractive forces arise &om the OGE spin-spin
interaction in the minimum-spin, minimum-isospin chan-
nels,

In this paper we have applied the quark Born diagram
formalism to KN scattering. In this approach one calcu-
lates hadron-hadron scattering amplitudes in the nonrel-
ativistic quark potential model assuming that the ampli-
tude is the coherent sum of all OGE interactions followed

by all allowed quark line exchanges; this is expected to be
a useful description of reactions which are &ee of qq an-
nihilation. The model has few parameters, here n, /m2,

p = m~/m, and the hadron wave-function parameters,
and with Gaussian wave functions the scattering ampli-
tudes can be derived analytically. The model was previ-
ously applied to I=2 arm and I=3/2 Kvr scattering with
good results.

KN scattering is an important test of this approach
because it is also annihilation-free (at the valence quark
level) and the meson and baryon wave-function parame-
ters and the interaction strength are already reasonably
well established. Thus there is little freedom to adjust
parameters. Qe hand good agreement with the experi-
mental low energy I=O and I=1 phase shifts given stan-
dard quark model parameters. (The experimental I=O
scattering length is usually claimed to be very small; we

disagree with this interpretation of the data and argue in
support of a larger value. ) A resolution of the disagree-
ments between diferent I=0 KN phase shift analyses,
especially at very low energies, is an important task for
future experimental work. Hyslop [37] also suggests ad-
ditional experimental work on the I=O KN system. A

proposal for studying KN scattering at low energy at the
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DAPHNE machine has recently been made [51].
At higher energies we find that the single Gaussian

9-wave phase shifts fall with energy more quickly than
experiment given standard quark model paralneters; we
attribute most of this effect to departures of the hadron
wave function &om single Gaussians at short distances,
perhaps in response to the attractive color hyperfine in-
teraction. We have confirmed that a smaller hadronic
length scale (about 0.7 times the usual nonrelativistic
quark potential model scale) gives 8-wave phase shifts
which are in good agreement with experiment at all en-
ergies.

We have investigated the possibility of Z'-molecule
meson-baryon bound states by extending our calculations
to all channels allowed for KA, K'N, and K'Q. Al-
though we do find attractive interactions in certain chan-
nels, in no case is the corresponding interhadron poten-
tial sufBciently strong to form a bound state. Of course
this result may be an artifact of our approximations, in
particular the assumption of keeping only the spin-spin
color hyperfine term and the single channel approxima-
tion. The effect of relaxing these approximations would
be a very interesting topic for future study.

There are additional effects in the I )0 KN system
which are known to be important experimentally, which
are not incorporated in our calculations of single channel
color hyperfine matrix elements. The most important of
these is a very large spin-orbit force, which it has not been
possible to explain as an OGE interaction [22,27]. Both
this spin-orbit interaction and the S' candidates may be
strongly afFected by coupled channel effects, which we
plan to investigate in future work. Since much is already
known experimentally about the reactions KN ~ K'N
and KN ~ Kb, , it should be possible to test predictions
of the quark Born diagrams for these channel couplings
using existing data sets. Although one might expect OPE
forces to be important in coupling KN to inelastic chan-
nels, such as in I=1 KN ~ K'N, the OPE contribu-
tion to this process has been found experimentally to be
small near threshold [4]. Thus experiment suggests that
interquark forces such as OGE and the confining inter-
action may be more important than meson exchange in
coupling KN to inelastic channels. We plan to evaluate
these offdiagonal couplings in detail in a future study.
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APPENDIX

The procedure we advocate for describing hadronic
interactions involves simply calculating the Born order
scattering amplitude for a given process using the con-
stituent quark model. In cases where many channels con-
tribute or one wishes to obtain nonperturbative informa-
tion (such as the possible existence of hadronic bound
states) then one must extract an effective potential (or ef-
fective potential matrix in the case of multichannel prob-
lems) from the Born amplitude and integrate the appro-
priate Schrodinger equation. The validity of this proce-
dure and its relationship to the resonating group method
are the subjects of this Appendix.

Several theoretical complications arise when consider-
ing scattering of composite particles. For example, the
Hamiltonian may be partitioned in many difFerent ways
corresponding to difFerent rearrangement channels. Thus
if i represents the initial channel consisting of hadrons a
and b, and f represents the final channel with hadrons c
and d, then we may write

H=H;+V, =Hf+Vy, (A1)

where

H; = — V~+H +Hg
1

2geb
(A2)

Hg ——— V~ + H, + Hg.
1 2

2@cd
(A3)

Here R is the appropriate interhadron coordinate and p s
is the reduced mass of the constituent masses of hadrons
a and b The Ham. iltonians II and Hs describe the
hadronic wavefunctions in the initial channel. Thus we
have

(A4)

(A5)

where P is a quark exchange operator. The Bern series
for the process ab —+ cd may then be written as

and similarly for the other hadrons.
In general the wave function must be antisym-

metrized appropriately and this means summing over
the various rearrangement channels with the correct
weights. Thus we take the incoming wave function to
be P (( )Pq((b)ego(R) where v(0 is a plane wave and de-
fine the antisymmetrization operator as

(A6)
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Here G, is the Green function in a general channel c.
The Born order expression is

(&I&l&) = ) .( )—(0.4'~Col V. IP4' 0'~A).

This is the "prior" form of the T matrix. The "post"
form uses the potential in the final channel rather than
the initial channel. The expressions are equivalent if the
hadronic wave functions are exact and the T matrix is
evaluated on energy shell. Note that these conditions
must also hold if the effective potential matrix is to be
Her mitian.

Little is known about the convergence properties of the
Born series. With no exchange the conditions for conver-
gence are probably similar to those for simple potential
scattering [52]. Of course exchange scattering is neces-
sarily present when describing hadronic interactions &om
the quark level. At high energy there is evidence that the
lowest few Born terms can be accurate [52]. However,
since the potential is strong enough to cause binding in
the initial and final states, the series will diverge at low
energies. Nevertheless the strategy of extracting an effec-
tive potential can be useful when the Born approximation
is not accurate or even when it diverges. We shall return
to this point below. Despite the theoretical problems,
the small nuclear binding energy, the small phase shifts
seen in K+N scattering, and the lack of quark model
state mixing evidenced in most of the meson spectrum
all suggest the utility of the Born approximation.

It should be stressed that the Born approximation can
I

@ = 4 (( )A((b)4'(R) (A8)

where Q is an unknown function of the interhadron dis-

tance. This ansatz must be antisymmetrized. For later
convenience, we choose to separate the identity permu-
tation. Thus the wave function is

4=&@=~i 1+) (—) P
PQI )

(A9)

Varying the Schrodinger equation with respect to g and
rewriting the resulting expression for g in Lippmann-
Schwinger form yields the following equation;

be useful even when the effective potential is very strong.
This will be true if the Born term carries information on
the dominant physics. Then the Born order scattering
amplitude may be Fourier transformed to yield an effec-
tive potential which contains all of the dominant physics
and may be integrated exactly. Since hadronic interac-
tions must involve constituents, this may not be carried
out in general, however, it will be accurate if the new

physics induced at higher order in the Born series (such
as polarization efFects) does not dominate at low energy.
As will be discussed below, this appears to be true in
many cases.

We now turn to the relationship of this approach to
the resonating group method. In the following we shall
restrict our attention to the single channel case. The
resonating group ansatz is then

da(R) = ako(R) + 2aa a f Go(RR')Vaa(R')ak(R')dR'

—).(—) fGo(R, R')d'(4)da(kb) Vaa+k,'.a P]dg($ )da(gb)da(R')]d(, d(bdR'
PQI

+2aa a ) (
—) f Go(R, R')ak'(2 )da(kb) V((, ab, R')P]d (2 )da(kb)a)(R'a)]dk da(bdR'

PQI
(A10)

where

and

= 2&GS(E —eG —eS) (A11)

Vaa(R) = f d'(( )daa(kb)V(k', kb, R)d (( )

xP),(fb)d( d(b (A12)

—).(—) f d daP]d dad(R)ldd ddb

PQI

N RR RdR A13

and Go is the Green function for V& + k„&.
The permutation operator in the third term implies

that V&+ k„& is a Hermitian operator and may be safely
applied to the left. Thus the third terxn (the kinetic and
energy exchange kernels) simplifies to

I

where X(R, R) is the normalization kernel. Because
of nontrivial permutation operators this expression is

damped as R —+ oo and hence it does not contribute
to scattering.

We may now iterate Eq. (A10) to see that it corre-

sponds to the full Born series (A6) with the sum over

intermediate states restricted to the appropriate single

channel. In particular the R ~ oo limit of the first term
in the series corresponds to the Born order T matrix of
Eq. (A7) (for the case of elastic scattering).

Eq. (A10) indicates that setting V; = 0 in a resonating

group calculation should yield a null phase shift. How-

ever, if one uses approximate hadronic wavefunctions (as
is almost always the case in resonating group calcula-

tions) then a residual spurious phase shift will remain.

We note that Bender et ol. [24] employ single Gaussian

hadronic wavefunctions so that one expects small phase
shifts upon setting V, = 0. This is indeed what they
found for I=o K+N scattering. However, they obtained
rather large phase shifts for the I=1 case. Since the
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Hamiltonian is independent of the isospin the Gaussian
wave functions should have been equally effective in both
cases and one must conclude that there is likely to be an
error in the I=i calculation. Maltman [53] has concluded
that there are indeed errors in the hyperfine matrix ele-
ments in this reference.

Solving the single channel resonating group equation is
similar to the process of extracting an effective potential
from the Born scattering amplitude and integrating it
exactly. Both methods treat the single channel subspace

nonperturbatively and hence are successful when the sin-

gle channel approximation is a good one. Both methods
fail if (ofF-channel) virtual particles, polarization, wave-

function distortion, and similar effects dominate the low

energy behavior of the system. As stated above, this does
not seem to happen in practice. The similarity of hadron
scattering amplitudes obtained &om the single channel
resonating group method and from integrating effective
potentials has been demonstrated for several cases in Ref.
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