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Baryon-baryon components in the deuteron as quark-exchange currents
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We systematically study the NN —+baryon + baryon quark-exchange terms. The effective num-
bers for the different baryon-baryon components in the deuteron are calculated.
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I. INTRODUCTION

One would think that due to the well-established three-
quark structure of baryons one should expect some mani-
festations of possible six-quark structures in few-nucleon
systems. But comparison of the deuteron electromag-
netic form factors and tensor polarization at quite high
momentum transfer with the quark [1,2] and the usual
NN potential description shows that there is no room
for qualitative quark efFects which are not reduced to the
usual NN picture in these observables.

Let us trace back in a short way the origin of this situa-
tion. The small amplitude of the deuteron wave function
at small distances, which is a result of the repulsion in the
usual NN phenomenology, was easily explained through
the destructive interference of the quark configurations
ss and s4p2 [1,3,4]. Indeed, microscopic calculations [3]
have shown that the superposition of all excited quark
configurations with difFerent spatial [f] and color-spin
[f]cs (or spin-isospin) symmetries in the s p -a 2s shell
can be presented as

~=[f],[f]cs
C~

~

(s'2s —s'p') tr) TisM

410A N 1 2 3 N 4, 5, 6 y2 & sT=10

+small components,

where the abbreviation TISM means the translationally
invariant shell model, i.e., an exclusion of nonphysical
center-of-mass oscillations. In this expression A is the
quark antisymmetrizer,

A= (1 —9Pss ),
10

(2)

(& )TisM = A(N(1, 2, 3)N(4, 5, 6)~,.(r)). (3)

andy t = y t (r/ b) is a harmonic oscillator function
with n excitation quanta; i.e., y2, (r) is a two-quantum
function with a node at r = b 0.5—0.6 fm. The coef-
6cient p determines the dynamical weight of the nodal
A(NN@2, ) component in the two-nucleon system.

On the other hand, the nonexcited six-quark con6gu-
ration s can be identically rewritten as

The full six-quark wave function at small distances is
a destructive superposition of the nonexcited (3) and
excited (1) six-quark components [1,3,4], so that this
full wave function is analogous to the resonating group
method (RGM) wave function [2,5,6]

g (1, . . . , 6) = A(N (1,2, 3)N (4, 5, 6)y(r) }, (4)

where, at r & 1 fm,

y(r) = P Po (~) '7$4~io V'& ~ (~)

+small terms, (5)

Strictly speaking, the first two diagrams of Fig. 2 comprise
not only the NN + NN quark-exchange contribution but in
addition the NN —+ N'N quark-exchange contributions with
subsequent deexcitation p + N' w N. But these contribu-
tions are also determined by the small exchange factors.

being very small at r ( 0.5—0.6 fm. Here P determines
the weight of the s components in the deuteron, p2 = 2—
3.5%.

The difference between the microscopic quark descrip-
tion of the 2N system at small energies and the usual
phenomenological one lies practically only in the pres-
ence of the quark antisymmetrizer A in expression (4)
[of course, up to some distinction of y(r) in (4) from the
phenomenological NN wave functions].

The presence of the quark antisymmetrizer means the
presence of the quark-exchange terms of Figs. 1(b)—1(e)
in two-nucleon dynamics in addition to the usual ones of
Fig. 1(a). Just these quark-exchange terms in combina-
tion with the color-exchange quark-quark forces provide
the repulsive-core-like behavior of g(r) at small distances
in the RGM representation (4) [5,6].

The quark-exchange terms lead to the quark-exchange
current (QEC) contribution of Fig. 2 in the deuteron elec-
tromagnetic form factors, tensor polarization, etc. [2,7].
But the QEC contribution is small compared to the con-
ventional terms.

This smallness is quite understandable. First, the ex-
change terms are important at small distances, but the
NN pair in the deuteron is dominantly at intermediate
and large distances. Second, y(r) in (4) dies out when
penetrating into the "core zone. " The third reason is the
small value of the spin-isospin quark-exchange contribu-
jon jn NN ~ NN channel CNNmNN 1 1

ST=10 g7
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FIG. 1. Irreducible blocks
de6ning the two-nucleon dy-
namics.

{b) {c) (e)

We would like to mention already here that the same
factor for the NN ~ AA transition is one order of mag-

nitude larger, C~~ qo
—— 2~~. It is essential that this

factor be dynamically independent as far as it is deter-
mined only by the spin-isospin parts of N and 4 3q
wave functions. So we should expect in the case of the
NN ~ b,b. transition a substantially larger QEC contri-
bution than for NN -+ NN.

In our previous papers [8,9], we have pointed out
a new possibility to see and study the deuteron six-
quark structure. Namely, because of the quark an-
tisymmetrizer the six-quark wave function (4) con-
tains not only the nucleon-nucleon component, but also
a lot of other "baryon-baryon components, " such as
AA, N¹,¹¹

We have suggested there the 2H(e, e'p) b, and
2H(e, e'p)N' reactions at CEBAF energies to make all
these baryon-baryon components visible. In these pa-
pers the shell-model expansion [including ss and s4p2-
ss2s shells; see (1)—(3)] of the function (4) at small range
as long as the fractional parentage technique were used
to estimate the spectroscopic factors for a few baryon-
baryon components in the deuteron.

We should stress here that all these "baryon-baryon
components" are in essence the quark-exchange terms
of Fig. 3(a) and they are connected only with the six-
quark region (the region of the nucleon overlap). But in
addition there are baryon-baryon components at a little
larger distances r & l.5—2 fm which are determined by
the usual meson-exchange dynamics between two "point-
like" baryons [Fig. 3(b)].

In principle, both these mechanisms are coherent. In
the Ref. [10] we have taken into account both the "quark-
exchange" and the "meson-exchange" contributions when
describing the virtual d ~ AA disintegration amplitude.
It was shown that the quark-exchange mechanism domi-
nates very much over the meson-exchange one. So in any
process with one of the 4 as a spectator, for instance,
in H(e, e'p)A with e + 6 ~ e' + p being the basic reac-
tion, we shall see the quark-exchange contribution, i.e. ,

the six-quark structure of the deuteron.
One of the old experiments p+ d m b. + z [11]showed

the 3%% of the Ab, component which is in full agreement
with our six-quark results [9,10]. That time only the
usual meson-exchange mechanism for the 6A component
in the deuteron was known [12], and the upper limit for
b,6 component in realistic calculations was less than 1%%.

Moreover, there was a good deal of skepticism concern-
ing the old experiments with 6 as a spectator due to the
final-state interaction and other mechanisms of 6 cre-
ation not connected with the preexisting AA component
in the deuteron [13]. But we should stress again that all
that skepticism was based on the usual meson-exchange
dynamics.

Now with a new generation of electron accelerators
such as CEBAF or ELSA it is possible to study the exclu-
sive 2H(e, e'p)A, N' reactions when the outgoing proton
is very fast, E„)1 GeV, and the N' spectator is very
slow, practically at rest (or, better, moving in a back-
ward direction). In this case the final-state interaction
and 4, ¹ creation on one of the nucleons are suppressed
and we shall see, probably, the quark-exchange currents.

This paper is the next one in series devoted to the
quark description of baryon-baryon components in the
deuteron and processes 2H(e, e'p)b, , N' [8—10]. In this
paper we systematically study the quark-exchange terms
in the deuteron forming different baryon-baryon compo-
nents. In contrast to our previous papers [8,9], we do not
use the shell-model expansion of the deuteron six-quark
wave function. We calculate all the quark-exchange
terms directly from the function (4). This means that we

include not only the 8 and 8 p —8 2s shell configurations
such as in [8,9], but all the higher ones. In some cases,
for instance, for the N(1520)N(1520), N(1520)N(1535),
. . . components this is quite important.

We increase very much the number of diH'erent baryon-
baryon components being under consideration and find
some new ones which are essential.

The plan of the paper is the following. In Sec. II we

discuss the definition of the virtual disintegration ampli-

Nn "N /N ~ ~ Ni

N nnoaonon N N nnaaanoon N

FIG. 2. Quark-exchange cur-
rents in the deuteron electro-
magnetic form factors.

One should mention that the idea about AA, N¹,. . . components in the deuteron six-quark wave function was discussed

first in Refs. [29a30], but that time the six-quark structure of the deuteron at small range was not known.
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B R final state [we assume that each row in (6) is antisym-
metric with respect to baryon transposition].

In the microscopic six-quark approach one has instead
of the Fock column (6) the six-quark deuteron wave func-
tion gg(1, 2, . . . , 6) which depends on five internal Jacobi
coordinates and is normalized again to unity:

(q, (1,2, . . . , 6) ~y„(1,2, . . .6)) = 1.

(b)

FIG. 3. (a) Quark-exchange term forming the non-nucleon
baryon-baryon component; (b) standard meson-exchange
NN -+ BR transition potential.

tude and the definition of the effective number for a given
baryon-baryon component in the deuteron. We compare
this approach with the usual Fock description. Section III
is devoted to the three-quark basis for the baryon wave
function. In Sec. IV we describe the structure of the
quark-exchange matrix element. After that, in Secs. V—
VII we present the effective numbers for different "quark-
exchange" baryon-baryon components in the deuteron.

II. SOME DEFINITIONS

0NN

4NN"
)

(6)

Let us consider the direct process depicted in Fig. 4
and compare the usual description using structureless
baryons with the microscopic description on the quark
level.

In the first case the deuteron wave function is presented
as a Fock column

There were debates about how to define the relative
motion wave function of the given baryon-baryon com-
ponent BR in the microscopic approach [4,14]. But nev-
ertheless the answer is trivial. The relative motion wave
function for the baryons B and A at small range, i.e.,
where the processes of quark exchange between the three-
quark clusters are essential, strictly speaking, does not
exist.

To understand this it is enough to remember that the
two-system relative motion is described by the wave func-
tion only if these systems are well defined. More con-
cretely, only if there are well-defined boundary conditions
for both clusters B(1,2, 3) and B(4,5, 6). Only in this
case one could split up the Schrodinger equation for six
particles into Schrodinger equations of the internal mo-
tion of each cluster and the relative motion Schrodinger
equation. Here the full six-quark wave function could
be presented as a product of the internal baryon wave
functions and the relative motion wave function.

Of course, at large distances these conditions are ful-
filled. But at small range due to the quark permutations
each of the baryons loses its individuality. So here the
relative motion wave function does not exist in principle
[one should not mix the trial function y(r) in (4) with
the relative motion wave function; only at large and in-
termediate distances does y(r) coincide with the relative
motion wave function].

That is why there is a problem of the unitary off-shell
ambiguity in the usual RGM interpretation of the func-
tion

with a norm condition

(4~I@~) = 1.
g(r) = f ))T ~ (r, r')y(r')dr' (10)

Here the norm of each row is a probability for the given
component. The full probability is unity.

The electromagnetic current describing the spectator
diagram of Fig. 4 in the nonrelativistic approach is

jd RC ~2 ) PBR(KR)j B
B

where the factor ~2 is due to antisymmetrization in the

as a relative motion wave function instead of y(r) [14].
Here the 1V(r, r') is the nonlocal norm kernel [see below,
(»)1

In the microscopic approach, one should solve the
problem only with the full six-quark wave function on
the level of matrix elements. Of course, the matrix ele-
ment for the given transition is a probability amplitude.

Let us look at the structure of the matrix element cor-
responding to Fig. 4. For details we refer readers to
Ref. [9] and present here only the points which are es-
sential for understanding.

Consider an interaction of external field with the indi-
vidual constituent quark. In this case,

FIG. 4. Spectator diagram for the process p + d ~ C+ R.

6 6

ac=) f d ' ' "(die(» )
@=1 i=1
xj (k)@q(1,2, . . . , 6)j.
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6lx, ,
(p(- (1,2, 3)y R (4, 5, 6)3!3!

x ) e'~'" j"(k)Q (1,2, . . . , 6), (12)

With the momentum k being very large and kR 0,
our matrix element (11) in the plane wave approximation
1S

6
—ikc-rc —ik~ r~

~d RC
i=1

B,Mg

dkBI&PB(1, 2, 3)kB)(PB(1 2 3)kBI —1,

and p&(1, 2, 3) and pR(4, 5, 6) are internal baryons wave

functions. The factor s, , appears in (12) due to the

identity of quarks in the final state.
For the sake of convenience, let us insert into the ma-

trix element (12) just after the current operator j(k) the
unity

where

r1 + r2 + r3
3

r4+ r5+ r6
rR ——

3
r =rC —rR

where the summation is carried out over all the possible
states of 3q cluster B, its spin and spin projection MB,
etc. , and kB is the cluster center-of-mass momentum.

As a result, we derive an expression such as (8) but
with the microscopically determined amplitude instead
of that in (8). Namely,

1
deRR(KR) =

e(e f dre NR' R("r')
2m s)"

6!
&BR(r) = I, , I (~B(1 2 3)VR(4 5, 6)l&~(1 2 ". 6))

(15)

and
3 3

je e = Qf dr;e'e" ~
' '"pe(1, 2, 3)j"(k)tre(1, 2, 3)e

k=1 i=1
(16)

&BR = ). I&BR(r)I'dr
2Jd+ 1

M~ MRS

) f I@Re(&R)l'«R (17)

The last expression (16) is the matrix element of the
hadron current for the process p* + B ~ C, where —KR
is the momentum of the initial virtual cluster B and K~
is the final momentum of particle C.

The virtual disintegration amplitude (15) appears in

the microscopic matrix element instead of corresponding
Fock row. But we stress again that this is not, strictly
speaking, the relative motion wave function. This ampli-
tude comprises both the direct and quark-exchange terms
of Fig. 5.

The e8ective number for the given baryon-baryon com-
ponent,

is connected with the spectroscopic factor SBR for the
same component as

d 1+BR 2 ~BR' (18)

The sum of the e8'ective numbers %BR over all possible
three-quark clusters R and B is not unity. It depends on
the full six-quark wave function.

For example, in the limit, where the size of each cluster

B(1,2, 3) and R(4, 5, 6) approaches zero, the sum men-

tioned above is unity and the amplitude (15) is the Fock
relative motion wave function (there is no contribution
of all the exchange diagrams of Fig. 5 in this limit).

In the opposite limit, where there is no clusteriza-
tion in the six-quark wave function gg(1, 2, . . . , 6) and
this function is a shell-model wave function, one has

gB R KgR ——s, s,2 (including also all the color clusters).
)

This normalization is due to the orthonormality of the

NR N DNUTIR0NN
I I

B NN~NR
I

C NNNrNNRN D

FIG. 5. Direct and quark-
exchange contributions into the
virtual disintegration ampli-
tude d —+ B+R.
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H = 6mq + ) 2fA
Xrt

6

+ ) V;, .
q t(1 1

(19)

fractional paraentage expansion.
In reality, the six-quark deuteron wave function is a

well-clustered function [at r & 2 fm this function is only
yivy~y~~(r)] and the sum condition is

) N~R = 1+8,
B,R

where b &( 1 and depends on the microscopically derived
wave function behavior at short distances.

One should mention that expressions such as (15) have
been used in the theory of cluster knock-out from light
nuclei for 20 years [15,16]. But unfortunately as applied
to the baryon-baryon composition of the deuteron in pa-
per [4] the authors tried to treat this quantity as a rel-
ative motion wave function with a typical RGM renor-
malization by the nonlocal norm operator, which, as was
mentioned above, is not correct.

We should stress also that both expressions (8) and
(11) use the one-body electromagnetic current (or any
one-body operator) which is well known to be not con-
served in a system of interacting particles. To provide the
current conservation (the gauge invariance), we should
add two-body exchange currents such as the third and
fourth diagrams of Fig. 2 or use explicitly covariant for-
malism. In the case of the two-body operator acting on
the quarks from the outgoing fast baryon, for example, 1
and 2, we have to modify only the expression (16) for the
hadron current. But for the two-body operator acting on
the quarks from the different clusters, for instance, 1 and
4, we would have a "distorted" amplitude instead of that
in expression (15). So, strictly speaking, the amplitudes
(15) are mainly applicable for the processes or kinemat-
ics where these two-body currents are not essential. This
takes place at very nonsymmetrical kinematics (particle
C being very fast and particle B being slow or, better,
moving in a backward direction). In the opposite case,
one should take into account these "distortions" explic-
itly.

On the contrary, the effective numbers are integral
characteristics and they appear in the microscopic ap-
proach instead of the probabilities for the different
baryon-baryon components. They reflect the nontrivial
structure of the six-quark wave function. But we should
remember that their definition is not relativistically co-
variant and that we deal here with the nonrelativistic
six- and three-quark wave functions which provide only
a qualitative picture.

In this paper we consider the function in form (4) as
the proper six-quark deuteron wave function. So we deal
only with the quark-exchange contribution into the disin-
tegration amplitude (15) and efFective numbers (17). (In
the case of the NN component, there are both the direct
and quark exchange-term contributions).

Let us turn now to the microscopic six-quark wave
functions. In our calculations we have used two differ-
ent six-quark deuteron wave functions (4).

The first has been developed in Ref. [10] with the mi-
croscopic six-quark Hamiltonian

(19')

with xx, 0.36—0.4. Second, the quark-confinement po-
tential in the quadratic form

Vconx pe pn (
2 g) (19")

which does not contribute to the baryon-baryon dynam-
ics [5].

Both the interactions (19') and (19") along with the
constituent quark mass m~ sm~ (this mass evidently
has soxne dynamical origin [18,19]) simulate stringlike
and soxne part of the relativistic effects.

And finally the Hamiltonian (19) includes n and o ex-
change on the quark level derived &om the linear o-model
interaction Hamiltonian

H = g@(o+ iw~q, )% (19lll)

where 4 corresponds to the constituent quark (the so-
called chiral phase; in this chiral-invariant form it was in-
troduced into the nucleon-nucleon dynamics on the quark
level in Ref. [4]) with short-range cutofF via the monopole
form factor in the effective quark-meson vertex

with A = 4.2 fm i, m = 2m&, and g = s(mq/mdiv)g N
One has a few reasons for the introduction of this chiral
phase. First, because the nucleon-nucleon interaction is
governed at intermediate and large distances by meson
exchange, we need in the framework of the constituent
quark model a direct pion-quark and sigma-quark cou-
pling. Second, within the constituent quark model with-
out the chiral phase interaction, it is difficult to obtain
partially conserved axial current (PCAC). The third rea-
son is that it is difficult to explain on the basis of the
potentials (19') and (19")why the two-quantum nucleon
excitation N(1440) lies below the one-quantum excita-
tions N(1520) and N(1535).

This calculation includes all irreducible blocks of
Fig. 1. It should be mentioned that this type of 6q
Hamiltonian allows one to describe qualitatively both the
baryon spectrum including low-lying resonances and the
two-nucleon system (NN phase shifts and the deuteron)
[4,10,20,21].

The second wave function is a phenomenological one
and has been developed on the basis of the Paris deuteron
wave function. The purpose of the calculation with this

This microscopic six-quark Hamiltonian includes, first,
the quark-quark color-exchange potential which is re-
sponsible for the very-short-range phenomena and mo-
tivated in its form &om the charmonium spectroscopy
[17] (the so-called one-gluon-exchange potential (OGEP)
with the effective strong coupling constant),

OGEP Cka 1 Jr ( 2
V;. = —'A, A. ——

~
1+ o—;.cr~

~
b(r)

4 * ' r m'g 3

1 (3o;.ro . r —o', o'. )4m2~~ 2
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phenomenological wave function is only to estimate the
value of possible deviations of the effective numbers.

We cannot use a phenomenological deuteron NN wave
function in (4) as g(r). In this case the full six-quark
wave function (4) is not normalized to unity due to the
quark-exchange terms. To correct this we renormalize

l

the Paris wave function in accordance with

y(r) = f N ) (r, r')x "'(r')))r',

where N(r, r') is the nonlocal norm operator,

N(r, r') = b(r —r') + ((&p)v(1, 2, 3)p)v(4, 5, 6)}sT=)0&(r—r )[ —9P3s~(P)v(1 2 3)pN(4) 5) 6)}sT=10~(r r )) ~ (21)

The exchange part of the norm operator (21) with the simple 3 harmonic oscillator wave function for the nucleon
(center-of-mass oscillations are removed) with the oscillator parameter b is

1(¹"'"(r,r') =—
9

il'(9 "' i5 (,
exp ' '"--"))

b) (8~ 16b2 ( 5
(22)

The exchange operator (22) has the oscillator functions

p„~ (
'

) as the eigenfunctions:
2/3t

))'

dr' ¹"'"(r,r') (p„t
I 2/3b)

3-( +2)
CPnlm ~ ] )

where n is a number of excitation quanta.
We treat the power —

z~ of the norm operator in (20)
as usual replacing the eigenvalues 1+3 ("+2l by the (1+
3 ("+2l) ~~2 in the eigenstate representation.

In all our calculations, we use the quark oscillator pa-
rameter (the quark core radius of the nucleon) b = 0.5
fm.

III. BARYONS WAVE FUNCTIONS

For the nonstrange baryons, the fully antisymmetric
three-quark state can be built as an inner product of the
color singlet [1 ]c and spatial-spin-isospin [3]xsT singlet
representations

[1 ]cxsT' = [1 ]c && [3]xsT ~

In principle, there are two different types of nota-
tions for three-particle harmonic oscillator wave functions
(center-of-mass oscillations are removed) in baryon spec-
troscopy [22,23] and in nuclear physics [translationally in-
variant shell model (TISM)] [24,15,16]. We prefer to use
the second one which is based on the Elliot classification
scheme and is used successfully not only for three-particle
wave functions, but also for many-particle ones.

The spatial part of the TISM state is determined by
the quantum numbers

IN(~) ) [f]L(r)),
where N is the number of the internal excitation quanta,
(Ap, ) the Elliot symbol which determines the harmonic
oscillator SU(3) multiplet, L the internal orbital momen-
tum, [f] the Young scheme (pattern) defining the spa-
tial permutation symmetry, and (r) is the Yamanouchi
symbol which determines the row of the irreducible rep-
resentation [f] of the permutation group. The number
of Yamanouchi symbols compatible with a given Young
pattern is just the dimension of the given representation.
The Yamanouchi symbol is uniquely connected with the

I

Young tableau. [Do not mix the Young scheme (pat-
tern) with the Young tableau. The last one is the Young
scheme where the numbers are placed in each box [25].]

The fully symmetric spatial-spin-isospin part [3]xsl is
determined by the quantum numbers

~)N(Ay) [f]LST)
and is constructed as

[N(Ay)[f]LST) = ) ~N(Ap)[f]xL(r)x)
1

dim[f]
)

& [[f]sTST(r)sr), (23)

where ~[f]sT ST(r)sT) is the spin-isospin part with an ST
Young pattern [f]sl = [f]x = [f] and the Yamanouchi
symbols (r)sT = (r)x = (r). Here also

)
1 if [f) = [3]) [1'],
2 if [f] = [21].

To be short we drop in (23) the projections ML„Ms,
and MT. To get the wave function with full momentum
J = L + S, it is necessary to go to the coupled represen-
tation

~N(Ay)[f]LST: J) = ) C~M sM ~N(Ap)[f]LST),
ML MS

(24)

where g&M~sM are the usual SU(2) Clebsch-Gordan co-

efBcients.
Thus, for particles with 1,T = 2, 2 (N(939),

N(1440), N(1710), . . . ), there are five basis states within
N = 0, 2 bands:

INo ) = Io(00) [3]0-'-')

~N, ) = [2(20)[3]0-', -', ),
iN2) = [2(20)[21]03—,'),
[N3) = [2(20)[21]222),

]N, ) = [2(oi) [111]1-,'-,').
For particles with J,T =

3 3 (A(1232), b, (1600),
b, (1920), . . . ), there are four states with N = 0, 2:

I&.) = lo(00)[3]022)
[)-) ) ) ~2(20) [3]0--),
[a,) = (2(20) [3]2-', -', ),

)43) = (2(20)[21]22 2).
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For particles with negative parity J,T
2 (N(1535), N(1650), . . . ), there are two basis states
within the band with N = 1 and seven states with N = 3:

[N1&-'& = [1(10)[21]1—,",&,

[N2 ) = [1(10)[21]122),

[N3[ ]) = [3(11)[21]11212),

INS ') = I3(30)[3]122&

[N.'-]& = i3(30)[»]1-'.—,'&,

INv '& = I3(30)[»]122)

[Ns ) = [3(30)[111]122).

For the other particles, the basis states can be con-

FIG. 6. Jacobi coordinates in the six-quark system.

structed analogously.
All the necessary wave functions are presented in Ap-

pendix A.
Qne should mention that our phase definitions are not

the same as in Ref. [22]. For example,

I'6(56' o')-,' ) —= Ig'S
2 ) = -12(20)[3]022&

I'8(» o')-'
&

= 16'S -'
& =+12(20)[21]0-'-'&

[
10(56', 0+)- ) = (10 S 2 ) = —)2(20)[3]0-,—,).

IV. STRUCTURE OF THE QUARK-EXCHANGE MATRIX ELEMENTS

Here we start with the expression (15) for the virtual disintegration amplitude,

/BR(r) = V 10(pa (1,2, 3)pR" "(4,5, 6) ~gg(1, 2, . . . 6)&,

with fixed projections of particles B and 8, and use the wave function (4) as the deuteron six-quark wave function.
One has

»N + ( ) 3 (+B (» )0 R "( 5 6)Ipse l(V N(1, 2, 3)V N(4, 5, 6)X(r)&zg=lMg)~

where 3 is the color-exchange factor,

(([I ]c 8 [1 ]c)[2~]~lpssl([1 ]c 8 [1 ]c&[23]c)= 3.

(25)

(26)

We consider only the S-wave component of X(r). The quark-exchange contribution for the D wave is three orders
of magnitude less than the one for the S wave.

We use the Jacobi coordinates of Fig. 6 and [0(00)[3]022) functions for the nucleons (s harmonic oscillator wave
function with the center-of-mass oscillations being removed). So one has

pN(1 2 3)''pN(4, 5, 6)X(r))J =1M,
—V'000(r12)+000(r45) f000(P)%000('g)XI=0(r)([[3]ST —

2 ~2) 8 [[3]S~—
2 2)&sT=10 (27)

As far as

~(1 2 3) ~RID(4 5 6
tA gal, R

x ) . [NB(&y)B[fa]LB(ra)&[NR(&P)R[fR]LR(rR)&
(»)(»)

x
1 [fa]SB&a(&a))l [fR]SRTR(rR) &

the STX-exchange matrix element in the expression (25) can be decomposed into spatial and spin-isospin parts:

6PB (1 2 3)'PR (4 5 6) ~P36 l(~N(1, 2, 3)~N(4, 5, 6)X(r))& =1M )

). 1-"I, s „ l."„„"s„„„. . ([fa]SBVBTBta( a); [fR]SRI RTRtR( R)II'30 I

PaPa
(~~)(~R)

x ([[3]ST=
2 2) 8 [[3]ST=

2 2&&sT=10)(NB(Ap)a[fa]Lama(ra); NR(Ap)R[fR]LRmR(rR)
x [pss ~'+000(r12)'@000 (r45)V 000 (P)V 000(9)XL=0 (r)). (29)
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The operator Pss acts only on the functions @000(p), &poop(g), and yL —p(r).
As far as both the ]NB(Ay)B[fB]LB(rB)) and the ]NR(Ap)R[fR]LR(rR)) are decomposed into products of the

harmonic oscillator functions of the internal Jacobi coordinates (see Appendix A) and due to the orthogonality of
p 1 (r13) and pppp(riq), &p„1 (r45) and rpppp(r45) for nlm g 000, the sum over (rR) and (rB) in (29) vanishes and
the spatial part is reduced:

(NB(AP)B[fB]LBmB(rB); NR(Ap)R[fR]LRmR(rR) ~P30 ~'Ppoo(r12)&poop(r45)poop(p)poop(g)yL=O(r))

p y~„l,„„g&36 oooo p oooo g Xi.=o ~ dp~g,

where p& and p& are the orbital fractional parentage coefBcients,

7B (NB(&P)B [fB]LBlo(00) [2]0,NBLB),

'YR —(NR(&P)R[fR]LR 0(00) [2]0i NRLR)

(i.e. , the weights of the components yppo (r12)p~& Lz z (p) and pppp (r45) yiv„L„„(q) in the functions

~NB(Ap)B[fB]LB(rB)) and ~NR(Ap)R[fR]LR(rR)), respectively). These coefficients can be easily extracted from
the spatial parts in Appendix A.

To calculate the spatial exchange integral (30), we approximate the function gL 0(r) [yL p(r) = yL p(r)Ypp(r)]
with high accuracy by the Gaussians

gL 0(r) = ) A1, e- ""'.
t

(31)

In this case the integrals are calculated analytically,

V'N L (P)V'iv„L„„(n)P30{ypoo(p)P000('g)e Yoo(r))dP d'11

) CLsm~LsmR IN~Ls 1v~LR (r; o'k)YL, m~+m~(r). (32)
L

In the expression (32) the summation is carried out over I with the same parity as LB +LR, for example, if LB = 1

and LR = 2, the possible values of L are L = 1, 3. The functions I~~ L ~ L (r;o.l, ) can be found in Appendix B.
In its turn the spin-isospin exchange matrix element in (29) is

([fB]SBpBTBtB(rB); [fR]SRpRTRtR(rR)~P35 ~{~[3]ST= 22) 8 ~[3]ST = 22))ST=10)

= (
—1) + + /2(2SB + 1)(2SR, + 1)(2TB + 1)Cs „s „CT 1

+12 —712
S45 ——T45 ——0, 1

([fB]SBTB([2]S12T12,2 2)([fR]SRTR)[2]S45T45., 2 2)

1 T T 2 12 B
(

1)S~g+S4~ ( 12 B S 1

2 45 2 1 1 1 i

(33)

where the ST fractional parentage coefficients ([fB]SBTB~[2]S12T12., ——) and ([fR]SRTR~ [2]S45T45, ——) are the weights
of the components with Siq ——T12 and S45 ——T45 in the functions ][fB]SBTB(rB))and ~[fR]SRTR(rR)) They can be.
extracted from the ST parts in Appendix A. For example, ([21]--)[2]00;—2) = ~, ([21]2 2)[2]11;——) = —~, etc.

Thus, Anally we have
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1 1

im B immgmR
PaPR

x ) C&~~sl R~~ARI&sL~ iv„&„(r;ei, )YL, ~ii+~„(r)
l,ag

x(—1) ~ + s+ *~/2(2TB+ l)(2SB+1)(2SR+1)Cs 4 s C~ 4 ~ 4

) . ([fB]SB2'Bi[2]SlP12i 2 2) ([fR]SR+R][2]S45~45j 2 2)
Sgg ——Tgg ——0, 1
S4g ——Tgs ——0, 1

1
2

x( 1)sxs+s44 ) 12 B ) S45
45

2

Sg2 S~
SR &.

2 1
(34)

In the next sections, we drop the isospin Clebsch-
Gordan coefficie CT t T,„,„.So all the effective num-
bers there are meant to be multiplied by the square of
this coefficient. For example, N&(]232)+(y232) in reality
means

~(i252)~( )
=( )" ( ) .d —2 PP 2

2t~ 2tR

V. TRANSITIONS d w N-LIKE +N-LIKE

Since the pioneering calculation of the baryon spec-
trum with conFiguration mixing by Isgur and Karl [22],

there were a few works taking into account not only the
color-exchange quark-quark potentials, but in addition
the chiral-phase —pion-exchange quark-quark interaction
[26,27]. In the papers of Obukhovsky and co-workers [4]
both x and o. exchanges in chiral-invariant form were in-
cluded.

All these calculations show that some of the pure har-
monic oscillator states (24) correspond to observable ex-
cited baryons with a quite good accuracy. Thus, accord-
ing to Buchmann, Hernandez, and Yazaki [27] for the
nucleonlike baryons J,T = 2, 2 within 2h~ excita-
tions:

I-" -')

iN(939))
IN(1440))
iN(1710})

= O.934iN, )
= 0.299 iNO)
= 0.193iNO)

+0.306 iNi )
—0 9&2iNi)
—0.009iNi)

y

-0.»8iN, )
—0.066iN2)
+O.977iN, )

b

+0.047iN, )
+0.014iN3)
—0.084

i N3)

—0.002iN4)
0 001 iN4—).

+0.016iN4)

We have changed the signs from [27) in accordance with
our phase definitions.

In Ref. [4] some of the parameters were chosen to min-
imize the mixing of iNo) and iNi) states in the nucleon
wave function. In this case, for the nucleon, aN ——0.98
and Piv = 0.04 and, for the Roper resonance N(1440),
oN(1440) 0.12 and PN(i44o) = —0.87.

Thus, in a first approximation, one can write

N(939) = iN. ),
N(1440) = ]N, ),
N(1710) iN2),

In Table I we present the effective numbers for the
transitions d -+ ]N;) + ]N~). We see that the effec-
tive number of the N-N pair in the deuteron is close
to 1. That was clear beforehand as far as the nucleon-
nucleon pair in the deuteron is dominantly at interme-
diate and long ranges, including the D-wave component
N~~ 1.004. This number is practically determined by
the first term in (25) and (34) [i.e., by the diagram of

Fig 5(a)], .Niviv(direct) 0.996 and only a little by the
interference between the direct and exchange diagrams of
Figs. 5(a) and 5(b), Nival (interference) 8 x 10 s. The
contribution of the pure exchange term is very small,
NN4iv (exchange) 3.8 x 10

All the other numbers in Table I are connected only
with the quark-exchange terms in (25) and (34), i.e. , with
the second diagram of Fig. 5.

We see that the NN ~ NN(1710) transition is rela-
tively large, NNN(]7yp) N~ N

——2.6 x 10, and could
be measured in the H(e, e'p)N(1710) reaction.

It should be mentioned that the state iN4)
i2(01)[1 ]12 2) is absent in Table I as far as the effec-
tive numbers with this state are identically equal to zero
[there is no component containing Ipooo(riz} in the iN4)
state].

Let us discuss now the effects of mixing in the baryon
wave functions.

First, we should remark that taking into account of
an admixture of the iNo) state in N(1440), N(1710), . . .
leads, when calculating the effective numbers with these
baryons, to unphysically large values (see, for example,
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the value of SNN(i440) ——2NNN(1440) p ' p
per [9], where this value was mainly determined by the
lN0) admixture). The reason is as follows. The wave
functions of all the excited baryons must be orthogo-
nal to the nucleon's one. But in our six-quark deuteron
wave function (4) the nucleons are pure lN0) states.
So taking into account an admixture of the lN0) state
in N(1440), N(1710), . . ., we pick up the pure nucleon-
nucleon part of the deuteron (asymptotics and middle
range) .

The influence of
l
N1) and

l N3) admixtures in
the N(1710) wave function on the effective numbers
'Ard Ard 'Ard

N N (1710)~ N (1440)N (1710)' N (1710)N (1710)
gible and

A, rd 'Ard
"NN(y7yp) ' v NON2

Ard h, rd
N (y440) N ( &7&0) N1 N2 &

(36)

(37)

d d
N(1710)N(1710) — N2 N2 ' (38)

But due to a small value of NN, N ——8.35 x 10, the
admixture of the lN2) state in the N(1440) wave function
is important for the NNN(y440) In this case,

d N"
NNN(] 440) —8'N(&440) Np Ny + ~N(1440) Np Ng

1
+2PN (1440) YN (1440) 2gd+

The interference integral is equal to

1

M~ MR Md

dr ~Nr)Nr (r) ~NoN2 (r)

= 4V2NN, N,
——4.72 x 10 . (40)

With the coefficients (35), one gets

d —4
NNN(1440) 1.5 x 10 (41)

However, with the mixing coefficients from Ref. [4],

PN(1440) = —0.866,

TN(i440) = —0 485~

(42)

this efFective number is

d
NNN(i440) = 1.1 x 10 (43)

d —4 —3
N N (1440) —10 —10

Summarizing, we conclude that a realistic value of the

NNN(~440) is in the interval

x ) f drgw, w, (r)4'ww, (r).
Mgy MRS

(39) and depends crucially on the admixture of the lN2) state
in the Roper resonance wave function.

VI. TRANSITIONS D —+ LL-LIKE +LL-LIKE

The amplitudes g& &,
.&, & &,

.k, are of greatest importance. Some of them are quite large as far as they are determined

by the large NN —+ AA ST-exchange factor,

4~5
(xsT—10 = ((([3]sT~T=

3 2) ([3]sT~~ —
2 2))sT=10lp36 l(([3]sT~T —

2 2) 8 ([3]sT~T —
2 2))sT=10)—

(45)

compared to the NN ~ NN exchange contribution,

+ST=10 —((([3]ST~T—
2 2) 8 ([3]ST~~=

2 2))ST=101P36 l(([3]ST~T —
2 2) (g ([3]ST~T 2 2))ST=10) — 27.

(46)

The most important disintegration amplitudes (25) and (34) are shown in Fig. 7. The corresponding effective

numbers are presented in Table II.
In accordance with Buchmann, Hernandez, and Yazaki [27], the J,T = 2, — baryon wave functions can beP 3+ 3

presented as

I-,
"

-,')
la(1232))
I
&(1600))

f
A(1920))

= 0.990lb, o)
= 0.069l&0)
= 0.110la.)

—0.083
l
A, )

+0.991l&x)
+0.103l&q)

—Oe097l Eg)
—0.»21&~)
+0.907la, )

b

—0.064la. )
—o.o57la, )
+0.201la, )

In contrast, the admixture of the ]61) component in lA(1232)) is essential in the calculations of Obukhovsky and
co-workers [4]:
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TABLE I. EfFective numbers for the transitions to ]N;) + ~N~). The Srst line calculated with
the microscopical deuteron wave function. The second one calculated with the phenomenological
six-quark deuteron wave function (see Sec. II).

JP T 1+ 1
2

0(00)[3]
0 ——1 1

2 2

2(20) [3]
0 ——1 1

2 2

2(2O) [21]
0 ——1 1

2 2

2(20)[21]
2 ——3 1

2 2

JP T 1+ 1
2 7 2 o(oo)[3l

0 ——1 1
2 2

0.954
0.946

8.35 x 10
8.18x10

2.67x 10
2.62x10

8.92 x 10
9.09x10

2(20)[3]
0 ——1 1

2 2

2.92 x 10
2.96x 10

9.33x 10
9.48x 10

5.70x 10
5.44x 10

2(2O)[21]
0 ——1 1

2 2

7.29 x 10
7.41x 10

4.45x 10
4.25x10

2(20)[21]
2 ——3 1

2 2

1.24x 10
1.25x10

P~ = —0.35.
(48)

In this latter case, the mixing of the first and second components of the expression (47) in the 6(1232) wave function
is important and must be taken into account when calculating the effective number N&&. One has

1
NA(1232)D(1232) b NlhoAO + ~n Byway + 4 E~E aob g

+ 2+E~A J ) ~do&0 (r)~ngKy (r)2'+ 1
Mg MRS

+4~1P~~q, ). f«4~.~.(~)4f.~, (~)2J&+ 1
Mgy MRS

1
+4 P' ) . ~r &", , ( )&". , (r)

Mgy MRS
(49)

The interference integrals are equal to

,z, ). f«0~.~.(~)4~.~, (~)
Mgy MRS

0.4-

0.2-

0.0

= 8.37 x 10, (50)

). f «@~.~.(')@~.~, (')
Mgy MR Mg

= —1.42 x 10, (51)

,z, ) f«44, ~(~)@~.~(~), ,"+' M.M.M,

= —3.94 x 10 . (52)

So if we put the numbers (48) into the expression (49),
we get

—1.0-

0.06-

0.02-
Dl

E
—.02-

—.06-

I
'

I
' t

7 8 9

d —2
~(&23~)~(zz3g) ——4.24 x 10

But if we put the mixing coefficients (47), we get

—2
A(xz3z) &(xz3g) —

~ (54)

—.10-
(b)

FIG. 7. (a) tp& a (r) (solid line), @& a, (r) (dashed hne),
and 4a&a„(") (dotted hne) in the coordinate representation;
(b) the same in the momentum representation.
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We see that taking into account the mixing in the
b, (1232) wave function increases N&& from 3.04 x 10
up to 3.4 x 10 —4.24 x 10 . Bearing in mind some
uncertainty in the six-quark deuteron wave function, we
can conclude that the realistic value is in the interval

d —2
+(12s2)+(i232l

——(2.5—4.3) x 10 (55)

We have mentioned earlier that the quark-exchange
transitions are essential only in the s wave of the rel-
ative motion. Here the quark-exchange contribution to
NN m AA exceeds the meson-exchange contribution
approximately one order of magnitude [10]. In the stan-
dard meson-exchange coupled-channels calculations [12],
the AA probability in the Sz wave in the deuteron is less
than 0.1% and full probability ( Si + Di + Di + Gi)
is less than 1'Fo.

We see that in any case the quark-exchange NN ~
Ab, transition is essentially larger (at least 3 times)
than the usual meson-exchange AA component in the
deuteron. So in a process with 6 as a spectator, such
as 2H(e, e'p) b„we shall see the quark exchange currents,
i.e. , the six-quark structure of the deuteron.

The mixing of the di8'erent states (47) is of some im-
lLTd 7t rdportance for the +(y232}+(y600) and "'D(x600)b, (a600).

Expressions similar to (49) lead to

VII. TRANSITIONS d w lV-LIKE + N( i-LIKE
AND d -+ N( )-LIKE +N( )-LIKE

All the effective numbers N
& &

and N"
& ) & &

for

the baryons J,T = 2, 2 and 2, 2 are shown in Tables
III—VII. In these tables the states

3(11)[21]1-'-'),

13(11)[21]1--'),

3(11)[21]2--'),

3(11)[21]2-'-'),

13(30)[111]1-'-')

are absent as far as the corresponding effective numbers
are identically equal to zero [there is no component con-

taimng yppp(ri2) in all these states].
The only possible state with L = 3 ]3(30)[21]3z2) is

also absent in Tables III—VII containing particles J+,T =
, 2. First, its admixture in the low-lying resonances is

small, and second, the corresponding e8'ective numbers
are small, too. In the first approximation,

N (1535) = ] I (10)[21]1-,' -,': —,'),
N(1650) il(10)[21]122

. -),

d
N~(y232) ~(y6pp) 5.8 10 (56)

~ ~ ~

)

N(1520) ]l(10)[21]122
. 2),

N(1700) 11(10)[21]122 . 2),

d 3
Na(1600) A(1600) —1.4 x 10 (57)

d —4
A(1232)D(1920)

The mixing is of crucial importance for the effective num-
bers with higher resonances. These eH'ective numbers are
entirely determined by the small admixtures of ]Ap) and

]hi) states. The reason is that the N& &, Nz z, and

N& & and the interference terms (50)—(52) are two or

three orders j.arger than Nz z, Nz z, Nz z, . . . . For
instance, taking into account the admixtures of ]Ap) and

~Ai) in ]A(1920)) instead of N&(i2s2)n(ig2p) —Nr", a, ,

one has

From Tables III—VII one can conclude that the transi-
tions

d i N(1520) + N(1520),
d -+ N(1520) + N(1535),
d i N + N(1520),
d i N(1535) + N(1700),
d m N(1520) + N(1700),
d m N(1535) + N(1650)

are of great importance and the corresponding eHective
numbers are (1—3) x 10 s. In addition, we should mention
the transitions

2(2O)[21]2(20) [3]2(2o) [3]o(oo)[3]
0 ——3 3

2 2

3.04 x 10
2.12x10

2 2

2 ——3 3
2 2 2 ——1 3

2 20 ——3 3
2 2

o(oo) [3]
0 ——3 3

2 2

2(2O) [3]
0 ——3 3

2 2

2(») [3]
2 ——3 3

2 2

2(2O)[21]

2.33x10
2.37x 10

6.68 x 10
6.54x 10

2.28 x 10
2.27x10 '4.46 x 10

4.55 x 10
2.85 x 10
2.72 x 10

5.70x10
5.44 x 10

2.49 x 10
2.52 x 10

3.08 x 10
3.13x 10

8.92 x 10
9.09x 102 ——1 3

2 2

TABLE II. EfFective numbers for the transitions to ]b„)+ ]b,~). The first line calculated with
the microscopical deuteron wave function. The second one calculated with the phenomenological
six-quark deuteron wave function (see Sec. II).

3+ 3
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TABLE III. Effective numbers for the transitions to N-like + N~ ~-like (J = -'). The Srst line
calculated with the microscopical deuteron w'ave function. 'Zhe second one calculated with the
phenomenological six-quark deuteron wave function (see Sec. II).

1(1O)[21]
1 ——1 1

2 2

1(1O)[21]
1 ——3 1

2 2

s(so)[s]
1 ——1 1

2 2

3(so) [21]
1 ——1 1

2 2

s(so)[21]
1 ——3 1

2 2

1+
' 2 o(«) [sl

0 ——1 1
2 2

8.76x 10
8.57x 10

4.38x 10
4.29x 10

2.83x 10
2.88x 10

2.71x 10
2.76 x 10

1.36x 10
1.38x 10

2(20) [3]
0 ——1 1

2 2

3.01x 10
3.07x 10

1.51x10
1.54 x 10

1.82x 10
74x 10—e

1.75 x 10
1.67x 10

S.75x 10
S.35x 10

2(2O)[21]
0 ——1 1

2 2

2.36x 10
2.40 x 10

1.18x10
1.20 x 10

5.83x 10
5.57x 10

1.37xlo 4

1.31x 10

6.83x 10
6.52x 10

2(2O) [21]
2 ——3 1

2 2

4.71x 10
4.80x 10

2.83x 10
2.88x10

1.17x10
1.11x 10

2.73x 10
2.61x 10

1.64x10
1.57x 10

TABLE IV. Effective numbers for the transitions to N-like + N~ &-like (J = s). The first Inane

calculated with the microscopical deuteron wave function. The second one calculated with the
phenomenological six-quark deuteron wave function (see Sec. II).

1(10)[21]
1 ——1 1

2 2

1(10)[21]
1 ——3 1

2 2

3(30)[3]
1 ——1 1

2 2

s(3o) [21]
1 ——1 1

2 2

3(3O) [21]
1 ——3 1

2 2

1+
2 12 0(00) [3]

0 ——1 1
2 2

1.75 x10
1.71x 10

8.76xlo 4

8.57xlo 4

5.65 x 10
5.76xlo ~

5.43 x 10
5.53x 10

2.71x 10
2.76 x 10

2(20) [3]
0 ——1 1

2 2

6.03xlo 4

6.14xlo 4

3.OlxlO 4

3.07xlo 4

3.64x 10
3.48x 10

3.50xlo 4

3.34xlo 4

1.75x10 4

1.67xlo 4

2(2O)[21]
0 ——1 1

2 2

4.71x 10
4.80x 10

2.36x10 4

2.40 x 10

1.17xlo 4

1.11xlo 4

2.73xlO 4

2.61xlo 4

1.37x 10
1.31xlo 4

2 (20) [21]
2 ——3 1

2 2

1.06x10 '
1.07xlo '
2.62x 10
2.67x 10

2.SOxlo 6

2.67x 10

6.56x 10
6.26xlo 6

1.53xlo 6

1.46xlo 6

TABLE V. Effective numbers for the transitions to N -like (J = ~) + N ~ hke (J —'). The
Srst line calculated with the microscopical deuteron wave function. The second one calculated with
the phenomenological six-quark deuteron wave function (see Sec. II).

1(10)[21]
1 ——1 1

2 2

1(10)[21]
1 ——3 1

2 2

3(so)[s]
1 ——I 1

2 2

s(so) [21]
1 ——1 1

2 2

3(30)[21]
1 ——3 1

2 2

1 1
2 12 1(10)[21]

1 ——1 1
2 2

3.51x 10
3.45x 10

1.23x10 3

1.2lxlo 3

1(10)[21] 3(30)[3] 3(30)[21] 3(30)[21]
1 ——3 1

2 2 1 ——1 1
2 2 1 ——1 1

2 2 1 ——3 1
2 2

7.74x 10
7.58x10 5

5.16x 10
5.18x 10

1.67x 10
1.69x 10

2.56x 10
2.44x 10

1.21x 10
1.21x10

3.90x 10 2.46 x 10 5.76x 10
3.96x 10 2.35x 10 5.50x 10

3.90xlo 2.44x10 9.82x10 2.30xlo 1.44x10
3.96x 10 2.48 x 10 9.38x 10 2.20 x 10 1.37x 10



1162 L. YA. GLOZMAN AND E. I. KUCHINA 49

TABLE VI. Effective numbers for the transitions to N ~-like (J = ~) + N -like (J = ~).
The Srst line calculated with the microscopical deuteron wave function. The second one calculated
with the phenomenological six-quark deuteron wave function (see Sec. II).

1(10)[21]
1 ——1 1

2 2

1(10)[21]
1 ——3 1

2 2

s(so)[s]
1 ——1 1

2 2

s(so)[21]
1 ——1 1

2 2

3(30)[21]
1 ——3 1

2 2

3 1
2 ) 2 1(10)[21]

1 ——1 1
2 2

3.23x 10
3.17x10

1.31x 10
1.29x 10

1(10)[21] 3(30)[3] 3(30)[21] 3(30)[21]
1 ——3 1

2 2 1 ——1 1
2 2 1 ——1 1

2 2 1 ——3 1
2 2

1.53x 10
1.49x 10

4.48x10 1.84x10 2.56x10
4.53x 10 1.86x 10 2.44 x 10

1.05x10 4.30x10 2.46x10 5.76x10
1.06x10 4.35x10 2.34x10 5.49x10

4.30x10 4.86x10 9.82x10 2.30x10 2.79x10
4.35x10 4.93x10 9.38x10 2.20x10 2.66x10

and

d m N + N(1535),
d -+ N+ N(1700),

d m N(1520) + ]3(30)[21]12s: 2)

d -+ N(1535) + i3(3O) [»]I-,'-,': -', ),
d m N(1520) + i3(30)[21]1s s: 2)

which are of magnitude (8—10)x 10
Let us now discuss the effects of possible mixing in the

baryons N(1535), N(1650), N(1520), and N(1700) on
the corresponding effective numbers. It is well seen from

the tables that only the mixture of iNI ) and iN2 )
states in these baryons is of some importance.

Unfortunately, there are no detailed calculations of the

configuration mixing in the negative parity baryons with
the Hamiltonian including both the color-, vr-, and re-

exchange potentials on the quark level. So we restrict
ourselves to the con6guration mixing calculated with
only the color-exchange potentials by Kalman and Tran
[28]. One should mention that this paper reports a small

mixing of the i%~( )) and iN2 ) states in the low-lying
baryons J+, T = —,

2 N(1535) and N(1650):

iN(1535)) = —0.8996iNI ))

+O.O366iN,' ')+ ",
IN(1650)) = —0 00801N1 )

+0.9849]N,( )) +

(59)

iN(1520)) = —0.8977iN, )

+0.0637iN ) +
iN(17oo)) = -0.0590INi ')

-O.98O9]N,' ')+ ".

(6o)

(61)

in contrast with the result of Isgur and Karl [22] where

the mixing coefficients are 0.85 and 0.53 for the [N(1535))
and 0.53 and —0.85 for the ]N(1650)). But in the Isgur-
Karl paper [22], only the first-order perturbations in the
anharmonicity and in the hyper6ne interaction was taken

into account and only the iN~ )) and iN2 ) states were
used as a basis, while all N = 1 and N = 3 states were
used in Ref. [28].

For the J,T = 2, 2 low-lying baryons, Kalman and
Tran report

TABLE VII. Effective numbers for the transitions to N~ ~-like (J = -') + N~ ~-like (J = -).
The Grst line calculated with the microscopical deuteron wave function. The second one calculated

with the phenomenological six-quark deuteron wave function (see Sec. II).

1(10)[21]
1 ——1 1

2 2

1(10)[21]
1 ——3 1

2 2

3(3o)[3]
1 ——1 1

2 2

3(3O)[21]
1 ——1 1

2 2

3(so)[21]
1 ——3 1

2 2

1
' 2 1(10)[21]

1 ——1 1
2 2

2.53x 10
2.48 x 10

1.57x10
1.54x 10

3.44 x 10
3.49x 10

8.07x 10
8.18x 10

4.98x 10
5.05 x 10

1 ——3 1
2 2

1.99x10
1.96x 10

6.28 x 10
6.15x 10

1 ——1 1
2 2

3.44x 10
3.49x 10

2.12x 10
2.16x10

1 ——1 1
2 2

8.07x 10
8.18x 10

4.98x 10
5.05 x 10

1 ——3 1
2 2

7.38x 10
7.35 x 10

2.00 x 10
2.03x 10

3.15x 10
3.14x 10

2.05x10
1.95x 10

1.96x10 1.23x 10
1.88x 10 1.17x10

7.38x10
7.35x 10

1.96x 10
1.88x 10

4.60x 10
4.40 x 10

2.88x 10
2.75 x 10

2.00 x 10 1.23x 10 2.88 x 10 1.15x 10
2.03x10 1.17x10 2.75x10 1.10x10

l(10)[21] 3(30)[3] 3(30)[21] 3(30)[21]
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To estimate the e8'ect of mixing, we need interference terms in addition to Tables III—VII:

N, N( &(J=-)
dr/" i (r)Q" ( &

i (r) = 0,
M~ MRS

(62)

Mg MRS
(63)

2Jd+ 1 1 ( =2) 1 ( =2) 1 ( =2) 2
dr/, i (r)g ( ) i ( i i (r) 61xl0

Mg MRS
(64)

2J +1 dr/ 0 0 (r)g s 0 (r) —2x10N(-~(J=-)N(-&(J=-) N&-~(J=-)N( &(J=-)
M~ MRS 2 & 2 2 & 2

dr/", s (r)@ i s (r) 2 x 10
N~ (J=2)N1 (J=2) N1 (J= 2)Ng (J= 2)

Mgy MRS

(65)

(66)

One should mention Chat iC is easy to calculate the
necessary effective numbers with arbitrary infixing coef-
Scients using Tables III—VII and the interference terms
(62)—(66). But now we shall use the coeKcients (59)—
(61). One has

d
NN(152p) N(152p) 2.4 x 10

d
NN(152Q) N(1535) 1.6 x 10

d 3
NN N(1520) 1.4 x 10

d —3
N(1535)N(17po) 1.3 x 10
d 4
N(1535)N(1650)—
d 4
N(1520) N(17oo) —8 4 x 10
d —4

NNN(17po} Se6 X 10
d —4

NNN(1535} 7.1 x 10

(67)

VIII. CONCLUSION

For physics vrhich could be responsible for constituent
quark structure of baryons, see [18,19].

In this paper we have calculated a great number of the
virtual d -+baryon+baryon quark-exchange amplitudes
and the corresponding efFective numbers. In combination
with our previous papers [9,10], these numbers are the
basis for a systematical study of the deuteron six-quark
structure in 2H(e, e'p) b, and 2H(e, e'p)¹processes. The
amplitudes mentioned above could be a basis not only for
these reactions, but also for the other ones with one of
the excited baryons as a spectator or in more complicated
situations.

Why is the study of the reactions of such type im-
portant? The achievement of the constituent quark
concepts in the simplest nuclear system, NN, is mainly
in explanation of the soft-core-like behavior of this sys-
tem at small distances, nucleon-nucleon phase shifts,
deuteron properties, etc. (see Introduction) This.
achievement is very essential. But, nevertheless, any se-
rious concept must not only explain existing phenomena,
but also predict new ones. The quark-exchange process

t

which originates from the Pauli principle on the con-
stituent quark level is such a phenomenon. And one of
the tasks is, in our opinion, to try to observe them.
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APPENDIX A

In this appendix we show the spatial and spin-isospin
parts of the wave functions for baryons J,T =

22 )2)
1 1. 3 1. 3+ 3

, 2 within the bands N = 0, 1, 2. The
wave functions are constructed in correspondence with
the expression (23).

1. Spatial parts ]hT(Ap) [f]$(r))

The choice of Jacobi coordinates is

r1 —r2
r12 = )

r4 —r5
r45

r1+ r2 —2r3

~6
r4+ r5 —2r6

a. %=0
]0(00)[3]0(111))= @000(r12)'pooo(p).

b. AT=1
I1(»)[»]1(»2)) =

(( 000(ri2)piiM(p),
ll(10)[21]l(121))= piiM(ri2)+000(p)
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c. IV=2
1 1

I2(20)[3]0(ill)) = @200(r12)oooo(p) + oooo(r12)@200(p)
2 2

1 1
I2(20) [3]2(ill)) = y22M (ri2) &pooo(p) + oooo(r&2) y22M (p),

2 2

1 1
I2(20)[21]0(112))= oooo(ry2)p2oo(p) — —(p2oo(ry2)oooo(p),

2 2

I2(20)[21]0(121))= —) Ci, i (pii~, (ri2)ygi~, (p),
mi m2

1 1
2(20) [21]2(112))= oooo(rz2) @22M (p) —

@22M (r») oooo(p),
2 2

2(20) [21]2(121))= — ) C, , pii, (ri2) pii, (p),
mi )m2

2(01)[1 ]1(123))= Q &i,i,pea~, (ri2) pii~, (p).
mi pm2

2. ST parts: I[f]ST(r))

l[3]-,'-,'(»I)) = l(Si2 = o)S = —,'&l(T» o)T = 2)

+ l(Si2 = 1)S = —,') l(T» = 1)T = 2)~2

1[3]22(»1)&= l(S» =1)S= 2)I(T» =1)T = —',)

I[21]22(112))= I(Si2 ——0)S = 2&l(Tg2 = 0)T = 2)

1
l(S» = 1)S = -') I(T» = 1)T = -')

[2i]-,'-,'(i2i)) = l(S» —0)S = —,') l(T» —i)

1
+ l(S =1)S= —,')l(T» = o)T = 2)

I[»]-.'-', (»2)& = l(S~. = 1)S = —,')l(T- = 1)T = -', )

1[21]2~ (121)& = l(S» = 0)S = 2) l(T» = 1)T =
2&

][21]-',—,'(112)) = I(S12 —1)S = 2&l(T&2 —1)T 2),
l[2i]-', -,'(i2i)) = l(S» = i)S = —,') l(T» —o)x = —,

'

i[1']-,'-.'(»3)& =,I(S.= 1)S = —.'&1(T. = o)T = —,'&

l(S&2 o)S = 2&l(T» =1)T = 2)

where

l(S» = o)S = -') =
—M) C2, ' C",
002 m3 2 mz 2 m2

mi )mg )m3

I(S» = i)S = —,') =

l(S„=1)S= —',) =

mi m2 m3 mi2

mg ~mg ~mg ~mug

1 I 2~i)l2~2)I2~s)
lmi2 2m3 2mi 2m2

-M
+1 1 I 2™i)I 2~2) I 2™s)

lmyg —nag -my -mg
2 2 2

The same for l(Ti2 ——0)T = 2&i l(T&2 = 1)T = 2), and l(Ti2 ——1)T = 2).

APPENDIX B

IOO 00 15+ 16oqb2

1 0
00, 11 00,00'

g
~

3r2 3+ 50.gb2
exp

15 + 16QA. $2

In this appendix the functions I~ L ~ I (r) from the
expression (33) are presented:

0
IOO, 2O

g 2 y.0
iOO, 22 —~OO, OO

1
IOO 31

0
11,11

0 gr2i= Ioo oo~6g
I

1
2b2j '

g2 p2

g2

g2r ( 3gr
1,...~10

b
I

1--
b q 10b2

gr' )= -I,'„,diag I
i-

2b') '
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y2 yo
11,11 00,00

1 0
I11,20 I00,005

1 0I11 22 ——Ioo,oo2

0
I11,22 Ioo 003

g2T2

g'r ( 3gr')
b ( 10b2) '

10 g2r ( 3gr~ )
3 b ( 10b2) '

g3T3

35 b3

2~3 gsr' ( 3gr2)
00,00 5 p

2 ( gr 3g r
Ioo,oo 10g

I

I
b

+
Ob4

2g3r' ( 3gr'&
5 b2 IE 2b2)

, ( gr' 3g2r4 )
Ioo 004~5g

I

1
2 +

b 20b )
'

2
I11,31

0
I2o, 2o

y.o
22s20 i00,00

0
I22, 22

0 0 , ( gr' 3g'r')
11 31 Ioo 002 ~30g

I

1 — +
b2 20b4) '

I 2 — 1—14g r2 ( 3gr
5 b2 i 14b2) '

g4T4
Ioo 003 6435

4 g'r ( 21gr' gg'r')t
oo,oo ~3 b I(

—
5b2 20b4 )I

—I — — 1—27 6 g'r' ( gr'it
00,00 5 7 bs I( 6b2

5 g'r ( 3gr' og'r')
1 — +

3 b i 5b2 140b4) '

0 , ( 3gr' 9g'r4 9g'rs iI' 28 3 '
I

1—
2b2 20b4 80bs

36 3 g'r' ( 3gr' g'r4)r
oooo 5 10 b2 'i b2 4b4)''

72
22s22

4

1
I22,31

3
I22 3

1 0
I2o,31 — Ioo oo14

0
I31,31

2
I31 31

where

4ai, b2 —3
15 + 160.g&2

All the other functions can be developed using
IL ( 1~LIL

NgL~, N~L g i )

NIAL+,

NzLp '
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