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Imaginary part of the optical potential for preequilibrium processes
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The imaginary part of optical potentials for fixed exciton number to be used for preequilibrium
reactions is microscopically calculated. The semiclassical approximation and a simple delta function
type interaction are adopted. Only the lowest order processes are taken into account, and the incident
particle is restricted to nucleons. Five types of processes contribute to the imaginary potential; the
first is the creation of a particle-hole pair by the incident nucleon. This process is considered in usual
optical potentials, but in this work the intermediate states are restricted to q space. The imaginary
parts corresponding to the other four processes are obtained in analytic forms, to which the effects
of particle-hole states in the target nucleus are taken into account. The resultant imaginary parts
are, with good accuracy, independent of the excitation energy and related to the exciton number
in a very simple way. The transmission coefBcients are calculated using obtained imaginary parts
and compared with the ones based on conventional imaginary potentials. The effect of inelastic
scattering before absorption is studied in a perturbation expansion and the second-order terms are
found to be comparable with the zeroth-order terms.

PACS uumber(s): 24.10.Ht, 24.60.Dr, 24.60.Gv

I. INTRODUCTION

Optical potentials have been devised to generate
energy-averaged elastic scattering amplitudes and ap-
plied to n»r»erous analyses of experimental data. Ab-
sorption by the imaginary potential is considered to be
the formation of a compound nucleus, and the transmis-
sion coefficient is calculated to be used for the Hauser-
Feshbach statistical theory of nuclear reactions.

With the development of the coupled channel approx-
imation of direct reactions, the optical potential has also
been modified to accommodate the situation where cer-
tain important channels are taken into account explicitly,
while the effects of the remaining channels are treated
statistically [1]. Many works on optical potentials for the
coupled channel calculations and other processes have
been published.

Preequilibrium reaction theories have been utilized to
analyze a great deal of nuclear reaction data, but only
after the work of Feshbach et aL [2] did the function of
the optical potential in this process become clear. The
whole Hilbert space is divided into two parts, the P space
where at least one nucleon is in a continu»~ state, and
the Q space where all nucleons are bound. Both P and
Q spaces are further divided according to the exciton
number, which is a sum of the excited particle and hole
numbers.

The incident particle proceeds in the P space exciting
the target nucleus and if it loses enough energy it falls
in the Q space. In the Q space, nucleons collide with
other nucleons changing the exciton n»mber, and at some
stage one nucleon gets enough energy to be ejected before
reaching equilibrium. The reaction which takes place in

the P space is called the multistep direct (MSD) reac-
tion, while the reaction in the Q space is the multistep
compound (MSC) reaction.

Bonetti et aL [3] analyzed experimental data success-
fully using the MSC theory of Feshbach et aL [2]. Re-
cently Chadwick and Young [4] calculated both MSD and
MSC reaction cross sections simultaneously and found
that the MSC cross section must be reduced to fit the
experimental data if the conventional optical potential is
used to calculate the transmission coefficient.

On the other hand, Nishioka et aL [5] gave a fully quan-
t»~ mechanical and microscopic foundation for the MSC
reaction theory based on the random matrix theory. That
theory was previously used in the equilibrium case [6]
and it was shown that the fiuctuation cross section is
expressed in terms of transmission coefficients which are
obtained from the optical potentials fitted to the elastic
and total cross sections and. no further information was
necessary. In the preequilibrium process (MSC), this is
not the case and further work was necessary in order to
analyze the experimental data. This was carried out by
Herman, Reffo, and Weidenmuller [7], who obtained a
good agreement with the experimental data. They made
ass»options to calculate the necessary transmission coef-
ficients Rom the available optical potentials. To evaluate
the MSC reaction cross section based on the quantum
mechanical theory [5] more closely and to check the va-
lidity of their assumptions, it is desirable to calculate
optical potentials microscopically.

In this paper the imaginary part of the optical poten-
tial for preequilibrium processes is studied. Microscopic
optical potentials have been investigated in various ways,
but the semiclassical one is simple and also suitable for
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preequilibrium processes because the average potential is
obtained. The Thomas-Fermi theory gives optical poten-
tials averaged over the energy as well as the mass number
[8]. This is nice since the preequilibrium model describes
bulk nuclear properties. As the dependence of optical po-
tentials on the angular momentum is usually known to
be weak, it is reasonable to use the momentum represen-
tation, which is much easier to handle. We can avoid the
need to calculate the transmission coefficients for each
partial wave microscopically as was done by Feshbach et
al. [2].

We use the Thomas-Fermi theory as a basis and em-

ploy a simple residual interaction of a delta-function type.
We have to calculate various processes which are not en-
countered in a usual optical potential calculation except
for the finite temperature optical potential [9]. We take
into account only the lowest-order processes, and restrict
the incident particle to nucleons. Our aim is just to ex-
plore the new area and study the bulk properties of the
imaginary potential. Of course, more re6ned and detailed
studies for a particular nucleus may be necessary but we
do not attempt these in this paper.

In the following section, Eve kinds of processes for tar-
get states with a minimum number of excitons, which we
call elementary processes, will be investigated. The cal-
culation is not difficult but the integration over the phase
space is rather tedious, so details of these calculations
are included in appendixes. The obtained results will be
compared with previous works. In Sec. III, the imaginary
potential in a general case is considered, where the effect
of the spectator is taken into account. The exciton num-
ber and excitation energy dependence of the imaginary
potential will be discussed. In Sec. IV, the transmission
coefficients to be used in a preequilibrium process are
calculated. The effect of indirect capture will also be es-
timated. In the last section, the summary and discussion
will be presented. In the appendixes, a detailed deriva-
tion of the integrals which appeared in the imaginary
potential for elementary processes is presented.

II. ELEMENTARY' PROCESSES

In the MSC process, the target or residual nucleus is,
in general, in an excited state with a certain exciton num-

ber, so the imaginary potential is calculated taking into
account this fact. As the nucleon-nucleon interaction is
assumed to be two-body in nature, the nucleons in the
target nucleus may be divided into two groups, the par-
ticipant, which interacts with the incident nucleon, and
the spectator. The process which takes place between the
incident nucleon and the participant is called the elemen-
tary process here. The spectator does nothing except for
sharing the excitation energy. In this section the imagi-
nary potential for the elementary processes is calculated.
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FIG. 1. The five types of processes contributing to the
imaginary potentials.

There are five types of elementary processes, and the
first is the creation of a particle-hole pair, which ap-
pears in usual optical potentials. The calculation is the
same as tha, t given by [8] except for the domain of par-
ticle states. We follow their procedure to introduce the
Thomas-Fermi approximation.

A. Creation of a particle-hole pair

1 . (121v134)ns(2) n„(3)n„(4)(431v]21)= Im 11II1-
b-+o 2 - Ei + E2 —Es —E4+ib

234

(2.1)

The numbers 1,2, . . . represent the variables for the single
particle or hole, namely, the coordinate vector r;, and
the spin and isospin variables are represented by a single
symbol 8, The single particle energy is given by E;, and
the occupation probability for a particle by nz(i) and for
a hole by ng(i). The mass operator Eq. (2.1) is written
as

The process is shown in Fig. 1(a). The imaginary part
of the mass operator for the polarization eKect is given

by

(11~"11)

(1liv l
1
1) = —— ) dr2drsdr4dr4 drs dr2 e' ' (121v]34)ie, t/h

2 2mb
82 '84I

&(21@e'"' "12')(3ls~e *"' "13')(41~~e '"' "14')(4'3'lvl2'1) (2.2)
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where p„ is the single particle density operator and pp
the single hole one, while h is the single particle Hamil-
tonian. Next, the Thomas-Fermi-like approximation for
the single particle density is introduced by

(rs(p e *"'~"~r'8') =b„e ' ~' 'l
—iE[P,(r+r') /Qjt/A

I

(2.3)

where the single particle energy for the wave number P
at the location R is given by

$2P2
E(P, R) = + U(R). (2 4)

The single particle energy is a s»m of kinetic and poten-
tial energy, and the effective mass m'(R) is introduced
to take into account the energy dependence of the mean
potential, although our choice of a zero-range interaction
has no such energy dependence. We also restrict our-
selves to the case of being on the energy shell. The mean
field U(R) and the effective mass are adopted indepen-
dent of our choice of the nucleon-nucleon interaction to
simplify the calculation.

The occupation probability of particle and hole are
given by

where O(2:) is the unit step function, EF represents the
Fermi energy, and Ep is the upper limit of the particle
energy. In the usual optical model Eo ——oo is used. We
assume that E~, Eo are same for neutrons and protons,
and take Eo ——0 except for the cases where it is otherwise
stated. For the incident particle E~ & E~ is assuxned,
and usually Eo & Eq but also the opposite case Eq & Eo
is considered for completeness.

The nucleon-nucleon interaction is assumed to be zero
range and spin independent, and its matrix element is
expressed as

(»1~134) = ~(» —»)~(» —r4)~(r1 —»)~.,",....(r1)

(2.6)

where

e (R) —&0(R) (8182
~
1 P P2 ~8384) ~ (2 7)

In the above equation P and P represent the exchange
operator of spins and isospins, respectively. Now, the
Vaguer transform of the imaginary part of the optical
potential is calculated by

I,)(EP, R) =, f dxe' '"(R+ —,s(sv~ ~(E)~R ——,s')

n„(E) = 0(E —EF)0(Ep —E),
nP, (E) = O(EF —E),

(2.5a)

(2.5b)
I

(2 8)

sv, ', (Ps, Rs) = ——(2v) p f dxdPsdPsdPev„„, „„(Rv+ —
~

Sg Sg S4 I
xe„„,„„Rq—— exp i q + P2 —P3 —P4 .x exp i E q, q + E

—E(PS2RS) —E(P4, R4))&/5 nS [E(P2,R2)] n„[E(PSsRS)]nr [E(P4, R4)]. (2 9)

Sums over intermediate spin and isospin states are performed assuming N = Z,
( X~ X ( X X) &s2essessd ~
R1 + [ 1)sessssse2 I R1 —&0

~
R1 + &0 R12) '

E 2 E 2 2
SqSqS4

X ) (8182~(1 —Pe2P2 )'I8182) —680 R1 + 1)0 R1 6[Up(R1)]
2 2

(2.10)

where the last expression is supposed to be a good approximation. If this is put in Eq. (2.9) we obtain

ev" (P„R,) = ——(2e) '6[vs(Ee)]' f dPsdPsdPed(Ps + Ps —Ps —Pe)
2

xb E Pq, Rq + E Pq, Rq —E Ps& Rs —E P4, R4 nh c2 n„e3 n„e4, (2.11)

h2PF2(R)
2me(R)

"' :(")= E, U(R),2m'(R)
(2.12)

where the sufBx 8& is dropped as the imaginary potential
is independent of 8~.

By defining the Fermi wave number PF(R) and the
upper bound of particle wave number Pp(R) by the fol-
lowing formulas

np(P) = 0(P —PF)0(Pp —P),

ny, (P) = 0(P)0(PF —P).

(2.13a)

(2.13b)

The imaginary part of the optical potential for process
(a) is

I

the particle and hole occupation probabilities are given
by
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v) (PI ) RI) = ——(2Ir) 6[vp(RI)] dP2dpsdp4h(PI + P2 —Ps —P4)s 2m'(RI) 2

x h(PI + P2 —Ps —P4 )n), (P2)n„(Ps)n„(P4). (2.14)

This result is the same as that given by the Fermi-gas
model in which momentum and energy conservation are
taken into account [10].

Calculation of integrals over wave numbers is given in
Appendix A. The final results are

Iv (EI, RI) = ——(2Ir) 6[vp(RI)]-( )
Ir 42m'(RI) 21
2 h2 Pg

x (f (PH ) —f (P ) ) O(PH —P )

+ (g(P& ) —g(P )) e(Pg —P~), (2.15)

and the limits of P2 are given by

P = max(P0 + P& —PI, O),

Pp = IIlax 0, min(P~) 2P() —PI )

P = max(2P~ —PI, 0),

P& ——max 0, mi n(Pg+ Pp P12 Pp)

(2.17a)

(2.17b)

(2.17c)

(2.17d)

where two functions are defined by

1 2 1 2 1 3
f(*) = -(Po —-PI) ——*

3 2 10

1 1 2 2 1
g(*) = -(-PI —Ps) + —&32' 10

(2.16a)

(2.16b)

From Eqs. (2.17b) and (2.17d) it follows that P&i ——0

and P& ——0 for 2PO & Pi and

Iv( )(EI,RI) = 0 for 2P,' & P,'. (2.18)

If we consider the case of no upper bound for the particle
energy, Pp (P and Pg = PF then

hm v)( )(EI,RI) = v)( )(EI,RI)
Po~ moo

= ——(2Ir) 2
6 [vp(RI)] —(g(PI,.) —g(P~))

Ir 4 2m'(RI ) 2 1 2 2

1

——(2m') ) 6 [vo(R))) (5' )P) )P) + 2()P) —P) ) e(2P)' P) ))
1

which agrees with the results given by [10] and [12].

(2.19)

B. Scattering by a particle

The process is shown by Fig. 1(b). For fixed states 1 and 2, the imaginary part of the optical potential is calculated

by modifying Eq. (2.1) to fit process (b) as

(121
s [12 = &

l' 1 ) (12lvl34)nI (3)nI (4)(43lv]21)
s~o 2 EI + E2 —Es —E4 + i b'

34

(2.20)

The calculation of the imaginary potential in the semi-classical approximation is similar to the previous case and the

result is given by

(P1R1)P2R2) = ——(2Ir) —[vp(RI )] h(RI —R2)(s) m, 2m'(R, ) 6

2 52 4

dP3dP4b P»+Pq —P3 —P4 g P (2.21)

This expression is already averaged over the spin and
isospin of particle 2, so the factor 4 appears in &ont of

[vp(RI)] . Integrals over wave numbers are carried out
as shown in Appendix B. For Po ( Pg,

v) (PIRI, P2R2)

= ——(2n. ) —[vp(RI)] h(RI —R2),2m*(R, ) 6 2

2 h2

(»0 —P1' —P2)O(»0 —P1 —P2)

(2.22)

I

where P = P» + P~. Next the above expression is av-

eraged over the direction of Pg which is carried out as
shown in the previous case [see (A7)], and the following

expression is obtained:

~(') (E,R„.,R.)

= ——(2') —[vp(RI)] b(RI —R2)
Ir 2 2m'(RI) 6 2

2 h2 4

x (2P0 —PI —P2 )e(2P() —PI —P2 ).
1

(2.23)
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m'(R) P(R)
gp t 2g2 'I (2.24)

where P(R) is the wave number determined by (2.4) for
I

The only change is the replacement of P by Pi. The
energy Ei is related to Pi by Eq. (2.4) while s'2 ——E2—Ep
is the excitation energy of particle 2 where E2 is related
to P2 through Eq. (2.4).

The imaginary potential (2.23) still depends on the
position of the participant, and we have to average over
it. The probability of a particle of an excitation energy
e being at R is given in Thomas-Fermi theory as

fixed E and R. Equation (2.24) is obtained i'rom the
formula given by Ring and Schuck [11]. If we integrate
over position R then the familiar state density formula
in Thomas-Fermi theory,

g~(a') = /g~(e, R)d R= m*(R)P(R)R dR,
4

(2.25)

is obtained. The final form of the imaginary potential
becomes for Pp & Pi

ur~ )(Ei,ss, Ri) = v)„„(EiRi,s2R2) gp(s2Rs) dR2
gp s2

(2.26)

For Pi & Pp the calculation is more involved and details are given iri Appendix B. For P+ + Pp & Pz + P2 & 2Pp

v)~ )(EiRi) s2R2) = ——(27(') 2
—[vo(Ri)]s 2m'(Ri) 6

x b(Ri —Rs) —P&(3P) + P&) ——(Pj~ + P2 —Pp) '
)

4PgP2
(2.27)

where P& and P) indicate the smaller and larger of Pi
and P2, respectively.

For 2PF & Pi + P2 ( P~ + Pp,

~') (E,R...R,)

x b(Ri —Rg) —P&(3P)2 + P&2) ——Pg

(2.28)

The average over ei and R2 is the same as before.

C. Scattering by a hole

As shown in Fig. 1(c) the procedure is the same as
process (b) except for particle 2 being replaced by hole
2. The quantum mechanical expression is accordingly

(.) 12 I h ) - (14ivi32)~p(3)~a(4)(23iv[41)
Ei —E2 —E, + E4+i634

(2.29)

and the semiclassical imaginary potential is given by

v) ' (PiRi, P2R2) = —s'(2ir) —[vp(Ri)] b(Ri —R2)s 2m'(Ri) 6
A2 4

x dP3dP4b P& —P2 —P3+P4 b P, —P2 —P3 +P4 np P3 nZ P4 . (2.30)

For Pp P~ & Py P2 the integration over P3 and P4 is carried out as shown in Appendix C and the result is

iv~'l(PiRi, P2R2) = —x(2x) —[v()(Ri)] (P() —Pp)8
~

Pp—

2P y 2P 2P

xb(Ri —Rs).

After averaging over the direction of P2, Eq. (2.31) gives for Po & Pi

(2.31)
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(2.32)

The average over R2 is same as before, and the 6nal result is given by

2 ' R 6
v)l'l(P1R1, P2R2) = —vr(2~)

' —[vp(B1)] (P2 + Pp —P1 ) ~ —(P2 + P~ —P, ) ~ O(P2 + PF —P, )h2 4 3P1P2 .
xO(P2 —P, + P() )b(R1 —R2).

v) ' (E1,s2, R1) =— 1 1
1(

2m*(B1))1 6
[ (~ )]2

1

g), (s2) 6(2s)3 ( 52 ) 4 P1

x (P2 +P() —P, ) —(P2 +PI; —P1) O{P2 +PI; —P1) O{P2 —P1 +P()), (2.33)

where g), (s) is the hole state density at an energy s.
For Pi & Po the imaginary potential is calculated by

using Eq. (C35) but the result is not shown here because
it is obtainable in just the same way as Eq. (2.33).

D. Annihilation of a particle-hole pair by a hole

For the process shown by Fig. 1(d) the quantum me-
chanical imaginary potential is given by

(g) 1 ) . (141"[23))1t (4) (32lv 141)
S~o 2 - E1 —E2 —E3 —E4+ ib'

(2.34)

and the semiclassical one is

v) (P1R1,P2R2, P3R3) = —)r —[vp(R1)] b(R1 —R2)8(R1 —Rs)
2m'(R1) 6

h2 16

x dP4 Pi —P2 —P3+ P4 Pi —P2 —P3 + P4 nh P4 . (2.35)

Averaging over directions P2 and P3 yields the following
results:

1

When the excitation energy of the participant vanishes,
the imaginary potential becomes

( E1R11&E2R21) E3R3)

—[vp(R1)] b'(R1 —R2)
2m'(R1) 6

h2 16
P2+ P2 P2

x b(R1 —Rs) 4' P2P3
(2.36)

~ l(E 0 8 ) = —
1

'
1

—[vp(R1)]'
4P1 (, ~2h2 ) 16

2 2m'(R1) 1
X Q ]

gy
(2.39)

1 )r (m'(R1) i ' 6

ur(2hs23) 4P1 ( )r 5 ) 16

x [vp(R1)] P23 P1 (2P~ —P23) y

(2.37)

~("i(E„s23,R, ) =—

P23 = P2 + P3 =
2 [E23 —2U{R1)]2 (2.38a)

E 23 —2E~ —E23 )

22(2~222) f gh(22)g2(222 22)~22

(2.38b)

(2.38c)

Averaging over E2 and E3, keeping E2 + E3 ——E23 as a
constant, and over R2, R3 gives where g~ is the single particle state density at the Fermi

energy.

E. Annihilation of a particle-hole pair by a particle

The process shown by Fig. 1(e) has a contribution
when Pi ( Po and vanishes if Eo = 0 is assumed. The
quantum mechanical imaginary potential is given by

{1231v)~'F1123)= Im lim ) - (»lvl34)~ (4)(431vl»)
-+0 1+ 2 3 4+2

4

(2.4O)

while the semiclassical one is given by

v) (P1R1)P2R2, P3R3) = —s. —[vp(R1)] b(R1 —R2)b(R1 —R3)
2m'(R1) 6

52 16

x dP4b P& + P2 —P3 —P4 b P, + P2 —P3 —P42
flump

P4 (2.41)
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After averaging over directions P2 and P3 we obtain

(E1R1$E2R22 E3R3)

2m (R,) 6—[vp(R1)]2b(R1 —R2)h2 16
1

x b(R1 —R3)4i2 (2.42)

Averaging over E2 and E3, keeping E2 + E3 ——E23 as a
constant, and over R2, R3 the last equation becomes

v)(') (Ei, s23, Ri)

For the mean potential, we employ a Saxon-Woods
type whose strength is linearly dependent on the energy.

Up+ (1 — (1)E

1 + e(r —Rw)/aw (2.50)

According to Mahaux et aL [16] this is equivalent to using
the energy-independent potential

where pp Rg and a~ are given by

pp ——0.17 fm, Rg = (1.12A / —0.86A / ) fm,

ag ——0.54 fm. (2.49)

1 n /m'(Ri) l
ur(lplA;s23) 4P1 ( n' h )

9
6 2 2 /'2m'(R1)

x —[vp(R1)] —
~

s23+ PF
i

—PF
16

)3~
52

Uo
U(~ =

m'(r) 1+e(r Rw)/a—w

with the effective mass
0

m (r) =1—
m 1 + e&" &w)/~w

(2.51)

(2.52)

(2.48)

where

~(&22&«23) = f&( 2)8 (323 3332)d32. (2.44)

For vanishing eq3 the above equation reduces to

v) ' (El, 0, R1) = — —[vp(R1)]
m'(Ri) 6

4P, +252 16

2m'(Ri) PF
gp

(2.45)

F. Residual interaction and mean potential

To evaluate the imaginary potential using these formu-
las, the residual interaction and the mean potential must
be chosen. If we employ Skyrme-type interactions, the
self-consistent mean potential is obtainable with relative
ease [12]. However it is rather involved to apply these in-
teractions to the imaginary potentials for the five types
of processes and we use a simplified Skyrme interaction
which gives rise to nuclear saturation. The interaction is
assumed to be

Up = —45.51 + 17.68(N —Z)/A MeV. (2.53)

where m is the nucleon mass and mp is the effective mass
at the nuclear center. The geometrical parameters Rgr ——

1.27M~ fm and age ——0.67 fm, and the effective mass
mp/m = 0.7, are used throughout this work.

As stated before we assume symmetry with respect to
neutrons and protons in the target nucleus. To be com-
patible with this, the depth parameter of the Woods-
Saxon potential for the neutron is chosen so that the
neutron particle state number is equal to the average of
the observed particle state number of the neutron and
proton. For protons the same potential is assumed. In
Table I the single particle parameters for Ca and Pb
are listed. The single particle numbers are taken from

[16] and the depth parameter U() is fixed by using the
geometrical parameters Rgr and age. For this mean po-
tential, the Fermi energy EF and the state density (for
neutrons and protons) at this energy gF are also listed.

Between two magic nuclei oCa and 20 Pb, we choose
SNb because much experimental data and theoretical

analyses are available. For this nucleus, the depth pa-
rameter is fixed assuming a linear function of the neutron
excess. By fitting with the data for two magic nuclei it
becomes

v(1, 2) = (tp + tsp )b(ri —r2), (2.46)
The obtained value is given in Table I, where the rate

where p is the nuclear density, and the parameter set
which satisfies the saturation condition was given by [13]

to ———1020 MeV fm, t3 ——2404 MeV fm, o. = 1.

TABLE I. Potential depth parameter Uo, Fermi energy Ez,
single particle state density at EJ:, derivatives of these two
quantities with respect to Uo for nuclei used in this work. For

Ca 20 neutron particle states and 8 proton particle states
are assumed, while 58 and 44 states for Pb.

(2.47)

p
—

p (1 + e(r Rd)/p&) (2.48)

Almost identical values have recently been used by Peilert
e& al. [14]. For the nuclear density we use the empirical
one given by Bohr and Mottelson [15]

Up (MeV)
EF (MeV)

gF (MeV ')
dKJ,
dU()
dies
dUO

40'
—45.51
—1Q.Q6

2.04
0.87
0.038

208Pb
—41.77
—9.27

9.04
1.05
0.148

93Nb
—43.42
—9.57

4.32
0.96
0.078
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FIG. 2. R-dependence of elementary pro-
cess imaginary potentials in units of MeV for
93Nb. Curves are plotted for (aO) and (a)
processes varying the incident energy, while
for other processes by varying both the inci-
dent energy and the excitation energy of the
participant.
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of change of Fermi energy and the rate of change of the
state density with the depth parameter are also shown to
see the e6ect of a change of Uo.

G. Results of calculation

In Fig. 2, the R dependence of the imaginary poten-
tial for ts( o) (E,R), which corresponds to Eo ——oo, and
those for the other four kinds of elementary processes
corresponding to Eo ——0 are shown. For process (a) the
incident energy Ei varies, while for (b)—(d) both Ei and
the excitation energy of the participant s vary. Process
(e) is not shown because it vanishes for 0 = Eq ( Ej. Ex-
cept for the highest excitation energy of the participant,
the R dependence is surface peaked, which is supposed
to be caused by the R dependence of the effective mass
and the density-dependent efFective interaction, but de-
tails are a little difFerent for each case. Results for Nb
are shown, but those for Ca and Pb have similar

behavior.
The energy dependence of the imaginary potential of

the elementary processes at the nuclear center is shown in

Fig. 3. While m( ) increases with energy approximately
like (E —Es), which is the well-known behavior due to
the increase of the state density of intermediate states

() '
)

increases up to 7 MeV but then decreases almost
linearly and vanishes as shown by (2.18). This is of course
due to the restriction of particle states to the Q space.
For m, ur, and to ) the strength for several energiesor ~(b) (c) (d)

Eq of the incident nucleon are shown as a function of the
excitation energy s2 of the participant. This dependence
on e2 is weak except for m( ). The magnitudes of m( )

and m(') are one order smaller than m( )and m(") is two
orders smaller than m( ).

So far the imaginary part of the optical potentials has
been evaluated using (2.1) for process (a) and similar ex-

pressions for other processes as explained in this section.
However, they are also expressed as

10 0.0S

( ~ 0)(E,R) - o.o4 - w' '(E, , &,R)

0.03
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- w' '(E, &,R)
1 23

E=0

30

FIG. 3. Energy dependence of elementary
process imaginary potentials in units of MeV

93for Nb. The imaginary potential at the
nuclear center R = 0 is plotted for pro-
cesses (aO) and (a) against the incident en-

ergy, while for other processes against the ex-
citation energy of the participant by varying
the incident energy.
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20

)
30 10

(MeV)
23

30



49 IMAGINARY PART OF THE OPTICAL POTENTIAL FOR. . . 1107

0.003

ss

0.002
tO

)gb))2

0.001

I
E
lO

4l

1.003

)ps))2
m a cc cc

10 20
E {MeV)

30 0

E=O

Esi

10 20
~, &Sev)

I ' ' *O' I
I

30
FIG. 4. Mean square P Qm-atrix elements

in units of MeV as a function of energies for
Nb. Each curve in this Sgure corresponds

related one in Fig. 3.
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rv&'l (E1,s2) = mdiv&'& is (Ei, ss)(u;(s), (2.54)

where i = a, . .. , d and ~vi'&~s is the average square of
matrix elements between P and Q spaces corresponding
to the process (i). The next factor &u;(e) is the state
density of intermediate states with the excitation energy
e = Eg —Ey +e2.

We evaluate the average square matrix elements for
the four types of processes by using the imaginary po-
tential obtained here and the state density evaluated by
the Thomas-Fermi theory. For process (a) a particle-hole
pair of neutrons or protons is created, and the state den-
sity for neutrons and protons must be used. In other
processes, the isospins of intermediate states are all fixed

once the initial state is fixed. Therefore the state density
for neutrons (or protons) should be used. The results are
shown in Fig. 4. For process (a) the average square ma-

trix element is a function of Eq and the dependence on
this is weak. For other processes they depend on Eq as
well as e2, so they are plotted against the latter for each
value of the former. Except for process (b), they increase
with Eq as well as ss. As shown in the next section, the
important part of the imaginary potential is near sz 0
and we see that the four types of processes have almost
equal values. It is shown that the average square matrix
elements for the four processes are the same in the limit
of zero excitation energy for all participating particles
and holes.

In Fig. 5 the mean square matrix elements for van-
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FIG. 5. Mean square P-Q matrix elements
in units of MeV as functions of Ej for Sxed
e~ ——0 for Ca, Nb, and Pb.
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III. GENERAL CASE

The imaginary part of the optical potential in the gen-
eral case is obtained &om those for the elementary pro-
cesses by taking account of the spectator. The target nu-

cleus is assumed to be an n„-particle and ng-hole state
with the excitation energy c. First we consider process
(a) with 6m = 2. In this case the spectator has noth-
ing to do with the imaginary part if we neglect the Pauli
blocking effect, and the imaginary potential of the ele-
mentary process is equal to that of the whole system:

W! !(np, nr„E, s, R) = ur! !(E,R). (3 1)

ishing excitation energy of the participant are plotted
against Eq for three nuclei, and they show similar be-
havior. Except for process (rr,0), which shows rapid in-
creases with energy, the energy and type dependences are
weak. However, the absolute magnitude decreases as A
increases.

Herman et ul. [7] assumed in their calculation of MSC
that the average square of matrix elements are the same
for all types of processes. Our calculation justi6es their
assumption. But they used the conventional imaginary
potentials m! l, which overestimates the transmission
coefficients.

For other processes, the imaginary potential of the el-
ementary processes is averaged over the energy of the
particle or hole with which the incident particle inter-
acts. It is convenient to introduce the probability func-
tion P(npnr, s; np, nr„sq) for a nucleus with an np-particle
and ng-hole excitation at an energy e having a part with
an nz, -particle and n~, -hole at an energy eq. Neglecting
the Pauli blocking effect this quantity is given by

P(npnr, s; ri p, nr„si )

(af(ri,pi, rlgi, Ei)ld(Ap —
ripe ) Ar„—ri, r ) 8 —si )
4J A Ag8

(3 2)

where the binomial coefficients are to correct for double
counting. If this probability function is integrated over

eq then we obtain»nity
As the imaginary potential of the elementary process is

calculated based on the Thomas-Fermi theory, the state
density should be based on the same theory. However,
its calculation is complicated and, for reasons which will

soon becomes clear, the much simpler Oblozinsky for-
mula based on the equidistant single particle level [17] is

adopted. It is given by

np!nr, !(np+nr, —1)! .
- - pi ) i, j y

+ e(& +n„nq &&pmsx 2&hmax) (+ ~n~eq &+pmsx 2&amax) (3.3)

where e„=Eo—E~ is the maximum excitation energy
of particles, and eg is that of holes. A constant single
particle state density g is assumed and. the Pauli effect is
included by the two correction factors a„„„andA„„„,

I

which will be neglected in the following calculations.
Before using the approximate formula (3.3) we com-

pare the two predictions for the cases to be used in eval-

uating the imaginary potential. In Fig. 6, particle, hole,

T ~~~ ~~~ r ~ ~T

9 3g Thomas-Fermi -- Solid Curve

Oblozinsky -.- Dashed Curve

10

NcI0
100

0

10
0

10
E (MeV)

20 30

FIG. 6. State densities for particle, hole

and particle-hole states in Nb. Solid curves
represent those calculated by Thomas-Fermi
model, and dashed curves represent results
calculated with equidistant model.

C

O 10

10
E (MeV)

20 30
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and particle-hole state densities for ssNb are shown. In
the case of particles, the approximate formula underesti-
mates because the single particle state density increases
as the excitation energy increases. For the case of holes,
the tendency is opposite. In the particle-hole case, the
difFerences are smaller compared with the previous two
cases, as the two effects mostly cancel.

In Fig. 7 we show the probability function given by
(3.2) for the cases to be used in our calculations as func-
tions of participant energy si. Figure 7(a) represents
typical cases of high exciton numbers, while Fig. 7(b)
corresponds to low exciton numbers. The sharp peaks at
low energy observed in Fig. 7(a) are interpreted as fol-
lows. The probability (3.2) is proportional to a product
of two state densities. For the cases of n~, + ng, ——1,
to which processes (b) and (c) correspond, the first state
density on the right-hand side of Eq. (3.2) is a constant.
The energy dependence comes from the second state den-
sity, and it is approximately given by

b,sg - sin 2/(n„+ ng —2). (3.5)

For the process (d) n„, = 0 and ng, = 2 and the prob-
ability function has a sharp peak, which is approximately
expressed by

P(n„nqs", 02si)

n„+n~ —1(
i

1—
np+nz S

np+ ng —2)

1 (8'1 —&y ix exp ——
i2 E s'z i

(3.6)

The peak energy is given by

~0
np+ ng —2

(3 7)

and the half-width is

ae', = so, V'2 in 2. (3.8)

P(n„nqs; 10ei) = P(n„nqe; Olsi)

n~+np, —1 f sly "~+"~—&

(3 4)
g j

whose half-width is given by

These formulas are derived just taking the i = j = 0
term of the state density formula (3.3), and assuming

n&+ng )& 1. When these conditions are not valid a broad
distribution is seen as in Fig. 7(b). It is also noted that
the probability function given by (3.2) is independent of
the single particle state density as we use the equidistant
state density formula (3.3).

The imaginary potentials in general cases for processes
(b), (c), and (d) are calculated using the imaginary po-
tential for elementary processes and the probability func-
tions as

w '(~(~,~., z... z) ~,f~i'~(z, .„z}
x P(nyYLgs) 1,0, Ey)de], (3.9a)

w' (n a|a, ze, z) =ma/w' (z, e&, R)

x P(npns, s ) 0) 1) sg )der ) (3.9b)

w'')(a, a, , z, r, z) = " "
J w"'(z, e„z)

2

xP(n„nq, s, 0, 2, si)dpi. (3.9c)

We have evaluated the imaginary potential using the
above formulas for the case of sNb. The R dependence
is shown in Figs. 8 and 9, and it is similar to that of
elementary processes. The imaginary potential is cal-
culated for target excitation energies e = 0, 10, and 20
MeV, and low exciton states Op-Oh, lp-lh, and 2p-2h,
which are important in absorption processes. For conve-
nience the ground state is considered as the Op-Oh state.
In Fig. 8 the curves for e = Q, 1Q, and 20 MeV coincide
with each other inside the nucleus, but split away at the
nuclear surface. The spread increases as the excitation
energy increases. In Fig. 9 the R dependence for higher
exciton states is shown taking process (c) as an example.
The excitation energy dependence becomes weak as the
exciton number increases, and the magnitude is clearly
shown to be proportional to n„. For process (d) it is pro-
portional to ni, (ng —1)/2. These dependences are easily
understood as the probability function (3.2) has a sharp
peak near si ——0, while the dependence of elementary
processes on ei is weak.

In Fig. 10 the incident energy dependence of the central
part of the imaginary potential is shown. It is clearly
seen that the excitation energy dependence is weak as

3

4 20

1
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0
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0
0
4 0.01 J

r
rr

r . s

1, C, )

(b)

Pt2y2y20yQi2y Ct )

~ ----- i'
FIG. 7. The probability function

P( „np, en; n» nl„zi) which represents the
probability of finding a n» -particle and
n Q 1 hole state of excitation energy e& in a
n„-particle and ng-hole state of excitation en-
ergy e in Nb.
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(3.10b)
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(a.+ II, + v —E.)e{+)= o, (4.2)

in which a indicates the incident channel, JIi the Hamil-
tonian for the target nucleus, and V the residual inter-
action between the particle and the target nucleus. The
particle Hamiltonian is written as

assume the independent particle model for the target nu-

cleus, so Hq is a s~~m of single particle Hamiltonians.
Then the exciton number of the target nucleus and con-
sequently that of the channel a may be 6xed, which is
denoted by v . The zeroth-order transmission coefBcient
is given by

Ho = K+ U+i%" (4 s) T{ ) = —4~(4{+)lw le{+)), (4.9)

where K represents the kinetic energy, U the real part of
the optical potential, and W is the imaginary part. The
zeroth-order equation with respect to V is

while the second-order one is given by

T~ ) = —4tr(C{+)lVGtw GoVl@{+)), (4.10)

(a.+a, -E.)C{+}=o. (4 4)

Both wave functions 4 + and 4 + are eigenfunctions
of non-Hermitian Harniltonians, so they do not make or-
thogonal sets and are normalized as

li (e{+}le,+ ) = li (c{+}[e,+
) = b b(E —E )Wmo Wmo

(4.5)

These two wave functions are connected by the relation

1y(+) —@(+)+ p@(+) (4.6)

The general transmission matrix is given by [18]

T.t ———4z(e.{+}lw le,{+)). (4.7)

The imaginary part of the optical potential is given quan-
tum mechanically by

I|O
——

E —Ho —H
(4.11)

W~, ~~,+2(r) = W (npni, Ear), (4.12a)

w . .(r) = w{'}(n„~.E-)+ w{ )(~,~.E..),
(4.12b)

(4.12c)W .„.,(.) = W{')(~,n, Es.).

is the zeroth-order Green's function.
Here we employ the imaginary potentials obtained in

the previous section. They are calculated for the tar-
get state specified by the particle and hole numbers n~
and ni, Then . the exciton number for the initial chan-
nel is given by v = mo ——n„+ 1+ nt, . Intermediate
states in the Q space have one of the exciton numbers
m = mo, mp + 2. The corresponding imaginary poten-
tials W, ~ (r) are more explicitly written as

W = nHpqq b(E——Hqq)q Hqp, (4 8)
The imaginary potential appearing in (4.S) is given by

which contains the projection operator Q onto m-
exciton states.

We now evaluate the transmission coeKcient in the
perturbation approximation with respect to V [19]. We

w .(.) = ) w . (.). (4.1S)

The channel wave function specified by a channel index
a is written as a product of the particle wave function
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FIG. 11. Transmission coefBcients for s~gq neutron to Nb
2y-2h states as a function of Eq with {.= 0, 10, and 20 MeV.

FIG. 12. Ttans~ission coefBcients for s&yq neutron to Nb
n„= ng = 3, 6, and 9 states as a function of EI with { = 0.



1112 K. SATO AND S. YOSHIDA

specified by p = (t, , l, j ) and the target nucleus one
specified by A = (v —1,I );

@(+) — y(+) &„ ')

- &a) JaMa
(4.14)

(+)
~p +t l j gl j ~ (4.15)

[K+ U+ iW, (r) —E]P(+) = 0. (4.16)

Using these notations the zeroth-order transmission co-
efficient is given by

where v is the exciton number and J M are the total
angular momentum and its z component of the channel a.
It is not necessary to explain the other quantum numbers.
The single particle wave function satisfies the equation

here corresponds to the situation shown by Fig. 7(b),
and some dependence appears at the low energy part of
the Lm = 0 case. Otherwise the dependence is weak and
may be ignored.

In Fig. 12 the exciton number dependence is shown
for the same cases as for the previous figure except that
the target excitation energy is kept to zero while the ex-
citon number is changed. Apparently the exciton num-

ber dependence of the imaginary potential is reproduced
in the transmission coeKcients. This indicates that the
approximation of (3.10) is good while the transmission
coefBcient is far less than the unitary limit.

Data shown in the figures are with respect to one par-
tial wave only. To see the effect of all partial waves, the
reaction cross section is calculated by

2'( ) = 4' ~u(+)(r)[ [—W . (r)] dr,
0

(4.17)
{4.18)

with
The zeroth-order transmission coefficients are calcu-

lated for the neutron scattering by Nb of 2p-2h states
and the results are shown in Fig. 11 for the sqy2 neu-
tron. The full line shows the transmission coefficient for
Am = 2 with Eo ——0, while the dot-dashed curve shows
results for the same process but taking Eo ——oo, which is
labeled as P + Q (absorption). The two curves coincide
at low energy, but deviate with increasing energy. The
full curve corresponding to Q absorption has its peak
around 7 MeV and falls off with energy. However, the
difference between the two curves is not so much as for
those of the imaginary potential because the transmis-
sion coefficient cannot exceed unity. In the figure, the
transmission coefficients for b,m = 0 and —2 are also
shown to indicate the excitation energy dependence. If
the approximation (3.10) is good, there should be no de-
pendence within each group. However, the case shown

0

0.8
fh

0.6
CL

where Tl~ is the transmission coefBcient for the partial
wave with orbital and total angular momenta t and j,
respectively. For the same reaction as in Figs. 11 and
12 but keeping both the exciton number and the excita-
tion energy to zero, the ratio of reaction cross sections
corresponding to Q to P+ Q absorption is shown in Fig.
13. The curve shows the general tendency of being a de-

creasing function of the incident energy. There appears a
small bump for which we do not have clear explanation,
but it may be due to competition between an increase in
the effective number of partial waves and a decrease in
the magnitude of the imaginary potential with energy. In
the figure the ratio of imaginary parts is also shown and
the decreasing tendency is stronger than for the ratio of
transmission coeKcients. This is due to the saturation
property of the transmission coefficient by unitarity.

We now evaluate the second-order transmission coef6-
cient for the ground-state target (Op-Oh). After the first
collision the intermediate state becomes a 2p-1h state
with one nucleon in the continuum. This state decays
to form a 3p-2h state by the imaginary potential W~ ~.

This is the main process and other processes are not con-
sidered here. As for the channel wave function for the in-

termediate state c, the target nuclear state A, is assumed
to be a 1p-1h state and is given by

(4.19)

o 0.4
CL

0
so

co 0
C$

where a particle p and a hole h are coupled to the angular
momentum I and its z component M, . First, the matrix
element of the interaction which appeared in (4.10) is

expressed as

I I I I I i I I I I I I I I I I I I I I I i I I I I I I I0

10 15
E (MeV)

20 25 30 = ) (jhm~jpmp]1 M )(I M,j,m, ]j m )

FIG. 13. Ratio of reaction cross sections for Q absorp-
tion to P + Q absorption aR (Q)/oa (P + Q) is shown by
a dotted line for neutron scattering by Nb. For com-
parison, that of imaginary potentials at the nuclear center
W (E&, 0)/W( (E&, 0) is also shown by a full line.

(4.20)

The calculation of the matrix element is straightforward,
and the result is given by
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. ( 7l

O(r) = I'(r) exp i
I
kr —))}in(2kr) ——(+ o'i

I).
(4.25)

where

(4.21) where g and 0.
~ are the Coulomb parameter and the

Coulomb phase shift. The asymptotic form of u(+)(r)
js

1"h.= &j 111'I.lljh&&j II1'I. lljo&

~&, (h),t, (o) &j,II &i. IIj.& &j.II &i. II jh&. (4.22)
u(+)(r) - —' I(r) S.'. O—(~),

2+I{.. (4.26)

The second term of the right-hand side of (4.22) is for
antisymmetrization of like nucleons. The reduced matrix
element is given in terms of the Clebsch-Gordan coefB-
cient by

(4.23)

where l indicates the orbital angular momentum of the
orbit j.

The Green's function is given by

(,) ~ . 4~'k. (&';h.)'
Z. (2I. +1)(2j.+1)

lfp.h (&)I'[ ~ (r)j«
0

where

fp ho(r)

(4.27)

where S( ) is the zeroth-order S matrix. Using (4.24) and
(4.22) the second-order transmission coeScient (4.10) is
calculated as

(s II U s I"') = & )t +(+&)++ ( )
jl

x ).I&v~&hv~l (4.24)

where r& and r& represent the larger and smaller among
r and r', respectively, and O(r) is the radial part of the
outgoing wave solution of (4.4) and its asymptotic form
1s
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FIG. 14. Ratio of the second-order reaction cross section to
the zeroth-order P+ q absorption cross section of neutron for

Pb is shown by a dotted line as a function of the incident
energy. The Snal states are 3 2h states. The zeroth-order
reaction cross section ratio on( (Q)/o'&( (P+Q) is also shown
by a solid line for comparison.

(E„+U+ W —E& (+)( ) =0', (4.29)

where K„represents the kinetic energy in terms of the

OO dl
+"'"(") "'("')o (") ( ') '( ') ."'( '), .

1' r
(4.2S)

The second-order transmission coefBcient is evaluated
for 4oCa and 2MPb with incident neutrons. The magni-
tude of the second order is more or less the same as that of
the zeroth order, but in some partial waves the transmis-
sion coeKcient exceeds unity in contradiction with uni-
tarity. This shows the breakdown of the perturbation ap-
proximation. The second-order transmission coefficient is
a sum of many intermediate components, whose number
exceeds a thousand in the case of zosPb. Although each
component is very small, the sum becomes as large as 2.

Despite the violation of unitarity the reaction cross sec-
tion is calculated and shown in Fig. 14 for n+zMPb. The
second-order reaction cross section is shown by the dot-
ted curve and the zeroth-order q-space absorption by the
solid curve, both in units of the zeroth-order I' + Q ab-
sorption cross section at the corresponding energy. The
second-order cross section starts around 4 MeV, increases
with energy exceeding the zeroth-order cross section at
9 MeV, has its peak around 17 MeV, and thereafter de-
creases. This behavior is considered qualitatively correct
although not quantitatively. As a consequence of the
limitation of absorption to Q space, the reaction cross
section decreases &om a certain energy, while the second-
order contribution increases fast to reach the peak, and
then decreases gradually.

We return to Eq. (4.1) and show that it is derived from
(4.17) with an approximation. The radial wave function
u(+)(r) satisfies
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radial coordinate. Between the radial wave function u(+~

for the optical potential and u (+~ for the real part of
the optical potential, the following relation analogous to
Eq. (4.6) holds,

16

14 - pb E20

)
10

simplifie

simplifie
huo (P Q'-

(4.30)

The Green's function in Eq. (4.30) is evaluated by ex-
panding in terms of i W. Neglecting the principal part of
the zeroth-order Green's function

GS2 (P+Q)

GS2 (Q)4

2
1

inb(E-—K„—U), (4.31) yaaaaaaaaeemmaeamaa~~&
~ I I I I I I I I I I I

the transmission coeScient becomes

4 ( -"'I(-~)l -"')
1+-(u.&+'~(-W) [u."&+')

(4.32)

which is equal to (4.1) if the relation between the imagi-
nary part of the optical potential and the matrix element
between Q and P spaces is considered. We tested the ap-
proximation (4.32) in the case of the calculations shown
in Fig. 2, and found that differences between (4.17) and
(4.32) were at most 10%.

V. SUMMARY AND DISCUSSION

We have shown that a delta-function-type residual in-
teraction combined with the Thomas-Fermi approxima-
tion gives rise to simple formulas for the imaginary parts
of the optical potential for fixed exciton number to be
used in preequilibrium reactions. The eKect of spectators
is taken into account by the aid of the probability func-
tion, which may be approximated by b(s2) in most cases.
Calculations of the transmission coefficient are straight-
forward. Therefore our formulation is much simpler than
that of Feshbach et aL [2], which is widely used in data
analyses. To use our imaginary potential in phenomeno-
logical analyses, 6ner adjustment of parameters may be
necessary.

By using a simp1e model we have also calculated the
second-order transmission coeKcients, where the incident
nucleon makes a collision in P space to create a particle-
hole pair before it is captured. The second-order trans-
mission coeKcients are found to be of the same order as
the zeroth-order ones, and are important in preequihb-
rium analyses. For quantitative estimation of this eKect
more elaborate calculations are necessary, as our second-
order coeKcients exceed the unitarity limit in some cases.

%e have used a simpli6ed version of the Skyrme inter-
action to avoid complicated calculation, but it is inter-
esting to compare the results with the full version. Zhuo
et al. [12] performed such a calculation for P+ Q ab-
sorption, which is shown by the curve denoted as "Zhuo
(P+ Q)" in Fig. 15. To obtain the imaginary potential
with the full version, we use the same formula as Zhuo
et al. for lV& ~ and the similar formula for W( ~ which
satis6es the condition that the intermediate states are re-

R (fm)

FIG. 15. The imaginary potential based on the GS2
Skyrme force compared with our results based on the sim-

pli6ed delta-type interaction. Zhuo et al. 's result denoted by
Zhuo (P+ Q) is also shown [12].

p(R) = P~(R), (5.1)

we get an imaginary potential 6'( ~ which extends far-
ther out and is very similar to Zhuo et al. 's. The re-
lation (2.4) together with a zero-range interaction make
the imaginary potential vanish beyond the classical turn-
ing point, although the use of a 6nite-range interaction
makes the imaginary potential extend beyond the classi-
cal turning point [8]. As for W' l both the local density
approximation and the local momentum approximation
give similar imaginary potentials which fall o8' rapidly at
the nuclear surface due to the restriction to Q space.

To compare with the reaction cross section obtained
&om phenomenological optical potentials, the reaction
cross section for P+ Q absorption was calculated for 30
MeV proton scattering by 40Ca and Pb and we ob-
tained 900 and 1680 mb, respectively. The values cal-

stricted to Q space. The Skyrme interaction GS2, which
was used by Zhuo et al. , is employed to calculate i@i ol

and W'( ) with the method explained in Sec. Il, namely,
the relation (2.4) and effective mass (2.52). The results,
together with our results with the simplified Skyrme in-
teraction (2.46) and (2.47), are shown in Fig. 15 for 20
MeV neutron scattering by Pb. Although the tails of
both curves agree well with each other at the nuclear sur-
face, inside the nucleus the imaginary potentials of the
simpliled Skyrme version are larger than those of G52
by up to a factor of 2. The magnitude of the imaginary
potential depends on the parameter set of the adopted
Skyrme interaction.

Comparing our curves with Zhuo et al. 's we see that the
imaginary potential R'( ) with GS2 agrees with their po-
tential inside the nucleus, but their imaginary potential
extends farther out and agrees well with the phenomeno-
logical optical potential [20]. This should be due to their
adoption of the local density approximation in contrast
to our local momentum approximation [8]. In fact, if we

define the Ferini wave number Pp(R) by the relation
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RM = ~(2plh, E)/(u +q(2plh, E) (5.2)

where the numerator u is the same as that given by (3.3)
with n„= 2, ng ——1, and c„~= —E~, while the de-
nominator top+~ is the one with e'~ „=oo. The ratio
is just the portion of intermediate states belonging to Q
space. The ratio of the imaginary potential agrees well
with the ratio of the state density as shown in Table II.

The effect of absorption of the incoming aux to Q
space, however, is measured by the transmission coef-
ficient, which is not proportional to the imaginary po-
tential as shown by (4.1) approximately. In addition, the
total contribution comes from many partial waves. In
Fig. 13, the ratio of the reaction cross section for Q-space
absorption to the one for P+ Q absorption was shown to-

culated by using the optical potential by Greenlees and
Pyle [20] are 940 and 1860 mb, respectively. Our imagi-
nary potential underestimates a little compared with the
phenomenological ones, because our potential is cut at
the classical turning point although it is larger than the
phenomenological one inside the nucleus. So we see that
the simplified delta-type interaction gives rather good re-
sults, but, to improve our results, more realistic finite-
range interactions as well as the inclusion of various
higher-order terms are necessary. In a practical appli-
cation, however, the use of our semiclassical formula for
W( o& and Eq. (5.1) may be useful.

We assumed symmetry with respect to neutrons and
protons and chose parameter Uo as explained before. And
we also chose Eo ——0, which may not be a good choice in
some cases. For example, protons have a Coulomb barrier
so that Eo may be chosen about the order of magnitude
of the barrier height. Except for the process (aO) with
Po ——oo, the magnitude of the imaginary potential is
sensitive to the Fermi energy EJ: and Po, because these
determine the available phase space for particles. We can
estimate the change of g~ with Uo by dg~/dUO as shown
in Table I.

In preequilibrium reactions, the main contribution to
absorption comes from process (a), in which particle
states should be limited to the Q space. If the con-
ventional imaginary potential in data analyses is used,
then the MSC cross section is overestimated. Chadwick
and Young [4] analyzed the data of nucleon scattering by
ssNb employing Feshbach et al. 's theory [2] and found
that the MSC reaction cross section must be reduced by
a factor B,which is well estimated by the following
formula:

( ) (N„—p)(Np —p —1)(Np, —h)

N„(Np —1)Np,
(5.3)

In Fig. 16 these reduction factors are shown in the cases
of 4 Ca, sNb, and Pb as a function of p = h. It is
seen that this factor becomes important as p increases.
Other processes are similarly evaluated, but they are not
shown here.

~ I I I
i ~ ~ ~ I i I ~ I ~

J
~ I I I i I ~ I ~

0.8

0.6
208

0.4

gether with the imaginary potential ratio W& &/W& 0& in
the case of n+ssNb. Although the reaction cross section
is not proportional to the MSC cross section, this indi-
cates that the reduction factor introduced by Chadwick
and Young [4) overestimates the effect up to a factor of
2.

Chadwick and Young [4] emphasized the importance
of transitions from the P space to the Q space not only
at the first stage but also after collisions in P space.
Our second-order results for the transmission coefFicient
support their claim. However, as already stated, the
second-order trasmission coefficient exceeds the unitarity
limit. If this is improved by more elaborate calculations,
both the direct and second-order transmission coefficients
should be reduced to satisfy unitarity.

We see that the most important imaginary potential
R'~ ~ is independent of the spectator in the target nu-
cleus. This is the result of neglecting the Pauli block-
ing effect, or the Pauli principle acting between the pro-
duced 2p-lh state and the existing particles and holes in
the target nucleus. To estimate this efFect accurately is
not easy in our formulation, but a rough estimation is
possible. Suppose the total number of states below the
Fermi level is Nh, and the total state number of particles
is N~ If the . target nucleus is a p-particle and h-hole
state the number of combinations making a 2p-1h state
is ( 'z ") ( "i ") against ( 2&)( i") for the OpOh state-.
Then the average reduction factor due to Pauli blocking
is given by

TABLE II. Ratio of imaginary potential Q absorption to
P + q absorption, and ratio of state density for q to P + Q
spaces are shown as a function of incident energy for Pb.

E (MeV) W~ /W'~ u(2p, 1h, E)/cu +~(2p, 1h, E)
0 1 1

10 0.44 0.46
20 0.17 0.20
30 0.083 0.11
40 0.03g 0.063
50 0.0083 0.0051

0.2 Nb

~ ~ i I I ~ i ~ I s ~ ~ i I 0'&ma

30 40

FIG. 16. Imaginary potential reduction factors due to Pauli
blocking efFect for Ca, Nb, and Pb for process (a) . For

Ca N„= 14, Nq ——20, for Nb N~ = 26.5, Np, ——46.5, and
for Pb N„= 51,Np, ——104 are used.
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We have discussed the imaginary part of the optical
potential only. The polarization contribution to the real
potential may be computed by the dispersion relation
if we have the imaginary potential for the whole spec-
tra. However, we have not yet evaluated the one for hole
states, so we postpone this discussion until the imaginary
potential for hole states is completed.

We have calculated the imaginary potential for fixed
particle and hole numbers, but these are connected to
the imaginary potential with fixed temperature. This
will be discussed in a forthcoming paper.
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APPENDIX A: CALCULATION OF INTEGRALS
FOR PROCESS (a)

is obtained. Defining

P = Fa+ P2 ——Ps+ P4, P . Ps ——PP~ cos03,

the first b function on the right-hand side of (A2) is ex-

pressed as

As the relation ~(Ps + Pi . P2)/PPs~ & 1 is shown to
be always satisfied, the integral over 83 is performed and

(A2) becomes

I~ = 2x dP2P3dP3 nh, P2 0 P3 —Py
2PP3

xO(Pp —Ps)O(Pi + P2 —Ps —P~)
xO(Pp —Pi —P2 + Ps). (A5)

The integral over the direction of P2 is performed by
defining

b P, + P2 —Ps —(Pi+ P2 —Ps)

+ P1P2 l
cos 83—

2PPs ( PPs

(A4)

For the calculation of ipse ) given by (2.14) it is neces-

sary to evaluate the integral

I~ = dPgdP3dP4 Pa + P2 —P3 —P4

xb(P,'+ P,' —P,' —P4)nq(P2)n„(Ps)n~(P4). (Al)

P2 ' Pa P2P» cos 82,

and using the relation

a 1= 2
d cos 82 ————.

P Pa

(A6)

(A7)

After integration over P4

Ia = dP2dP3b P» + P2 —Ps —Pa + P2 Pa

xni, (P2)n„(Ps)O(Pi + P2 —Ps —P~)

xO(Pp —P, —P2 +Ps) (A2)

The integral range of P3 is fixed by the step functions in

(A5),

max(P~, Pi + P2 —Pp)

& Ps & min(Pp, Pi + Pz —PJ;), (AS)

and the integral over P3 leads to

I~ = vr P2dP2 —0 P» + P2 —P+ —Pp 0 2Pp —P» —P2 P3

+e(PP + Pp —Pi' —P2)o-(Pi + P2' —2P~)9'sl~. '

The integral range of P2 is determined by the two step
functions and ni, (P2) in (A9); P & P2 & Pp for the first
term and P~ & P2 ( Pg for the second term of the right-
hand side of (A9), where P . .Pg are given by (2.17).
After performing the integral we finally obtain (2.15).

I

The calculation is the same as for I except for the inte-

gral over P2, and the same definitions (A3) and (A6) are
used. We consider two cases according to the magnitude
of Pa.

1. Pa&a
APPENDIX B:CALCULATION OF INTECRALS

FOR PROCESS (b)

In this case, the relation
~
cos Hs

~

& 1 is always satisfied
as in (a) and Eq. (Bl) becomes

The integral for the process (b) is 2~
Ig —— PgdPg.

2P
(B2)

Ig —— dP3dP4b Pa + P2 —P3 —P4

xb(Pi + P2 —P3 —P4)np(Ps)np(P4). (Bl)

The range of integration over Ps is given by (AS), but
for Pp & Pa at reduces to Pa + P2 —Pp ( Pa & Pp, »d
(2.22) is obtained.
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2. Pj (Po

In this case, the condition
~

cos Hs~ & 1 [see Eq. (A4)] gives the relation

P'+ P' 2 P2+ P2 P2+ P2
(

' ') —P'P'cos&e P' — ' ' + (
' ') —P'P'cos'~ o. (»)

Using the notation
Is = (Px +P~)z2P (811)

z = 1 —
2 2 cos |2)

lPx + &'i (B4) The average over the direction of P2 is computed by
changing the variable cos Hq to

(BS) is rewritten as

P32
1+ 21+x P32

1+ 21 z &0

(B5)

Noting

P = Py + P2 + 2P~P2 cos82 ~

P/2P~ + 2P& —P~
P2+ P2

(B12)

(B13)

where the range of x is given by

Px —Ps I « 1P'+ P' (B6)

The range of Ps is obtained by (A8) together with (B5)

the average is performed as

1
Ig ——— Igd cos 82

2

(2P +2P —P ) ~

4pxpg l 3)
(B14). Pt

max
~

Px + P~ —PO, P+, (1 —z)
~

~ Px+Pi

& Ps & min
~

Px + P~ —P~, Po, (1+z)
~

.
2 )

(B7)

Let us consider two cases according to the magnitude of
Pg +P2)

P =POT P1 +P2-P02 (B15)

respectively. The integral range of P consists of two
parts, namely,

where P„and Pj are the upper and the lower integral
limits of P, respectively. While cos 82 changes &om —1
to +1, z changes from a to a via P, 1,P . The variable
P changes froxn ~px —Ps~ to Px + Pq. Corresponding to
the first z = P and the second P, P takes the values

a. P~+P,' & P,'+P,' & ZP,'

Equation (B7) reduces to
and

fPg —P2
~

( P 5 Po —
y P,~ + P~~ —Pp~

max~ P, +P, -P„(1—z)
~

2 2 2 Px+P2
2

t', PP+ p'
& Ps & xnin

~
Po, (1+z) ~. (B8)

Po+ P~ + 22 PO2 & P & Pl+P2.

Carrying out the integral,

(B16)

Is = — 6P)P(+ 2P( —
6ps (Px + P~ —Ps) &

4 g 23
—~(~;+s -~.')l)

+z) & Po also holds. The integral range becomes

(B9)

Pi +Pis obtained. Next, the opposite case '
z

' (1 —z) & Px~

pQ+pQ
+Pg —Po is considered. In this case Po & '

z
' (1+z)

holds. The integral range is

where the range of x is given by

2' —Px~ —P~~a&z&
P~ +P (B10)

P, + P2 Po & P3 & Po

and the integral becoxnes

for P & z & 1, (B17)

The integral (Bl) is evaluated as Ix, = (2P() —Px —P~ ).2P (B18)
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The average over the direction P becomes

Is = (2Po —Pi —P2 ) [Pj
4PgP2

(2Pj) —Pq —Pq )2/P, ' + Pg —Pq' (Blg)
4PyP2

Adding together (B16) and (B19) the result is given by
(2.27).

b. ~Ps~ ( Pz~ + Pi~ ( Pz~ + Po~

(P,' —P,' + P')')
max F, 4P2

& Ps & min(P& —P2 + PF, Po ) (C5)

as Pz —P2 & (P&2 —P22 + P )2/4P is shown to be valid.
Equation (2.31) is obtained after integration over Ps. In
order to average over the direction of P2 the integration
range of cos02 must be fixed. The three step functions
which appeared in (2.31) give rise to constraints on cos 82.
After the integral over P3 we obtain

In this case we obtain

Is = (Px + P2)2P
for o, (x(p, (B20a)

Is —— (P, + P2 —2P~) for p & z & 1, (B20b)
2P

where

(C6)

where the range of Ps is given by (C5).
Let us consider two cases according to the sizes of PO-

P~ and P~ —P2.

P~ + P~ —2PF
P2+P2 (B21) The range of P3 becomes

Noting

P = P~+ 2
—P~pPF for z = p, (B22)

max~ P
~

&P &P

First consider the following case.
the average is carried out just as in the previous case and
the result is given by (2.27).

APPENDIX C: CALCULATION OF INTEGRALS
FOR PROCESS (c)

For process (c), evaluation of the integral

P) —P~+P ( PG. ~p g

Equation (C6) becomes

I = (Po —PI;)2P (C8)

I, = dP3dP4 Pg —Pg —Pg + P4

xb'(P~ —P2 —Ps + P4)n~(Ps)ns(P4) (C1)

and the range for P is given by

Pp (P(P~ for Px P2 (PF) (C9)

is necessary. From the energy delta function and two
density functions we obtain

max(P~ —P2, PJ;) & Ps & min(P& —P2 + Pg Po).

(C2)

where

P~ =Py + PF —P~ +P2)

P~ =P~ — P~ —P, +P„
(C10a)

(C10b)

To carry out integrals over P3 and P4 we introduce no-

tations
and the integral averaged over the direction of P2 be-
comes

P = Pg —P2 ——P3 —P4, P. P3 —PP3cos03, (Po Pz)P
2

Pq . P2 ——PqP2 cos02. (G11)

After integration over P4 the energy delta function yields
the relation

Now consider the next case.

S IP; —P,' —P,'+ (P —P,)'] ( Pi P~ +P

1 6 P' —P'+ P'l
b

i
costs — '

i

. (G4)
2PPs g 2PPs

Equation (C6) becomes

The condition
~
costs~ & 1 leads to (Pz —P2 + P )

4P2Ps2, which together with (C2) gives
2P '

g 2P
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P1 —P2&P&PP, P &P&P, +P,

and the range for P is given by

P, —P, & P & P, +P, for P~ & P,' —P,', (C13a)

For Po & Pq combining (C13), (C14), and (C16) we
obtain

Pg&P&Pp, P &P&P for P —P &P~

(C17)

PB&P&P
where

for (C14)

for P~ —P2 & P~. (C13b)

In this case the relation '
2& & Pp must be satis-

fied; this gives the condition

and

Pg &P &P~ for P& &P1 —P2 &Po.

On the other hand, for P1 & Pp,

P —P &P&PP, P &P&P1+P2

(c18)

(C15a)

(C15b)

P, —P, & P& & P& & P & P, & P, + P,

for Po & Pq, (C16a)

Pg&P —P2&PP &P &P +P &P

for P) & Po. (C16b)
I

P~ = Pp+ Pp —P1 +P22,

Pp Pp P] + P2 ~

For various values of P the following relations hold:

for P~ —P2 & P~, (C19)

and

P1 —P2 &P &P1+P2 for P+ & P1 P2 & Pp.

(c2o)
Therefore, in the case Pp & P1 we have

1 2

for max(P() —P», Pp) & P~ —P2 & P(), (C21)

and

I.=
Sp ~ 2(&D —&1 + &i ) ' —2V'p' —&i + &i ) ' —3(&D —I'i ) y I'k —&i' + &i'

1 2

for P2 PF2 & P2 P22 & PF2,

while for P1 & Pp

(C22)

and

I.= (3P,' —3P,'+ 2P,')
6P1

for max(Po —P~, P~) & P, —P2 & Po, (C23)

I = Pi(SPO SPi + 2Pi ) 2(Pi, Pii + Pii) 3(PO Pi, )/Pii Pii + Pii
1 2

for P' —P' & P' —P' & P' (c24)

This case applies only for Pz & Po and Eq. (C4) be-
comes

max~ P~,
~

&Ps &P, —P2+Pp.2 (Pl 2+P ) 2 2 2 2
4P2 )

— 3 — 1 2

First consider the following case.

Pjs —Pjs+P & p

1 2

Now consider the next case.

(C28)

P)~—Pj~+P ~

Equation (C6) becomes

and the integral averaged over the direction of P2 be-
comes

Equation (C6) becomes

and the range for P is given by

(C26) P+ & P1 —P2 the integration range is given by

P1 —P2 & P & P1 + P2) (c3o)

P& &P &P for P1 —P2 & PP, (C27) and averaged integral is
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I, = (SP» —P2)6'
P», & P, —P2 & Po —P». (C31)

P2(SP», —P2)
6

—(P, —P2 +2P») P», —P,2+P~2

P,' —P,' & min(PP, P,' —PP ) (C. SS)

In the opposite case P~ —P2 & min(Po —P», P»), the
integration range is

Adding the obtained results, the final forms are sum-

marized as follows: for Po & Pq,

Pg —P2&P&Pp, P &P&P +P,

and the averaged integral is given by

(C32)
I, = [(Ps —P, +P2) O(Po —P, +P2)

(P»——P'+ P')'o-(P» —Pi + P2)1

and for Pq & Po,

(C34)

I, = P2(SPe —SP, + 2P2)e(P~ —P2 —Po + P») + P2(SP» —P2)

«(Po' —P» —Pi + P2) —2(P» + P2 —P')')'e(P» —P'+ P2) . (C35)

In deriving the above formula the following averages
over angle 82 are used

By using (D3) the average over the direction of P2 is

performed and (2.M) is obtained.

f P')"
(6PgP2) ~

' (2PgP2) ~
'

P'&—
(2P)P2) p

'

(C36)
APPENDIX E: CALCULATION OF INTEGRALS

FOR PROCESS (e)

The integral

where P~ and P„ indicate the lower and upper limits of
P.

I, = dP4 Pg + P2 —P3 —P4

xb(P, + P2 —Ps —P4)n„(P4) (E1)

APPENDIX D: CALCULATION OF INTEGRALS
FOR PROCESS (d) is evaluated. Using (AS) and (A6) the integral over P4

is carried out,

We evaluate the integral 1 f Ps +PqP2cos821
(E2)

Ig —— dP4 Pg —P2 —P3 + P4

xb(P~ —P2 —Ps + P4)ng(P4). (Dl)
From the condition ~cos8s~ & 1 the region of cos82 is

fixed as

Using Eq. (C3) we obtain

1 ( P,' —P,'+ P'l
4 = ~

I
cos8s—

2P P q 2PPs

From the condition
~

cos 8s~ & 1 we obtain the range

—1&a&cos8q &P&1,

where

1 ( —o. & cos 82 & o. & 1,

Ps QP~2 + P22 —Ps2
(E4)

where

PP —Ps2 —Ps QP2 + Ps2 —P~

P1P2

P] —P3 + Ps/P2 + P3 —P,
PgP2

(D4a)

(D4b)

Averaging over the direction of P3

1

4PP,

and further averaging over the direction of P2

(E5)

The average over the direction of P3 yields

1 1
Ig = — dcos02.

4 2PP

1

4P,P, '

from which Eq. (2.42) is obtained.

(E6)
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