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Double-doorway model for pion-nucleon elastic scattering in the S,;, channel
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Resonance energy pion-nucleon elastic scattering in the S;; channel is modeled by assuming
that the pion plus nucleon couple to two resonances, the resonances couple to inelastic channels,
but there is no direct coupling of the pion-nucleon channel to the inelastic channels. The model
is solved by matrix N/D methods. The coupling of the inelastic channels to the elastic channel is
taken directly from data. Using form factors from the constituent quark model, we find the model
is able to reproduce the experimentally determined pion-nucleon phases in the Si; channel over the
resonance region and that the resonance part of the amplitude is negligible at low energies.

PACS number(s): 25.80.Dj

The use of pions to study properties of nuclei has neces-
sitated the construction of dynamic models of the pion-
nucleon interaction which must reproduce the measured
two-body data accurately, must be simple enough to be
used in the many-body problem, and yet must also be
based on the physical processes that we believe drive the
interaction. The first such model was the separable po-
tential model of Ref. [1]. It was soon realized [2] that the
coupling to the inelastic, pion-production channels was
an important piece of physics to incorporate into these
models. Furthermore, the potential models do not have
a pole at the nucleon mass in the P-wave two-body am-
plitudes. It has been shown [3] that this produces an
artificially long-range (in coordinate space) interaction
which has a geometrical [4] effect in pion-nucleus scatter-
ing. This can be rectified by utilizing the Chew-Low (5]
model if it is extended [3,4,6] to also include the coupling
to inelastic channels. Only with this coupling included
can the model fit, in detail, the experimentally measured
P-wave phase shifts. The model has been generalized [7]
to include the Aj3 as an explicit degree of freedom. A
more recent model [8], however, contradicts these mod-
els in that it does not include the affects of the coupling
to the inelastic channels and fits the pion-nucleon data,
albeit only up to 400 MeV.

Recently, data for pion-nucleus reactions have been
taken [9-12] at energies above the delta resonance. Work
underway at KEK and the AGS at Brookhaven, as
well as proposals for PILAC at LAMPF or KAON at
TRIUMPF, would extend this work. Theoretical work at
these higher energies requires a dynamical model of the
N*’s and A*’s which led to a “doorway-resonance” model
[13]. The model is essentially an extended Lee model [14]
in which the inelastic, pion-production channels are in-
cluded but can only be reached by first going through
the resonance channel. The model was able to reproduce
the measured phase shifts in the resonating channels for
pion laboratory kinectic energies up to 1 GeV. In the Sy,
channel, however, a single resonance was used although it
is well known that there are two resonances in this chan-
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nel. The form factor used had an interesting momentum
dependence. The good fit resulted from the momentum
dependence of the form factor and the energy dependence
produced by the inelastic cut which was also included in
the model.

Recently, a two-resonance model [15] has been used
very successfully to understand why the S;;1(1535) cou-
ples strongly to the eta-nucleon channel while the
S511(1650) does not. The double-doorway model proposed
here is very similar to the model of [15]. There, the in-
elasticities were modeled using the eta-nucleon channel.
The model proposed here includes all the inelastic chan-
nels by taking their contribution to the elastic channel
from data. This allows us a detailed fit to the elastic
channel over the resonance region and, hence, a model
which we can use in studying pion-nucleus reactions.

The basic assumption of the model is that the pion
plus nucleon interact by the pion being absorbed and
leaving the nucleon in one of several excited hadronic
states. These excited hadrons may either decay back
into the pion-nucleon channel or into inelastic channels.
The inclusion of the inelastic channels is necessary as
the experimentally measured amplitudes are highly in-
elastic. In constructing the model, it is assumed that (1)
there is no direct pion-nucleon to pion-nucleon coupling
and (2) the elastic pion-nucleon channel does not cou-
ple directly to any of the inelastic channels; the reaction
must proceed through a resonance on its way to the other
channels. This last assumption is the origin of the term
“doorway.” We are motivated to make these assumptions
by several qualitative features of the pion-nucleon data.
The data show very small phase shifts until the resonance
energy is reached. At the same energy as the phase be-
gins a quick rise through 90°, the inelasticity parameter
falls steeply from its low-energy value of 1.

Mathematically, the model can be defined in terms of
projection operators. We define [16] P to be the projec-
tion operator onto the channel in which there is one pion
and one nucleon. Qpg is the projector onto the channels
where any one, but only one, of the resonances is present,
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and Qg is a projector onto the physical inelastic channels.
These inelastic channels can be a nucleon plus several pi-
ons, an excited nucleon or delta plus a pion or several
pions, etc. The only nonzero pieces of the interaction are
then

plus the Hermitian conjugates. Here A; and A! are
coupling constants and |v;) and |w;) are form factors
for pion-nucleon to resonance or resonance to inelastic
channel couplings respectively. This model is a solvable
model. We follow [6] and [13] and introduce an effec-
tive interaction (¢’ |Veg|q). This interaction, when in-

PVQr= Z Ai|vi) (1) serted into a Lippmann-Schwinger equation, will produce
i the exact two-body scattering amplitude for the model.
and We here work with invariant amplitudes which are free
_ 7 of kinematical singularities. This produces [13,17] a

QrVQr= Z A i) (2) Lippmann-Schwinger equation of the form
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where w, = /g2 +m2, wy = /g2 +m%, and w =  Tij(w), is quite simple. If we knew a complete set of in-

wx +wpn. The phase space factor that enters the integral
results from using the invariant amplitude. This equa-
tion was first proposed [18] by Kadyshevski and was first
applied [19] to the pion-nucleon problem by Mathelitsch
and Garcilazo. The solution for V.g is

(@' |Vesr(w) | g} = Z/\ Aj (g [vi) Gij(w) (vi19) > (4)
where G,;j(w) satisfies
> [bir(w —m?) — Lik(w)] Grj(w) = &5 (5)
k

with

Lie(w) = M AL (wi | Qrg(w) Qr|we) (6)

and g(w) = (w — H;)™L. Here H; is the Hamiltonian
in the inelastic channels and m? is the bare mass of the
excited hadronic state, i.e., the mass of the resonance in
the absence of coupling to decay channels. This result
leads directly to a solution for the T' matrix.

We write the T matrix as

(@1T(w)lg) = Z(q |vi) 735 (w) (v5 | g) - (7)

,J

Insert Egs. (4) and (7) into the Lippmann-Schwinger
equation, Eq. (3), and utilize Eq. (5) for the inverse of
Gij(w) to get

D {bin(w —mf) — Li(w) —
k
= Z Dtk Tk]

where &;;(w) is defined by

o [ 9%dd vi(d)vi(d)
£ii(w) = / dwlwly w—w' +in ©)

We see that the matrix D;;(w), which is the inverse of

/\,ﬁ /\k gik (w)} Tkj (w)

w) =6 , (8)

elastic channel states, we could insert them into Eq. (6)
for I;j(w) and Eq. (9) would be a solution to the problem.
At this point, however, we follow Refs. [2-4,6,13] and uti-
lize matrix N/D dispersion theory to circumvent the ne-
cessity of constructing a model of the inelastic channels.

Equation (9) demonstrates that D;;(w) has a simple
analytic structure in the complex w plane. It has only
an elastic and an inelastic cut and satisfies the Schwartz
reflection principle. These properties and the behavior
of each term as w — oo allows us to write a simple dis-
persion relation for D;;(w). Following Refs. [3,6] or [13],
we arrive at

q%*d¢ 1 v2(q")
dwlwhy 1i(q) w—w' +1in
(10)

Dii(w):w—mg—/\f/

for i = 1,2. For the off-diagonal terms we find

Dlz(w) = D21(w)

q/2 dq' 1 'Ui(ql) ’Uj(ql)
= _AIAZ 1o ! ' ; :
4wy Mi(¢') w—w' +in

The function 7;(g) is the ratio of the elastic cross section
to the total cross section in the S;; channel if there were
only one resonance channel. The function 7;;(g) is simply
a convenient way of parametrizing the discontinuity of
D;j(w) across the right hand cut. The simplest model [6]
consistent with the measured total inelastic cross sections
results from taking each of the 7’s to be equal to 7j(g),

the experimentally measured ratlo of the elastic to the
inelastic cross section in this channel. It is defined in
terms of the on-shell T' matrix by

(11)

4w . s s

(@|T@)lq) = Tle) = = (q) *@sind(q) . (12)
By taking 7j(q) directly from the experimentally mea-
sured ampliudes and using the model to predict 6(g), we
are able to avoid constructing an explicit model of the
inelastic channels while incorporating the effect of the

coupling of these channels to the elastic channel.
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We use the form factors for the m + N — N* vertex
derived [15] from the constituent quark model [20],

(alw) = (o) = -30() + | 2L [0(9) + D(@)]

(13)

where

C(@) = v 2 L exp(~*/68%) (14)
27 B2 !

4 ¢ 2 /22
D(g) = V7 3 (3 - W) exp(—q°/68%) . (15)

The model differs from that of [15] in two ways. First,
the use of invariant amplitudes and phase space factors
has led to an extra nucleon energy factor wy in the phase
space for the integrals in Egs. (10) and (11). Second, 7
appears in these integrals in place of an explicit model of
the inelastic channels.

The model contains six parameters, two coupling con-
stants );, two bare masses mJ, and two ranges ;.
The constituent quark model sets Ay = 2; 32/8; and
B2 = (1. In order to achieve a quantitative fit to the
data, we must relax one of these constraints. We keep
the relation between the A’s (A2 = 2 Ay B2/61) but allow
the 3’s to vary independently. We adjust the five pa-
rameters of the model to reproduce the phase §(¢) from
[21] utilizing the parameter 7j(g) from the same reference.
The fit is quantitative for momenta ¢ > 250 MeV/c.
We find A\? = 6.883m,, B, = 214.4 MeV, 3, = 1245
MeV, m{ = 1718 MeV, and m$ = 1833 MeV. The re-

sulting phases b are pictured in Fig. 1. It is satisfying
that the range parameters (; remain reasonably equal
to each other. The renormalization of the masses (the
difference between the bare mass m? and the observed
resonance energy) is also reasonable. We find 273 MeV
and 283 MeV for the S;1(1535) and S;1(1650) respec-
tively. This is somewhat larger than others have found.
It is clear that we have a larger renormalization com-
pared to Ref. [15] because we include all of the inelastic
channels while they include only the eta-nucleon channel.
Similarly we expect a larger renormalization than models
such as those of [22] where only the elastic, pion-nucleon
renormalization is included. The values for 3; are smaller
than found in other models. This is necessary in order
to fit the region near T, ~ 300 MeV. In order to fit this
region a part of the interaction [3,13] must have a cutoff
of several hundred MeV. We find a range of v/63; = 305
MeV for our lowest cutoff.

We find that the resonating part of the amplitude con-
tributes very little at low energies. This is encourag-
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FIG. 1. The phase shift §(g) versus the center-of-mass mo-
mentum gq in the S1; channel. The data are from Ref. [21]
and the curve is the result of the model developed here.

ing in that the considerable physics [23] that has been
learned by working at low energies and neglecting the
resonances is justified. The physics does appear to de-
couple the low-energy region from the resonance energy
region. The model developed here could be further ex-
panded to include a purely phenomenological piece, such
as a separable potential, that could be adjusted to fit the
low energies. A more sophisticated approach (8] would
be to add rho exchange.

We have found a model of the pion-nucleon interaction
in the S;; channel which can be used in pion-nucleus
calculations in the resonance region. The model has a
more physical off-shell behavior than an earlier model
[13] which had only a single resonance and used a form
factor with structure in its momentum dependence. The
low momentum cutoff which we find could have inter-
esting implications for the survival of S;; resonances in
the nuclear medium. If these resonances are physically
as large as this model might indicate, one would expect
them to have a sufficiently large cross section with the
nucleon that they would not survive as resonances in nu-
clear matter. Such a phenomenon appears to have been
seen in photoabsorption [24] cross sections. Before tak-
ing the range parameters from this model too seriously,
however, an extended model in which an additional low-
energy term is added should be investigated. Recoil cor-
rections to the form factors might also be significant at
these energies.
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