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The recent accurate measurements of fusion cross sections at subbarrier energies have enabled
extraction of barrier distributions which could provide a novel test for collective models. %e carry
out a systematic study of subbarrier fusion in rare-earth nuclei using a scheme which incorporates
the interacting boson model for nuclear structure effects. The existing data on vibrational and
rotational nuclei are Gtted with a consistent set of parameters which are then used to predict the
fusion cross sections and distribution of barriers in transitional nuclei. Contrary to vibrational and
rotational nuclei where the cross sections increase smoothly with increasing deformation or mass
number, transitional nuclei exhibit sharp changes in the barrier distribution due to shape-phase
transitions. An accurate measurement of fusion cross sections for Pt and Os nuclei could thus
provide a sensitive test for competing models in this region.

PACS number{s): 25.70.Jj, 24.10.Eq, 21.60.Fw, 27.70.+q

I. INTRODUCTION

Enhancement of subbarrier fusion cross sections in
medium and heavy mass nuclei due to coupling of in-
ternal degrees of &eedom to the relative motion is a well-
established phenomenon (see Refs. [1,2] for a review).
Until recently it was thought that the fusion cross sec-
tions are smooth functions of energy and could be re-
produced by any model which included some coupling
mechanism. This view that fusion cross sections are fea-
tureless and do not provide a good test for models has
been challenged in a series of high-precision experiments
at the Australian National University (ANU). The ANU
group, following the suggestion of Rowley et al. [3], car-
ried out accurate measurements of fusion cross sections
for the reactions 160 + 144~148~154Sm and 160 + 186'
and determined the distribution of barriers directly &om
the fusion data [4—6]. Barrier distributions are rather sen-
sitive to the details of nuclear structure and hence can
provide a good test for various subbarrier fusion models.

In a series of papers [7—10), we have developed a model
for subbarrier fusion which incorporates the interacting
boson model {IBM) [11]to describe the nuclear structure
effects. In a first attempt [8], the path integral method
[7] and the SU(3) limit of the IBM were used to describe
the reaction 0 + 4Sm which showed the feasibility of
the approach. In Ref. [9], the SU(3) limit was replaced
with the 1/N expansion [12] of the wave functions which
allowed more reaIistic calculations. These calculations
employed the usual linear coupling approximation. Most
recently, using a Green function technique [13], we were
able to include couplings to all orders going beyond the
linear coupling approximation [10]. The formalism, in its

present form, describes the nuclear structure effects in
subbarrier fusion accurately, with all the approximations
justified.

The purpose of this paper is to present a systematic
study of subbarrier fusion in rare-earth nuclei. In Sec. II
we give a brief review of the formalism discussing some
of the finer approximations that were not studied pre-
viously. In Sec. III we discuss the effects of couplings
on fusion cross sections and barrier distributions for a
variety of nuclear shapes, e.g. , spherical, vibrational, ro-
tational, and transitional. In Sec. IV, the available high-
precision data are fitted using a global nuclear potential
and coupling parameters that are consistent with the ex-
perimental E2 and E4 transition strengths. Based on the
systematic study in Sec. III we expect the transitional
Os and Pt nuclei to show the most dramatic changes in
cross sections and barrier distributions. Since there are
no data available in this region, we have extended our cal-
culations to Os and Pt nuclei to point out these effects
and stimulate further experiments.

II. SUBBARRIER FUSION IN THE IBM

The application of the IBM to subbarrier fusion is dis-
cussed at length in Refs. [8—10] to which we refer for
details. In this section we brieHy review the formalism
mainly to motivate the parameters used in the calcula-
tions as well as some of the approximations that were not
discussed in the previous work. The Hamiltonian for the
fusing system can be written as
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where r is the relative coordinate of the two nuclei and
( represents the internal (bosoruc) degrees of freedom of
the target nucleus. HI, is the kinetic energy operator for
the system and IBM is an appropriate IBM Hamiltonian
for the target nucleus which we take to be

HIBM = Edad + KQ ~ Q. (2)

Here nd is the number operator for d bosons and Q is the
quadrupole operator

Q = [std + d"s]~'l + y[d d]~'l.

The parameters eg, ~, and y describing the boson inter-
actions are determined within the IBM &om fitting the
low-lying spectrum and transitions of the nucleus being
investigated. The operators st (s) and dt (d) create (an-
nihilate) bosons of angular momentum zero and two, re-
spectively. In the IBM, these bosons represent correlated
pairs of valence nucleons. The brackets denote angular
momentum coupling of two boson operators. The inter-
action between the internal system and the motion of the
nuclei, V(r, (), consists of the Coulomb and nuclear parts
which we take as [14]

~ z, z..' ) ~ 3 ~o)r 5 r (r )Rp),

gr j p~ z1 z2e g ( o ) ( + o+ 1 z o) ( 3 r O (Rl ( (
Z1ZgC 3r 3rRg r 3 r O2R1 10R 2R 5 Rq

(0&r &R'),

and
—1

t r —Rp —RqO(r", ()~
V„„,(r, g) = —Vp 1+exp

a (5)

The subscripts 1 and 2 refer to the target and the pro-
jectile nuclei, R0 ——Ri + R2, and R' = Ri —R2. It is
assumed that R2 & Rq. 0 is a coupling operator between
the internal coordinates and the relative motion which
includes the quadrupole and hexadecapole interactions

0 = uzQ Yi l(r) +u4[d d]~ l. Yi l(r), (6)

where, following the consistent-quadrupole formalism

(CQF) of Ref. [15], the same quadrupole operator of Eq.
(3) is used as in the IBM Harniltonian of Eq. (2). The
uI, represents the strengths of the various multipole tran-
sitions in the target nucleus. Note that the matrix ele-
ments of the interaction (6) between eigenstates of the
IBM Hamiltonian in Eq. (2) scale as N, the number of
bosons. Therefore, in order to keep the average interac-
tion energy constant, ug must scale as 1/¹ Thus, we

introduce the reduced strengths vA, as

u~ = »/(2 IIQIIo &.

The quadrupole matrix element in Eq. (7) is given to
order 1/N by [12]

(2~IIQllo, ) = (N+ 1)(2xpx2+ gx2) + g/2, (8)

where x0 and x2 are the mean fields for the s and d
bosons, and g = —g2/7y. The 1/N correction term in
Eq. (8), i.e. , the second term in N(1+1/N), is important
for a quick convergence of the results with a low boson
number. In earlier work, this term was ignored leading
to a slow convergence with N and hence requiring much

longer computation time. To give an example, results for
the fusion cross section which are converged to within
5—10% of the exact answer are obtained with N = 4
when Eq. (8) is used whereas N 10 is needed when
only the leading term is included. As each additional
boson number roughly doubles the CPU time, this rather
simple point makes a big difference in computation time
(minutes vs hours), and is essential in a systematic study
such as this. Ideally, the quadrupole and hexadecapole
strengths in (6) should be scaled with their respective
matrix elements, however such a scaling leads only to a
renormalization of the value of the hexadecapole coupling
v4 and has been ignored for simplicity.

The nuclear potential as given in Eqs. (5) and (6) con-
tains couplings to all orders in u2 and u4 of Eq. (6),
i.e. , we do not expand the exponential to only first order
as has been done previously, but evaluate its matrix ele-
ment directly using the Green function technique [10]. In
contrast, the Coulomb potential (4) is truncated at the
first order. This is not because of any calculational difB-
culty but because inclusion of the second-order terms in
(4) led to no visible difference. A further approximation
in the Coulomb potential is the use of r for the hex-
adecapole term instead of r 4, which is for calculational
convenience. We have studied this approximation using
the CCDEF code [16]. The use of r 2 led to a slight
change in the results which could be compensated by us-

ing a slightly larger v4 in the approximate calculations.
We calculate the total fusion cross section using the

partial wave expansion in the barrier penetration picture

Vrh2
or„,(E) = ) (2.E+ l)Tg(E),

2pE

where Tg are the penetration probabilities for the dif-
ferent partial waves which can be evaluated numerically
using a uniform WKB approximation, valid for energies
both above and below the barrier [17]
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~~(E) = ). l(f~-1)10i)l' 1+e» ~ 2 —, «[&(r (O~)) —E]'
f--.)

Q2
(10)

where rq and r2 are the classical turning points of the
motion, and ](n„i,)) refers to the number representation
in the interaction basis which diagonalizes the operator 0
with the expectation value (Or)). This result, derived in
Ref. [10], is the familiar representation of the subbarrier
fusion cross section as a weighted average of cross sec-
tions due to tunneling through a set of potential barriers
determined by the eigenvalues of the coupling operator.
As has been emphasized by many authors [18,19], the
validity of this expression depends only on the usual adi-
abatic and rotating kame approximations which we have
discussed previously [9]. Algebraic expressions for the
overlaps and (Ori) in (10) are given in Ref. [10].

III. NUCLEAR STRUCTURE SYSTEMATICS

Epp(E) = ppRP(E) f dE'Tp(E') (12)

It was found that Eqs. (11) and (12) represent the ex-
perimental data for both the total fusion cross section
and the average orbital angular momentum rather well

[22,21]. Differentiating Eq. (12) twice one obtains the
energy derivative of the transmission probability to be
proportional to the quantity [3]

( ) dE2[E ( )]++
l dE
f'dR )(

I

portant in the sum over partial-wave transmission prob-
abilities in Eq. (9), we can approximate that sum with
an integral over E, and, using Eq. (11) obtain [20,22]

Before proceeding with the fits to the data, we present
a sytematic study of the nuclear structure effects for var-
ious shapes. This will be helpful not only for an intuitive
understanding of the existing data but will also suggest
new experiments in uncharted territories where interest-
ing results could be expected. The parameters of the
Woods-Saxon potential are determined &om a global fit
which will be discussed in the next section. To isolate in-
dividual effects, we consider a fictitious nucleus with the
mean fields and bare potential for Yb but with vari-
able values of quadrupole and hexadecapole couplings in
all the schematic calculations in this section.

One convenient way to highlight the effects of nuclear
structure on subbarrier fusion is to look at the energy
derivative of the s-wave transmission probability, since
the spread in energy of this quantity represents the distri-
bution of barriers [3]. Classically, the transmission prob-
ability is a step function which goes &om one to zero at
an energy equal to the height of the barrier. Tunneling
effects smear the step function into a smoother function
(for a parabolic barrier this smooth function is a Fermi
function). Hence the energy derivative of the transmis-
sion probability is a narrow peak centered around the
barrier energy. If several barriers are present due to chan-
nel couplings, the energy derivative of the transmission
probability will become a series of peaks corresponding
to the energies of the different barriers. The heights of
the peaks give the relative weights which the different
barriers contribute to the total transmission probability.

To connect this quantity to the experimentally mea-
sured fusion cross sections, we can approximate the E

dependence of the transmission probability at a given
energy by simply shifting the energy [20]:

e(e+1)a'
2pR2(E)

where Id,R (E) characterizes an effective moment of iner-
tia. Experimentally R(E) was found to be a slowly vary-
ing function of energy [21]. If many values of E are im-

Since R(E) is a slowly varying function of energy, the first
term in Eq. (13) will be used to give the distribution of
barriers.

Figure 1 shows the effect of quadrupole coupling on fu-
sion cross section and barrier distribution as the nucleus
changes from spherical (v2 ——0, dotted line), to vibra-
tional (vs ——0.12, dashed line), and to prolate rotational
(v2 ——0.24, solid line). The other parameters used in the
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FIG. 1. The eKect of quadrupole coupling on fusion cross
section (top) and distribution of barriers (bottom) for various
interaction strengths. The dotted, dashed, and solid lines are
for vq ——0, 0.12,0.24, corresponding to spherical, vibrational,
and deformed nuclei, respectively.
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TABLE I. Nuclear structure and interaction strength pa-
rameters used in the calculations for the rare-earth nuclei.

1 0"

Nucleus
144S
148S
154S
170Yb
186~
192p
194pt

XQ

0.95
0.92
0.74
0.64
0.68
0.69
0.69

X2

0.31
0.39
0.67
0.77
0.73
0.72
-0.72

x
-1.15
-1.15
-1.15
-0.66
-0.60
-0.20
0.15

V2

0.10
0.18
0.26

0.25
0.19
0.17

v4

0.0
0.0
0.18

-0.05
-0.08
-0.09

10

calculation are given in Table I. The asymmetric barrier
distribution in the prolate case is the result of the axially
symmetric deformation. In the geometrical model, the
two peaks are associated with the fusion along the semi-
major and semiminor axes which we will denote as the
"prolate" and "oblate" peaks, respectively. In the case of
the prolate peak, the nuclear potential extends out more
compared to the spherical nuclei, and hence the barrier is
shifted to a lower energy. For the oblate peak the oppo-
site happens and the barrier is shifted to a higher energy.
The barrier distribution follows from averaging over all
orientations. Since there are two semiminor axes against
one semimajor axis, the oblate peak clearly carries more
weight and forms the maximum. With increasing defor-
mation, the weight of the prolate peak is reduced, result-
ing in a more asymmetric barrier distribution favoring
the oblate peak.

In deriving the eigenvalues of the coupling operator
which appear in Eq. (10), one solves a quadratic equa-
tion similar to the eigenmode equation [23] encountered
in the calculation of energy surfaces of individual nuclei
in the IBM. The two roots, positive and negative, of the
eigenmode equation correspond to the prolate and oblate
minima in the energy surface. Similarly here, the posi-
tive and negative eigenvalues obtained in the interaction
representation are associated with the prolate and oblate
peaks in the barrier distribution. For a prolate nucleus,
the root corresponding to the oblate peak is smaller (in
absolute value) than the one corresponding to the pro-
late peak. The weights associated with these eigenvalues,
given in Eq. (10), are larger for the oblate peak than for
the prolate one. Hence in the distribution of barriers one
finds a large peak (corresponding to the large weight) at
an energy only slightly above the energy of the "bare"
potential (corresponding to the small eigenvalue), and a
smaller peak (corresponding to the smaller weight) at an
energy well below the energy of the "bare" potential (cor-
responding to the large, negative eigenvalue). Also, for a
prolate nucleus the parameter y is negative. Increasing
the value of ~g~ leads to a more prolate-deformed nucleus
which also results in a more asymmetric barrier distribu-
tion. Thus there is a one-to-one correspondence between
the geometric model and the IBM descriptions of subbar-
rier fusion in deformed nuclei.

In Fig. 2 we show the e8'ect of the hexadecapole force
on a prolate nucleus. Increasing v4 enhances the cross
sections and favors the oblate peak in the barrier dis-
tributions as opposed to the prolate peak. This can be
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FIG. 2. Same as Fig. 1 but showing the effect of the hex-
adecapole coupling on a prolate target nucleus. The dotted,
solid, and dashed lines denote v4 ———0.08, 0.0, +0.08.

intuitively understood from the geometrical picture as-
sociated with the quadrupole and hexadecapole defor-
mations. For a prolate shape, addition of a p4 ) 0 leads
to a "top"-like shape which enhances the prolate charac-
ter of the nucleus whereas addition of a p4 ( 0 leads to
a "beer can" shape which is more oblatelike. Since the
nuclear potential extends out more in a prolate shape
the cross section is more enhanced in that case. In the
barrier distribution 6gures this effect is noticeable by the
appearance of more weight given to the very lowest bar-
riers when p4 ) 0. Figure 3 shows the similar situation
in an oblate nucleus. The weights of the prolate and
oblate peaks are reversed but the effect of the hexade-
capole force remains the same; increasing v4 enhances
the cross sections and favors the oblate peak in the bar-
rier distribution. A diff'erent study [24] of the effects of
hexadecapole moments in subbarrier fusion gave similar
results.

In Fig. 4, the effect of the quadrupole coupling on pro-
late (dashed line), oblate (dotted line), and p-unstable
nuclei (solid line) is shown. The p-unstable shape cor-
responds to an average of other shapes which is why its
cross section is very close to the prolate one. Note how-

ever that this similarity has completely disappeared in
the barrier distributions with the p-unstable nucleus as-
suming a more symmetric shape. This figure also shows
the power of the barrier distribution as an experimental
tool where small differences in cross sections are con-
verted to large effects which may be more easily identi-
6ed. Finally, we show in Fig. 5 the barrier distributions
in the three limits of the IBM, namely, the SU(5) (dot-
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FIG. 5. Barrier distributions in the three limits of the IBM.
The dotted, dashed and solid lines correspond ta the SU(5),
SU(3), and the O(6) dynamical symmetries.

ted line), SU(3) (dashed line), and 0(6) (solid line) which
represent the vibrational, rotational, and p-unstable nu-
clei.
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FIG. 4. The eKect of quadrupole coupling in deformed
nuclei with prolate (dashed line), ablate (dotted line), and
p-unstable (salid line) shapes. The hexadecapale coupling is
set to zero.

FIG. 3. Same as Fig. 2 but for an oblate target
nucleus. The dotted, solid, and dashed lines denote
e4 ———0.08, 0.0, +0.08 as before.

IV. APPLICATION TO RARE-EARTH NUCLEI

In this section we present the results of a global fit
to the accurate fusion cross section and barrier distri-
bution data measured by the ANU group in the rare-
earth region. The nuclei encompass a wide range of
quadrupole and hexadecapole deformations and corre-
spondingly show a variety of behavior in the fusion
data. In these calculations we have used a simple global
parametrization of the Woods-Saxon potential, taking

1
in all cases B2 ——2.62 fm, Rq ——1.04A& fm, Vo ——

67.5(Ai j144)i~s MeV, a = 1.22 fm. The mean fields za
and x2 were determined &om a given IBM Hamiltonian
(which fits the low-lying spectroscopic data) by varia-
tional techniques [12]. The adjustable parameters were
the quadrupole and hexadecapole interaction strengths,
v2 and v4. All of these parameters are listed in Table I.

The results for 0 on 4'~ ' Sm and VV are com-
pared with the experimental data in Figs. 6—9. In all
these 6gures the experimental barrier distribution points
(shown in the lower panels) were deduced in Refs. [4—6]
from the cross section data using a finite-difference ap-
proximation for the second derivative. In these references
the energy step size used in the 6nite-diHerence formula
was 2 MeV in the laboratory. Since the four lowest energy
points are spread over an interval of less than 2 MeV, for
these energies the barrier distributions were not deduced
in Refs. [4—6]. Also note that the cross section data at
the highest energies in Refs. [4—6] are not shown in our
6gures since we are concentrating on the subbarrier re-
gion. In general the calculations rnatch both the cross
section and the barrier distribution data quite well. The
interaction strengths v2 and v4 which we found to best
describe the data are consistent with the known E2 and
E4 matrix elements for these nuclei. In particular, the
v2 values are very similar to the P2 deformation parame-
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FIG. 6. Comparison of predicted fusion cross section and
barrier distribution with the experimental data for the re-
action 0 + Sm. The coupling parameters are given in
Table I. The ANU data shown in the figure are preliminary
[6].

FIG. 8. Same as Fig. 6 but for Sm. The data are from

[4,6].
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ters used for these nuclei. The e4 values are a factor 2—3
larger than the P4 values which is due to the fact that
the hexadecapole operator used in the sd model is an ef-
fective one which underestimates the true strength. For
example, the hexadecapole charge necessary to describe
the B(E4) values in the Sm isotopes is a factor of 3 larger
in the sd model as compared to the sdg model [25].

The trends in the data are easily understood in the
light of the nuclear structure systematics discussed in
Sec. III. In particular, we note the large increase in
quadrupole coupling strength in going from the spherical

Sm nucleus to the vibrational Sm and rotational
Sm nuclei, and the corresponding increase in the fu-

sion cross sections and widening of the barrier distribu-
tions. Also, in comparing Sm with W one should
point out that although both nuclei are prolate, the sign
of hexadecapole moment changes from positive for the
former to negative for the latter. As was discussed in
Sec. III, this has a large effect on the barrier distribu-
tion. For Sm, the hexadecapole coupling enhances the
prolateness to skew the barrier distribution even more,
whereas for 8 W the two couplings interfere and hence
the barrier distribution becomes more symmetric than
for a pure prolate case.

Having demonstrated the ability of our model to de-
scribe well the available fusion data, we can now proceed
with some confidence to consider other rare-earth nu-
clei for which subbarrier fusion has not been measured.
The Os-Pt region would be interesting to study since
these nuclei go through a shape transition from prolate
to oblate as one increases the number of protons Rom
76 to 78. The resulting effect on the barrier distribu-

tion shoad be noticeable by the sl ewness toward higher
energies for prolate nuclei and toward lower energies for
oblate nuclei. To illustrate quantitatively the type of ef-
fect we expect, we show in Fig. 10 the calculated fusion
cross sections and barrier distributions for the fusion re-
actions 60 + Os, Pt. We used the same global
parametrization of the nuclear potential and chose the
interaction strengths to correspond to the measured E2
and E4 matrix elements for these nuclei [26]. The Pt
cross section is much smaller than the Os one due mainly
to the higher Coulomb barrier. However, in the barrier
distribution one clearly sees the effect of the shape tran-
sition. The difference between the prolate and oblate
distributions is partially masked by the smaller values of
~y~ and the large negative hexadecapole moments which
favor the oblate peak in both nuclei. Nevertheless, the
prolate (first) peak is still prominent in ~e20s leading to
a double hump structure whereas the second peak has
almost disappeared in Pt. Thus a precision measure-
ment of fusion cross sections in these two nuclei should
be able to distinguish between the barrier distributions
relatively easily.

V. SUMMARY AND CONCLUSIONS

We have performed a global analysis of subbarrier fu-
sion data for rare-earth targets. Using the interacting
boson model allows us to describe a variety of nuclear
structure effects in these reactions. With the confidence
gained &om the model's successful description of the
available data, we have calculated the fusion cross sec-
tions and barrier distributions for the reactions ~ 0 +

Os, Pt. The prolate-oblate phase transition in this
region should give rise to noticeable e6'ects in the fusion
barrier distribution, which we hope will stimulate further
experimental efforts to study these reactions.

The Xe-Ba nuclei exhibit characteristics similar to the
transitional Os-Pt region. These nuclei are not as well
studied as the Os-Pt isotopes, and very basic informa-
tion, such as whether they are prolate or oblate, is still
missing. Subbarrier fusion could be an effective experi-
mental tool in learning more about the Xe-Ba region and
answer some interesting questions, e.g. , whether they also
undergo a shape-phase transition.

0
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o 200
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-100
65
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70 75
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FIG. 10. Predicted fusion cross sections and barrrier dis-
tributions for the reactions 0 + Os {solid line) and 0

Pt (dashed line).
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