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Electromagnetic scattering from relativistic bound states
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The quasipotential formalism for elastic scattering from relativistic bound states is formulated
based on the instant constraint in the Breit frame. The quasipotential electromagnetic current is
derived from Mandelstam s five-point kernel and obeys a two-body Ward identity. Breit-frame wave
functions are obtained directly by solving integral equations with nonzero total three-momentum,
thus accomplishing a dynamical boost. Calculations of electron-deuteron elastic form factors il-
lustrate the importance of the dynamical boost versus kinematic boosts of the rest frame wave
functions.
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In the study of relativistic bound states and scatter-
ing processes for two particles, it is possible to perform
a reduction from four dimensions to three dimensions to
obtain a quasipotential formalism [1—4]. The quasipoten-
tial is the kernel of the three-dimensional equation, which
in general may be defined covariantly. A quasipotential
reduction is commonly used in studies of the nucleon-
nucleon (NN) interaction because it provides a covariant
dynamics which is similar to the Schrodinger dynamics.
For NN scattering, one generally assumes a quasipoten-
tial in the form of meson-exchange interactions with cou-
pling constants selected to provide a realistic description
of the NN scattering data and deuteron properties [5].

In this work, a quasipotential reduction procedure
is applied to the Mandelstam five-point function to
derive an electromagnetic current operator consistent
with quasipotential wave functions for relativistic bound
states. The quasipotential reductions for the five-point
kernel and initial and final states must be consistent with
each other in order to reduce the current to a simple
form. We find a consistent reduction to three dimensions
in the Breit frame, where the time component of photon
momentum vanishes for elastic scattering, i.e. , q = 0,
based on the instant constraints, p = p' = 0, where p
is the relative momentum in the initial state and p' is
the relative momentum in the final state. Moreover, the
instant constraints lead to a gauge invariant formalism
which is symmetric in its treatment of the particles.

With the instant constraints in the Breit frame for elec-
tromagnetic matrix elements, the initial and final wave
functions must be calculated with total three-momentum
P = —2q for the initial state and P = 2q for the final
state. Only for q = 0 are the usual rest frame wave func-
tions used. For q g 0, the required wave functions may
be thought of in terms of a boost of the rest frame wave
function. In the instant form of relativistic quantum me-
chanics one encounters a similar form of boost, and it
must be dynamical in the sense that the generator of
boosts depends on the interaction. In this paper, we for-
mulate the dynamical boost within the instant quasipo-
tential formalism. We present calculations of deuteron
electromagnetic form factors using a simple approxima-
tion of the boost to demonstrate the feasibility of calcu-
lating the required wave functions in the Breit frame and

we illustrate the importance of the dynamical boost.
Formally, the quasipotential is defined such that the re-

sults for two-body scattering based on the Bethe-Salpeter
equation are reproduced by use of the quasipotential and
a three-dimensional propagator. Consider the Bethe-
Salpeter t matrix,

d4 I

T(p, q;P) = K (p, q;P) + K (p, p';P)

x Gg'(p', P)T(p', q; P),

i I'(p; P)I'(q; P)
2PO PO PO

where I = I'tpzp2 and terms regular when P = P are
omitted.

The same T matrix and bound state vertex func-
tion can be produced with a quasipotential propagator,
Go (p, P) = igo2~h(C(p)), where C(p) = 0 is a con-
straint which reduces integrations from four to three di-
mensions:

T =K +K G T

The quasipotential kernel is defined by

It QP ~Bs + g Bs(GBs GQP)~QP (4)

For the bound state vertex, one has a homogeneous equa-
tion, found by substituting Eq. (2) into Eq. (3) and re-
taining pole terms:

4
I (p'P) = K (p p P )Go (p P)P(p P) (5)

where Go = iS~ q(()2P+p)iS~ (2()2P—p') is the prop-
agator for two free particles, and K is the kernel con-
sisting of irreducible graphs. This equation may be ab-
breviated as TBs KBs + KBsGBsTBs with implied
four-dimensional integration. Note that P = pq + p2 is
the total momentum and p = 2(pq —p2) is the relative
momentum.

A bound state with mass M gives rise to a pole at
P' = P':—v'M' + P':
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Note that if the quasipotential constraint is not applied to
momentum p in this expression, in principle one obtains
the full four-dimensional vertex function on the left-hand
side in terms of the quasipotential vertex function on the
right-hand side.

The two most frequently used quasipotential con-
straints are the one-particle-on-shell formalism devel-
oped by Gross and collaborators [4,5], based on C(p):—
(pz —e2) = 0 (e2 = /mz + p2), and the equally ofF-

shell formalism in the center-of-mass frame developed by
Blankenbecler and Sugar and Logunov and Tavkhelidze
[1,2], based on C(p) = (pi —pz)/2i/P2 = p P/i/P = 0.
When one particle is on mass shell, there is an inher-
ent and inconvenient asymmetry of the formalism. This
can be overcome [5] by symmetrizing the formalism but
then there arise unphysical singularities in the one-boson-
exchange quasipotential which must be circumvented.
An alternative, manifestly symmetric treatment that has
no singularities is afforded by the equally off-shell for-
malism. In the center-of-mass frame, the equally off-'

shell constraint is equivalent to an instant formalism
because the constraint causes interactions to have zero
time component of momentum transfer. An extension
of the equally off-shell formalism to the full Dirac space
for two fermions has been developed by Wallace and
Mandelzweig [3] by incorporating the iterative parts of
crossed-box Feynman graphs, using a form of the eikonal
approximation.

Before analyzing the five-point kernel, we sketch the
derivation of the Dirac two-body propagator of Ref. [3],
modified to incorporate the instant constraint in the
Breit frame instead of the equally off-shell constraint.
This propagator is derived by consideration of the four-
point box and crossed-box Feynman diagrams, such that
V G0 V is a good approximation to K( "~ +
K( ~. The instant constraint is applied to the relative
momenta in the boson-exchange interactions, and the
crossed box is approximated in an iterative form yielding

4
(k', p) iSs(i) (pi)i'(2) (p2)

2ir 4

~(box) + ~(c-box)

V (k', p) igo (p; P) V (p, k),OH%
(9)

where the three-dimensional propagator is

)- ~i'(pi)~ (»)
(pi + p2) (eD/2) —El ez

PliP2

and its inverse is

go (p» P) = pi'y2 [(pi + p2)&D/2 pip2(ei + &2)]» (11)

where p;u+(+p;) = +u+(+p;). Using the instant con-
straint we write

(p P) = go(p P)(2 )~(p'). (12)

The corresponding wave equation for the relativistic
bound states is given further on in Eq. (26).

To formulate the quasipotential reduction for electro-
magnetic interactions, we start from the Mandelstam for-
malism [6] for a five-point function, T5, which has a pho-
ton of momentum q coupled in all possible ways to the
two particles and exchanged mesons. The five-point func-
tion, T5, may be expressed as follows:

T = (1+TG )K (1+G T),

(J~) = xrG, 'K, 'G, 'r, (14)

where four-dimensional integrations are implied. The ir-
reducible five-point kernel, K5, is given by coupling the
photon to particles one and two (lowest order impulse
contributions) plus coupling the photon to all possible
internal lines of the two-body kernel K . To extract
the electromagnetic matrix element for elastic scatter-
ing from the bound state, one substitutes Eq. (2) into
Eq. (13). The electromagnetic matrix element is pro-
portional to the residue of the double pole term in the
resulting expression,

x V~~~(p, k)

and

4
K(' ") = V (k', p) iSp(, )(pi)iSp(z)(q2)

2ir 4

with implied four-dimensional integrations. A normal-
ization factor N = 1/i/4P'oPe ari—ses because of the
factors in Eq. (2).

To write the matrix element with quasipotential vertex
functions we use Eq. (5) in Eq. (14) to obtain

xV (p, k), (z~) = mrG~ K~ G~ r, (15)

where q2
——pi + k2 —ki —(pi, p2), which is the eikonal

approximation. The nucleon propagator is expanded as
with

Z~ =X~ G 'X 'O 'Z~ .5 0 5 0
~ (p')iS~()(p;) = i) o*

o's, —~'+ ~np.-

where p; = + and p, A~*(p, )po are projection oper-
ators for Dirac spinors with Hermitian normalization,
e; = gmiv + p,. (pi 2 ——2P + p), and m~ is the nu-
cleon mass. The deuteron mass and total energy are mD
and pi + pz

——eD = gmD + P2. Integration of p yields

Equations (15) and (16) are rather general and they can
be used with any choice of initial and final quasipoten-
tial propagators [7—9]. We have found that the formalism
reduces to a simple and appealing form when instant con-
straints are employed in the Breit frame.

We proceed to analyze the five-point kernel, K5, in
the same spirit as was used to derive the Dirac two-body
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propagator. For photon coupling to particle one, we de-
velop the quasipotential current J&&(1), corresponding to
the impulse approximation. The current Jg&(2) describ-
ing the photon coupling to particle two may be obtained
by relabeling 1 ++ 2. Meson-exchange currents can be

treated by a straightforward extension of the analysis.
Starting with the Bethe-Salpeter impulse approxima-

tion current, Ks I'&S&~z~(p2)(2a) b (p2 —p2), the
quasipotential impulse approximation current takes the
form

d' 'd4
K "(k'P'kP)= —x b5 1 ) 'I

(2 )4 iP P 2q~
I

p~& ()~ KQP(kl I P/) 1 4 1) PP( I
)

P1P1P2

Ai'(p~) A2'(») Kg~(„k P)
PqPZ —ei +ig P2P2 —e2+ig (17)

I ", = eg (p,"Eg(q ) + io-,""q F2(q )j(2m')) .

Again we neglect the dependence of the quasipotential
factors on the time component of loop momentum, p .
We choose to work in the Breit frame, where q
p' —p = 0 for elastic scattering because the instant
constraints on the quasipotential, i.e. , p = p' = 0, are
consistent with q = 0. Neglected contributions to the
current from singularities of KQ are expected to yield
small effects. Because the quasipotential singularities are
neglected, only the fermion poles contribute.

Because KQ Go KQ contains an eikonal approx-
imation of crossed graphs, we include the five-point
crossed graphs for the current with similar approxima-
tions,

QP(c-box) KQPGQPKBS(c-box) GQPKQP
5 0 5 0 (19)

To be consistent with the treatment of crossed graphs in
the derivation of the Dirac two-body propagator, in the
foregoing expression for the crossed-box contribution to
the current we have replaced Go by GQO . MoreoverQP

the boson exchanges of K5
' " are replaced by KQ

The reduction Go~ K~ G~o I' = Gs I' (discussed be-
low) is used to remove factors of G~o K~ from Eq. (19).
This yields an expression for the K5

' identical to
K5

QP(box) except that p2 is replaced by q2, which is then
evaluated as in Eq. (7) using the eikonal approximation.

The sum of K5 ( and K5 may be ex-
pressed in three dimensions as

K~"(k', P';k, P) = K~ (k', p')
(2~)s

xigo(p'; P') Jr~(l) igo(p; P) K~ (p, k) (20)

where the particle one impulse-approximation current
operator is

p p, O~ p 0~/ 0 p ~ P2 P2 m2J (1) —= I & p —[I' —&, p, &,l, p, ]
Ey + Cl

(21)

where I'& is the one-body electromagnetic operator for a
particle of charge ei,

Equation (21) summarizes in a relatively simple form
twelve contributions which follow from evaluating the
fermion pole contributions to Eq. (17) and the similar
crossed-box term. This result involves particle two oper-
ators even though Jr~(1) describes the coupling to par-
ticle one. A corresponding term is obtained for photon
absorption by particle two.

Because the calculation of the current in the Breit
frame is performed with the quasipotentials KQ in
Eq. (17) consistently evaluated at k' = p' = p = k
0, it follows that the quasipotential factors in the current
may be absorbed into the initial and final state vertex
functions when matrix elements are evaluated,

I'G K g Jg~(l)g K G I' = I'g Jy~(1)g I',

(22)

owing to the relation KQ Go I' = I', which is a short-
hand for Eq. (5) evaluated with constrained relative mo-
mentum, p = 0. This reduction is exact only if the
constraint in K5 is the same as the constraint in the
initial and final vertex functions. If the equally off-shell
constraints are used in the vertex functions, then the
reduction should not be made and unphysical singulari-
ties in K~ must be circumvented [8]. (In general, con-
straining the left and right sides of a quasipotential with
inconsistent constraints always leads to unphysical singu-
larities. ) Almost all formalisms based on the equally off-
shell constraint, including the "equal time" and "BSI.T"
approximations of Hummel and Tjon [9,10], assume the
K Go I' —+ I" reduction while ignoring the inconsis-
tency of the constraints on the left and right sides of
KQ . This leads to an inconsistency with conservation
of the relative energy, which dictates p' P' = 0 (and
P' = P+ q), because p. P = 0 and p' P' = 0 are in-
compatible with it. It also leads to an ambiguity as to
whether the constraint used in K5 or the equally o8'-
shell constraint is used when the rest frame vertex func-
tions are boosted to the Breit frame. It will be seen later
that this boost ambiguity produces significant differences
in the form factors in comparison with the required d.y-
namical boost.

Using Eqs. (20), (15), and (22) for Ks~, (J"), and
K~ Ge~ I' = I, and defining @ = goI, the current ma-
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trix element for elastic scattering takes the simple form

(Jl"~(1)) =
2ED

",0 I p+ -q;P'
I

J" (1)@(p;P).2~s q 2 )

The current, Jl~(1), is called the box-cross current be-
cause it derives from the corresponding terms of K5. Re-
markably, it obeys an exact isoscalar, Ward-Takahashi
identity with respect to the two-body Dirac propagator
of Eqs. (10) and (11):

q. JI/(1) = eiFi(q ) (g '(p';P') —g '(p;P)) (24)

Thus working in the Breit frame and retaining the five-
point crossed-box contributions leads to a gauge invari-
ant quasipotential analysis of electromagnetic scattering.
The formalism of Ref. [9] based on the equally oK-shell
constraint satisfies current conservation only at the level
of positive-energy states.

The required wave functions cannot in general be ob-
tained by a kinematical boost of rest frame wave func-
tions because one does not have a four-dimensional rela-
tive momentum. Instead they must be calculated directly
in the Breit frame. Thus the boost problem within the
instant quasipotential formalism is nontrivial. The com-
plete relation of the rest frame wave function to the Breit
frame one involves a change of quasipotential constraint
and a corresponding change of the quasipotential used
to solve for the wave function. It is a straightforward
matter to prove that the change of the quasipotential is
governed by

K = K +K~ '(G —G )K, (25)

where, for example, QPl refers to the instant constraint
in the rest frame, Ci(p) = p P/v P2, and QP2 refers to
the Breit frame instant constraint, C2(p) = p. P, where

P =
2 (P + P'). Equation (25) defines forinally how

the interaction kernel changes when a boost from the
rest frame to the Breit frame is performed, such that
the same underlying covariant kernel applies in the four-
dimensional formalism.

Calculations of the instant wave functions in the Breit
frame have been performed based on solving

are eigenfunctions of J and J . However, l, L, and S
separately do not commute with go . To proceed, we
define sixteen Dirac plane-wave basis functions,

~'.,';. ,-M, (p P) = ui'(C»i)u (»»)X„:,(~), (28)

where

and s, = k2 and J P ' = MgPM'.
The usual partial-wave analysis is inapplicable due to

the nonzero total angular momentum L. The homoge-
neous equation is solved in three dimensions using the
basis functions (28) with only q'i integrations carried out
analytically. Radial and polar angle integrations are per-
formed numerically. The homogeneous equation is solved
for MJ ——0 at fixed values of total momentum using the
Malfliet-Tjon iteration procedure [12]. Wave functions
with polarization states Mg ——+1 are obtained from the
M& ——0 state by using the raising and lowering operator,

= Q(J+ M )(J —MJ + 1)J+Q
In principle, the change of the quasipotential must

be determined by solving Eq. (25), but it is of interest
to study simpler approximations in these initial calcu-
lations. Variation of the quasipotential with total mo-
mentum is approximated in a very simple manner in this
work, V(p' —p, P = + —q) = V(p' —p)/A(q2) where
A(q2) is fit to produce the correct deuteron total energy,
eD = (M&2 + q2/4)i~2. Figure 1 shows that the required
change of the potential is modest, with A varying linearly
over a wide range of q2 values. When A(q ) = 1 is used,
the potential is too attractive and the binding energy of
the deuteron increases from 2m~ —MD —2.2 MeV at
q = 0 to 2m~ —MD = 4.2MeVat q = 200 fm
The difference in the deuteron form factors produced by
setting A(q ) = 1 is minor in comparison with the am-
biguity in the boost of rest frame wave functions. Note
that with the instant constraint, V~ ~ as well as go
and Jl~ are nonsingular.

Results for the deuteron magnetic form factor are
shown in Fig. 2. The solid line result includes the im-
pulse approximation plus perp, wo.p, and ~gp meson-
exchange currents, calculated with the instant wave func-
tions and current operators. We use the same meson-

go (p'; P)1 (p'; P) =
2 s V(P P; P)g(p; P), (26)

P

for P = +q/2 and V = iK. A one-boson-exchange po-
tential is used with scalar, pseudovector, and vector me-
son exchanges (cr, 8, il, n, w, p) based on modified Bonn B
parameters [8,11]. The normalization condition is

I I & I
J

& I & I
[

I I1 R

1.10

1.05

d3
@(»P)&1&2 2 (&i + &2)@(»P) ( 7)

1.00
100 150

q' (fm ')
200

The Breit frame total angular momentum operator is
J = Ji+Jq ——l +S, where' = I+L, j. =rxp, L = Rx
P, and S =

2 (cri+cr2) Because J .and J' commute with

go and V, solutions of the homogeneous equation (26)

FIG. 1. The scaling of the potential,
V(p' —p, P = + —q) = V(p' —p)/A(q ), that produces con-

stant deuteron mass, Mo = (eD —P ) = 2m~ —2.22464
MeV: full propagator (solid), ++ states only (dotted).
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exchange-current operators as Hummel and Tjon [8—10]
with g~ ~ = 0.563, g ~ = —0.4, and g „~ = —0.206.
We find that use of the conserved impulse approximation
current of Eq. (21) provides electron-deuteron scattering
results which differ little from use of just I'zp2p2. More
important is the dynamical boost. To illustrate this, we
compare the impulse approximation contributions based
on solving Eq. (26) (dotted line) and two approximations
based on using the rest frame wave functions with a kine-
matical boost as follows:

&(p P) = A~(&)A2(&)@(p-.t P-.t) (30)

100

10

10

10

10 4

10
20 40

q' (fm ')
60 80

where P„,t ——(m~, 0), P = (e~, kq/2), and ZP„,t ——P.
The Lorentz transform of the relative momenta, Cp, ,t ——

p, is ambiguous since it is not possible to simultaneously
satisfy both constraints: (p = 0) and (p,„t = 0). In
Fig. 2, the dashed line is the result of satisfying (p
0), while the dash-dotted line is the result of satisfying
(p,„t = 0). The difference of the two kinematical boost
prescriptions shown in Fig. 2 provides a measure of the
ambiguity of kinematical boosts of equally off-shell wave
functions. The dynamical boost does not suffer from this
ambiguity and it is seen to provide results which differ
significantly from those of both of the kinematical boosts.

The instant quasipotential formalism in the Breit
frame which is developed in this work provides an attrac-
tive formalism for analysis of electromagnetic scattering
from relativistic bound states. A conserved current and
a two-body Ward-Takahashi identity are realized. The
formalism is symmetric with respect to particle labels
and it is free of singularities, at least at the one-boson-
exchange level. The formalism provides in principal a

FIG. 2. Elastic e-d magnetic form factor: consistent calcu-
lation with IA+MEC (solid). Impulse approximation only:
consistent calculation (dotted), boost approximations with
p (Breit)=0 (dashed) and p,„,= 0 (dash-dotted). See text.

solution to the long-standing problem of how to boost
three-dimensional wave functions with the instant con-
straint. The boost problem is nontrivial but it has been
found to be soluble in practical calculations, although
the complete boost requires further work. The significant
differences in the results based on instant wave functions
calculated directly in the Breit frame and the two approx-
imations to them based on kinematical boosts suggest the
importance of the formalism of this paper.
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