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Medium effects on the rho meson
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The property of a rho meson in dense nuclear matter is studied using the +CD sum rule. The
spectral function appearing on the hadronic side of the sum rule is evaluated in the vector dominance
model that takes into account the interaction between the rho meson and the pion. Including pion
modification by the delta-hole polarization in the nuclear medium, we find that as the nuclear density
increases the rho meson peak in the spectral function shifts to smaller invariant masses and its width
becomes smaller. We discuss the possibility of studying the rho meson property in dense matter via
the dilepton invariant mass spectrum from heavy-ion collisions.

PACS number(s): 25.75.+r, 14.40.Cs, 12.40.Vv

We have recently studied the rho meson property in
nuclear medium in the vector dominance model (VDM)
[1,2]. Including the coupling of the rho meson to the pion,
which is further modified by the delta-hole polarization
of the medium, we Bnd that with increasing nuclear den-
sity the position of the rho meson peak in the spectral
function moves to larger invariant masses and its width
increases [3]. Similar conclusions have also been obtained
by Hermann et al. [4]. In Ref. [3], we have further found
that the in-medium rho meson mass is, however, reduced
if the bare rho meson mass in the model is assumed to
decrease in the medium according to the scaling Ansa, tz
of Brown and Rho [5]. We have thus concluded that
the mean-Beld effect, parametrized by the scaling mass
in Ref. [3], is more important than the loop corrections
calculated by the UDM.

A more consistent way to incorporate the mean-field
effect is through the @CD sum rule. In the @CD sum
rule [6], the spectral function appearing in the disper-
sion relation for the current-current correlation function
is usually taken to be a delta function plus a continuum.
According to Hatsuda and I ee [7], the rho meson mass
in the medium determined from the @CD sum rule de-
creases with increasing density as a result of the partial
restoration of chiral symmetry in dense matter. To in-
clude loop corrections in the hadronic side, one can use

I

the spectral function from the UDM but treat the bare
rho meson mass as a parameter to be determined from
the @CD sum rule.

In terms of quarks, the current for a rho meson is given
by

(2)

P ImII(s)
ReII(Q ) = — ds + subtractions.

jr + 2 (3)

For large Euclidean four-momenta, Q2 (= —q
—s) ~ oo, the real part can be evaluated perturbatively
by the operator product expansion [8]. Including opera-
tors up to dimension 6 and twist 2, we have

7p 7p (1)2

Its correlation function in the medium

n~ (q) = i f e*' (rJ„(z)J (0))pd'T,

where (. . )z denotes the expectation value in the
medium, can be expressed in terms of the transverse and
longitudinal parts. At zero momentum, g = 0, the two
are, however, related and only the longitudinal correla-
tion function II is needed.

The real and imaginary parts of the correlation func-
tion are related by the dispersion relation,

2

;((q~,»A q)(q~"»A q))~— ) ((qp„A q) (q'p" A q')) p
q'=u, d
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q'=n, d q =tt)8
(4)

In the above, n is the @CD coupling constant, Qo is
an arbitrary scale parameter, and D„=o)„—igA„A /2
with A the SU(3)-color matrices and A the gluon
field. Both the light quark masses and their conden-
sates are taken to be the same, i.e., mq ——m = mg

and (qq)~ = (uu)~ = (dd)~. The last two terms in the
above equation are the derivative condensates from the
nonscalar operators as a result of the breaking of I orentz
invariance in the medium [7,9]. The symmetrization and
traceless operator is denoted by S.
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The imaginary part of the correlation function at s )
0 is parametrized phenomenologically by a contribution
&om the rho meson and a continuum, i.e. ,

8~1mII(s) = E 0(so —s) + 1+ —0(s —sp). (5)
S(s) o.s

s
In the above, E is a constant, s0 is the continuum thresh-
old, and S(s) is the rho meson spectral function. The
factor 1/s is required to relate the imaginary part of the
correlation function to the spectral function in hadronic
models.

In the normal QCD sum rule [7], the rho meson spec-
tral function is taken to be a delta function, i.e. , b(s —m ).
Here we shall use the one from the vector dominance
model that includes the effect &om the delta-hole polar-
ization, i.e.,

2Er(s)
( )

[s —m~ —ZR(s)]~ + [Zr(s)]2
'

where Z~ and Zp are, respectively, the renormalized real
and imaginary parts of the rho meson self-energy as cal-

where M is the Borel mass. The Borel transform also
removes the need for subtractions in the dispersion rela-
tion.

Carrying out the Borel transform of both sides of Eq.
(3) and taking the ratio of the resulting equation to its
derivative with respect to —1/M, we obtain

J,"e 'r~'S(s)ds
Jo" e '& ' [S(s)/s]ds D '

where

(8)

culated in Ref. [3]. The bare rho meson mass m~ is about
770 MeV in &ee space but becomes density d.ependent in
the medium due to the change of the quark cond. ensate.

To suppress the contribution &om higher-order opera-
tors, one usually introduces the Borel transform which is
defined by

, „(
LM = llm (&')"

I
—,

I
(7)

g~, n~~;g&(~=M~ (n —1)! ( dQ r

1+ — 1 — 1+ e
8m mq

2

and
8m m

D = 1+—' 1 —e " + 4 pp + +
81M ~~ z+ M4A~m~P~ —

3M6 3m

(10)

In deriving Eq. (8), we have made use of the usual mean-
field approximation,

16
((qW&Vs& q)(qV"Vs& q))& =

9 (qq),',
16

((qV & q)(q'W"& q')), = (qq)', ~«. ——(11)

The vacuum condensates, quark mass, and QCD cou-
pling constant are taken to be (qq)o ———0.023 GeV,—'(G„„G" )o ——0.0168GeV, mq ——3.6MeV, and n, =
0.3. All except the quark condensate are commonly
adopted values. We use a smaller value for the quark
condensate than that of Ref. [7] m order to get the cor-
rect rho meson mass in free space with our imaginary
part of the correlation function.

The in-medium scalar condensates are smaller in ab-
solute value than the vacuum ones as nucleons remove
condensates in the vacuum. For not too high nuclear
densities, the density dependence of the in-medium can-
densates can be approximately expressed. as

(qq). = (qq)o+ (qq)~p~
(12)

—'(G„„G" ) = —'(G„„G" )o —— p

where m~ ——830 MeV is the nucleon mass in the chiral

limit [7], p~ is the density of the medium, and. (qq)N is
the quark content of the nucleon. The second relation
follows from the trace anomaly in QCD [7].

The d.erivative condensates in Eq. (4) are approxi-
mately given by the product of the nuclear density and
the expectation value of the corresponding operators in
the nucleon. The latter can be expressed in terms of the
moments of the quark distribution in a nucleon [10], i.e. ,

) (Sq'p„, D„, . D„„q')
g =tc)d

1= (—i)" A„q
I p„, . p~„—trace terms I,

rE2mN

for n = even. (13)

In the above, p„ is the momentum of the nucleon and

1

A„= 2 z [u&(z) + uN (z) + d&(z) + d&(z)] dz.
0

(14)

Using the empirically known quark distribution function
in a nucleon at the QCD perturbative scale of 1 GeV [11],
we find that Ag —0.938 and A3 0.121.

To determine the rho meson mass m* in the nuclear
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medium, we solve the sum rule in two steps. We first fix
the threshold energy so by requiring that N/D on the
right-hand side of the sum rule, Eq. (8), is insensitive to
the Borel mass in the range of 0.55 & M2 & 0.75 GeV .
Then the bare rho meson mass m~ in the spectral func-
tion S(s) is determined by equating the left-hand side
of the sum rule, Eq. (8), to the determined N/D. This
procedure is found to work very well. We note that for
S(s) = h(s —m2) as in the normal @CD sum rule the
square of the rho meson mass is simply given by N/D.

We find that the bare rho meson mass m~ decreases
with increasing nuclear density as a result of the reduced
quark condensate in the medium. The in-medium rho
meson mass m*, determined by the pole of the rho meson

propagator, i.e. , F(m ) = m —m —ZR = 0, is shown
by the solid curve in Fig. 1. It is about 530 MeV and 220
MeV at normal and twice normal nuclear matter density,
respectively. The corresponding continuum threshold 80
is about 0.87 GeV and 0.47 GeV, respectively. We
have also shown in this figure by the dotted curve the
in-medium rho meson mass determined &om the usual
@CD sum rule using a delta function for the rho meson
spectral function [7]. We see that our results are similar
to those from the normal @CD sum rule calculation.

The rho meson spectral function in the medium, given
by Eq. (6) and evaluated with the density-dependent rho
meson bare mass, is shown in Fig. 2. We see that as the
peak of the spectral function moves to smaller invariant
masses, M = 8 /, its width also becomes smaller. These
results are qualitatively similar to those of Ref. [3) us-
ing the scaling rho meson mass in the vector dominance
model.

In our study, we have neglected in the oper-
ator product expansion the twist-4 operators such
as (qp„qqp~q), (qp„psqqp~psq), (qp [D» Gi,„]q), and

(qp"ps(D„, Gg„)q) with G„„=e„„~G ~/2 as the den-
sity dependence of these condensates is not known. We
do not know at present if our result will be modified by
these operators. Further studies are thus needed.

Also, the accuracy of the mean-field approximation
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FIG. 1. The density dependence of the rho meson mass.
The solid curve is obtained with the rho meson spectral func-
tion evaluated in the vector dominance model that includes
the delta-hole polarization of the nuclear medium. The dotted
curve is from the usual +CD sum rule calculation assuming
that the rho meson spectral function is a delta function.
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FIG. 2. The spectral function of a rho meson. The solid
curve is for a rho meson in free space. For a rho meson in
the medium, the dotted and dashed curves correspond, re-
spectively, to nuclear densities of po and 2po, where po is the
normal nuclear matter density.
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used in Eq. (11) to relate the 4-quark condensates to
the 2-quark condensate in the medium is not known.
Therefore, there remains the possibility that the density
dependence of the 4-quark condensates is much weaker
than Eqs. (11) and (12). In this case, we expect that
the +CD sum rule will be satisfied with a much smaller
mass shift of the rho meson. Indeed, if we assume that
the 4-quark condensates do not depend on the density
and are given by their vacuum values determined from
the mean-field approximation, the in-medium rho meson
mass is found almost independent of the density. The
rho spectral function in the medium is therefore similar
to that given by the vector dominance model [3, 4].

In conclusion, we have introduced a consistent method
to incorporate both the mean-field efFect and the loop
corrections on the rho meson property in dense nuclear
matter. This is achieved by using the spectral func-
tion calculated &om the vector dominance model in the
hadronic side of the @CD sum rule. The in-medium rho
meson mass is found to decrease in the matter if we as-
sume that the density dependence of the 4-quark con-
densates can be factorized as the square of the 2-quark
condensate. This confirms our previous results based on
the scaling mass that the mean-field effect is more im-
portant than the loop corrections.

The property of a rho meson in dense matter can be
studied via dilepton production &om the pion-pion an-
nihilation in heavy-ion collisions [12—18]. Although the
reduced rho meson mass in the medium makes its identifi-
cation more difBcult because of the background kom eta
decay and bremsstrahlungs [19], heavy-ion experiments
that are being carried out at the Bevalac [20,21] and be-
ing planned at the Heavy-Ion Synchrotron at GSI o8'er
a unique opportunity to verify experimentally the pre-
dicted property of the rho meson in dense nuclear mat-
ter.
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