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Widths of transverse momentum distributions in intermediate-energy heavy-ion collisions
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The need to include dynamical collision momentum transfer contributions, arising from interacting
nuclear and Coulomb fields, to estimates of fragment momentum distributions is discussed. Methods
based upon an optical potential model are presented. Comparisons with recent experimental data of the
Siegen group for variances of transverse momentum distributions for gold nuclei at 9802 MeV frag-
menting on silver foil and plastic nuclear track detector targets are made. The agreement between

theory and experiment is good.

PACS number(s): 25.70.—z

Recently, Dreute et al. [1] reported measurements of
fragment yields and transverse momentum distributions
produced in the breakup of gold projectile nuclei with ki-
netic energies between 2002 and 9803 MeV. In their
analyses of the data for transverse momentum distribu-
tions of light and heavy fragments, they found that the
standard deviations o (i.e., the so-called widths) of the
distributions were considerably larger than those predict-
ed by statistical models [2,3]. More recently, Morrissey
[4] questioned these findings on the basis that the as-
sumption of the same A /Z (mass-to-charge) ratio for the
fragments as for the initial projectile could result in an
overestimation of the heavy fragment transverse momen-
tum distribution. Morrissey suggested that a better
prescription for the fragment A /Z ratio is the one due to
Siimmerer et al. [5], which favors more neutron-deficient
fragments than are indicated by the A/Z ratio of the
projectile. Following Morrissey s suggestion, Dreute
et al. reanalyzed their data using the Summerer parame-
trization and concluded that the widths of the transverse
momentum distributions were still significantly larger
than statistical model predictions [6]. Application of the
estimated charge-to-mass ratios from the gold spallation
experiments of Cummings et al. [7] indicated that the
fragments were even more neutron deficient than the
Summerer et al. predictions and also indicated that the
widths were still larger than those predicted by statistical
models.

In earlier work, Brady et al. [8] measured similarly
large values of transverse momentum widths of fragments
produced by the breakup of 1.2A GeV lanthanum ions on
carbon targets. Again, the analyses were performed us-
ing the assumption that the fragment A /Z ratio was that
of the incident lanthanum nucleus. Based on the analyses
by Dreute et al. , one suspects that these larger momen-
tum widths will survive even if Brady et al. reanalyze
their data using alternative A/Z prescriptions. Further
evidence of the inadequacy of a purely statistical model in
describing transverse momentum widths comes from the

Kr+' Au reaction [9], target fragmentation data [10],
other experiments by the Siegen group with lighter pro-

where o.
,
' is the modified width, P, is the mean squared

momentum transfer in the ith component direction
(i =x,y, z in a Cartesian frame), A is the mass number of
the fragmenting nucleus, F is the fragment mass number,
and u; is given by

o, =o oF( A F)./( A —1 ) . — (2)

The parameter o.
o is usually related to the Fermi momen-

tum of the projectile (P~) via

cro=PF /5, (3)

where PF is obtained from electron-scattering measure-
ments. Since no simple, well-defined prescription existed
for estimating collision momentum transfers, it became
customary to write

o,' =oo,„F(A F)/(A —1),—

where the o.o,„~ are deduced from the experimental mea-
surements of o.,

'- and then directly compared with o.
o ob-

tained from Eqs. (2) and (3). For example, in their
pioneering measurements at the Bevalac, Csreiner and
collaborators [16] reported that the fitted values of o o ob-

jectiles [11], the argon fragmentation measurements of
Tull [12], and ' 0 data at lower bombarding energies
[13]. Recent experiments by Brady and collaborators
[14] for Nb+C, La+C, and Au+C reactions again fol-
low the same trend, i.e., the widths of the transverse
momentum components of the fragments are significantly
broader than predictions based upon momentum conser-
vation and internal Fermi motion alone.

The solution to this quandary, as discussed in Refs.
[2,15], lies in the dynamics of the collisional momentum
transfers. Years ago, Goldhaber pointed out [Eq. (10) of
Ref. [2]] that collision momentum transfers will modify
the width of the momentum distribution in the direction
of the momentum transfer according to

F2
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tained from Eq. (4) were about 10—20 percent smaller
than those based upon measured Fermi momenta (from
electron-scattering data) for the breakup of the light nu-
clei ' C and ' O projectiles at energies above 1A GeV.
The experimental and theoretical situations up to 1984
have been described in detail by Stokstad [17].

In recent work [15], an optical model momentum
transfer formalism was developed and used to successful-
ly describe the measured momentum distributions of

La fragmentations at high energies [8]. In Ref. [15] it
is shown that the transverse component of the momen-
tum transfer can be estimated from

d
Qi(E b): Ap AT f d gppp(g'p )f d gTpT(g'T )Vp f Ret(E, b+z'+g'p gT )— (5)

Xexp[ x /2B—(E)], (6)

where E is the two-nucleon kinetic energy in their
center-of-mass frame, o(E) is the nucleon-nucleon total
cross section, a(E) is the ratio of the real-to-imaginary
part of the forward scattering amplitude, and B (E) is the
nucleon-nucleon slope parameter (which describes the de-
crease in the XX difFerential cross section as the momen-
tum transfer increases). Values for these parameters are
taken from various compilation and are listed in Ref.
[19].

At energies ~4003 MeV, nonlocal effects and other
modifications of the nucleon-nucleon interaction are im-
portant. Also, compression effects lead to higher densi-
ties of the system. To account for these effects, the total
transverse momentum per nucleon is defined to be [20]

Pi(E, b) /A = [Qi(E,b) Qi(Eo, b) ]/A—, (7)

where Eo is the balance energy (in MeV per nucleon) for
the system. The values of Eo used to evaluate Eq. (7)
were taken from balance energy systematics [21]. For
Au+Ag collisions, Eo=47A MeV, and for Au+C (C is
a major CR-39 constituent) collisions, Eo=50A MeV.
Note that all of the energy dependence in Eq. (7) arises
from the energy dependence in the transition amplitude
[Eq. (6)].

When evaluating Eq. (7), free-space, two-body transi-
tion amplitudes are used at the beam energy of 980M
MeV to compute Qi(E, b). To compute the balance-

In Eq. (5) the collision momentum transfer for each
projectile nucleon-target nucleon pair is given by the gra-
dient of the nucleon-nucleon (NN) t matrix. This results
in an NX momentum transfer which is a function of the
NN separation (y=b+z'+g'p —gT). To obtain the total
momentum transfer in the nucleus-nucleus collision, we
integrate over the projectile and target nuclear density
distributions. The integration along the beam direction
z' arises from the usual time integration (dt =dz'Iv) asso-
ciated with the collision impulse. In Eq. (5) the nuclear
densities p; (i =P, T) are normalized to unity, the A; are
the mass numbers of the colliding nuclei, and v is their
relative velocity. The gradient is taken with respect to
the projectile internal coordinates gp and t is the com-
plex, constituent-averaged, two-nucleon transition ampli-
tude. The latter is the Fourier transform of the elastic
scattering amplitude and is parametrized in the usual way
[18]as

t(E, x)= —(E Im )'~ o (E)[a(E)+i][2mB (E))

energy correction [Qi(Eo, b)], however, free-space ampli-
tudes are found to be inadequate. This is not surprising
since it is well known that medium effects significantly
modify the free nucleon-nucleon interaction at these
lower energies (e.g. , -50A MeV). Therefore, the slope
parameter B (E) and nucleon-nucleon cross section o(E)
may be significantly different, in low- and intermediate-
energy nucleus-nucleus collisions, from their free-space,
two-nucleon values. To modify these, we note that in the
nuclear medium the local mean free path A, is significantly
larger [22] than the value obtained from

(poaNN ) (8)

where o.&& is the usual free-space nucleon-nucleon total
cross section, and p0=0. 17 fm is the nuclear number
density. This increase in the mean-free path arises from
Pauli blocking of intermediate states and nonlocal effects.
Although Eq. (7) is written to account for nonlocal
effects, it does not properly account for the effects of Pau-
li blocking. One method to account for this is to use
medium-modified cross sections oNN(E) and slope pa-
rameters B(E) in the transition amplitude [Eq. (6)]. For
the present work, we will focus only on o NN(E) and as-
sume that B(E)=B(E).

A simple method for estimating o.zz is to use phenom-
enological mean-free paths obtained from experimental
nucleon-nucleus cross-section measurements [23]. An ac-
curate parametrization of these is given by [24]

X=16.6E (9)

where A, is in units of fm, and E is the beam energy in
MeV/nucleon. Note that mean-free-path values given by
Eq. (9) are nearly identical to those derived from nonlo-
cal, optical-model calculations [22]. At E =50A MeV,
Eq. (9) yields A, =6 fm. Inserting this into Eq. (8) and
solving for the cross section yields o.&&=10.2 mb. This
value is used herein to calculate Qi(Eo, b) in Eq. (7).

One final input remains. Since Pi(b) is a function of
impact parameter, an appropriate method for choosing
the most probable impact parameter for each fragmenta-
tion channel is necessary. As before [15], the most prob-
able impact parameter for each nucleon removal channel
b, A (=1,2,3, etc.) is estimated using a semiempirical
model. For this work, we use HZEFRG1 [24], a newly-
developed model which incorporates the A, from Eq. (9)
and actual nuclear charge radii from electron scattering
into a geometric abrasion-ablation-frictional spectator in-
teraction (FSI) formalism. These "most probable" im-
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TABLE I. Most probable impact parameters (b, in fm) and x
components of transverse momentum transfer (P„ in MeV/c) as
a function of fragment mass number (F) for 9803 MeV gold nu-
clei fragmenting on silver and carbon targets.

P„(b)

o I.2—
Q)
(3

0.8—
+

CR-39

175
150
125
100
75
50
25

Silver target
11.68
10.55
9.53
8.60
7.75
6.95
6.22

246
843

1700
2581
3377
4001
4474

0.4
1.6

1.2—

e 0.8—

Ag

195
175
150
125

Carbon target
10.00
8.71
7.27
5.91

23
158
550
879

F2 F2o'=o + P+ Pl l g2 I g2 lC (10)

where P, , is the ith component of the Coulomb contribu-

pact parameters are inserted into Eqs. (5) and (7) to ob-
tain the corresponding transverse momentum transfers
Pt(b)/A. These are converted to x (or y) components us-
ing the assumption P„(b)=P~(b)=P~(b)/&2 since no
significant experimental di6'erences were found for the x
and y variances of the transverse momentum distribu-
tions in the experiments [1].

Table I displays representative values of the most prob-
able impact parameters and P (b) for various fragment
masses F for 9802 MeV ' "Au projectiles fragmenting on
Ag and C targets. Figure 1 displays transverse mornen-
tum widths (dashed curves) obtained using these values of
P„(b) in Eqs. (1) and (2) with o c= 112 MeV/c (which cor-
responds to a Fermi momentum of P~=250 MeV/c).
The agreement with the experimental data of Ref. [6] is
satisfactory. In their work, Brady et al. [8] suggested
that Coulomb repulsion could play a significant role in
determining fragment momentum widths. To investigate
this possibility, we add a Coulomb contribution in quad-
rature to Eq. (1) as

0 4 I I l I

25 75 125 175
Fragment mass number

225

FIG. 1. Standard deviations o of transverse momentum dis-
tributions for 980M MeV gold nuclei fragmenting on Ag foil
and plastic nuclear track detector (CR-39) targets. The experi-
mental data (crosses), for M=1 multiplicity fragments, were
taken from Ref. [6]. The calculated values, obtained using the
methods discussed in the text, were estimated for Ag and C (a
major constituent of CR-39) targets. The solid curve includes
Coulomb eFects, and the dashed curve does not.

tion to the momentum transfer. It is calculated using Eq.
(13.1) of Ref. [25]. The resultant Coulomb-modified
widths are represented in Fig. 1 as the solid curves. Note
that, as expected, there is a slight increase in the estirnat-
ed values for o'. The agreement between theory and ex-
periment is still good. Improved agreement might be ob-
tained with a more sophisticated treatment of the
Coulomb repulsion. Nevertheless, the present agreement
is satisfactory for demonstrating the inadequacies of the
statistical model and for demonstrating the essential need
to incorporate collisional momentum transfer contribu-
tions into any realistic description of these phenomena.
Our multiple-scattering-theory-based approach provides
a convenient analytical tool for investigating heavy ion
momentum transfers and the associated fragment
momentum distributions.
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