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Particle-drip lines from the Hartree-Fock-Bogoliubov theory with Skyrme interaction
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We calculate positions of one- and two-particle, proton and neutron drip lines within the Hartree-
Fock-Bogoliubov theory using Skyrme interaction. We also determine an approximate r-process path
de6ned as a line where the neutron binding energy is equal to 2 MeV. A weakening of the nuclear
shell structure at drip lines is found and interpreted as resulting from a coupling with continuum
states.
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A description of nuclei far &om the stability line is one
of the most important challenges for the nuclear struc-
ture theory. Various methods of extrapolating measured
nuclear masses to large neutron or proton excess have al-
ready been proposed [1]. The proton-drip line has been
reached and crossed experimentally in several places of
the nuclear chart. On the other hand, the neutron-drip
line has been experimentally reached only for very light
nuclei. Its exact position for heavier nuclides is still not
known and theoretical predictions [1] may difFer by as
much as 12 mass units for Z=50.

In the present study we report on calculations deter-
mining the proton and neutron, one- and two-particle
drip lines by using the self-consistent mean-field ap-
proach. Since the position of one-particle-drip lines de-
pends crucially on a cancellation between mean-field and
pairing eKects, the complete Hartree-Fock-Bogoliubov
(HFB) equations [2] have to be solved, which allow for
a correct description of the interplay between particle-
particle and particle-hole channels of interaction. We use
here the HFB theory with Skyrme interaction [3].

The HFB method has an advantage of giving nuclear
density which goes to zero at large distances, even for nu-
clei having Fermi energy arbitrarily close but below zero.
At the same time, when it is solved in the coordinate
space it fully takes into account the coupling of bound
states to continuum [3]. In this way one avoids the ap-
pearance of unphysical particle gas which would surround
the nucleus if the BCS approximation had been used to
describe pairing correlations. The HFB method has re-
cently been used [4] to describe properties of nuclei far
from stability constituting the neutron-star crust.

Many diferent parametrizations of the Skyrme force
existing in the literature have been obtained by fitting
properties of known nuclei. Apart from standard ver-
sions [5,6] used in various nuclear structure calculations,
there are recently numerous attempts to obtain improved
parameters. A large-scale adjustment of parameters to
many nuclear masses has been possible by using the
extended Thomas-Fermi approximation to the Hartree-
Fock (HF) method [7], and the particle-drip lines have
been determined in this way. A force devised for a de-
scription of nuclei far from stability has been obtained
[8] by fitting the Skyrme energy functional to the free

energy of nuclear and neutron matter calculated using
hyper-netted chain techniques. Improved parametriza-
tions have been found in the seniority HF calculations
[9]. The particle-drip lines have also been estimated from
the relativistic Hartree theory [10].

An extrapolation to nuclei far from stability can be
meaningful only if the force parametrization is used
within the same theoretical method where it has been
determined. Unfortunately, the numerical eKort of the
HFB calculations is large, and a large-scale fitting of pa-
rameters is still unavailable. Moreover, both the fitting
and the extrapolation should be made by using deformed
HFB codes in the coordinate space which do not yet ex-
ist. In this study we present a pilot calculation within
the spherical approximation to the HFB method as de-
scribed in Ref. [3], and we use the SkP force parametriza-
tion, which has been obtained there by fitting properties
of several magic nuclei together with the Z=50 isotopic
chain.

For fixed proton number Z, the neutron-drip line sep-
arates the heaviest even-N nucleus from the next odd-N
isotope such that the neutron separation energy S„ is
negative,

S„—= E "(N) —E ~(N+ 1) & 0, (1)
where E "'"(N) and E (N + 1) denote ground-state
energies of neighboring even and odd isotopes, respec-
tively. In the HFB theory the number of particles is not
conserved and the energy is a function of the Lagrange
multiplier A called the Fermi energy. By changing A we
may obtain HFB solutions with arbitrary (not necessarily
integer) average particle numbers. Since the HFB varia-
tional wave function contains only even-particle-number
components, the usual HFB solutions describe even nu-
clei even if the average particle number N is odd or not
integer at all. We denote the ground-state energies ob-
tained in this way by E "(A).

In order to describe odd nuclei one should in princi-
ple use variational function containing only odd-particle-
number components. Usually one avoids this step by
using the so-called blocking approximation [2]. In the
present study we still simplify the calculations by ap-
proximating ground-state energies of odd nuclei as

E (A) E' "(A) + min E„(A), (2)
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where E„(A) are the quasiparticle energies obtained in
the HFB theory for a given value of A. As shown in Ref.
[3], this is a fair approximation to the blocking approach.

Because in the HFB theory the neutron number is a
continuous variable, we may fulfill the one-neutron-drip-
line condition (1) by looking for such two values of the
Fermi energy A and A' that

E- "(A') —E'"(A) = 0 (3)
and N(A')=K(A) —l. On the other hand, in the HFB
theory the Fermi energy is rigorously equal to the deriva-
tive of ground-state energy with respect to the particle
number,

gEeven (~)
BN

and we may use the following first-order Taylor expan-
sion:

(4)

which gives

E'"'"(A') = E'"'"(A) —A. (6)
Inserting approximations (2) and (6) to the one-neutron-
drip-line condition (3) one obtains

A+ minE„(A) = 0, (7)

A=O. (9)
This corresponds to simply omitting the neutron-number
constraint when solving the HFB equations. Of course,
the constraint on proton number always must be present
when using conditions (7) or (9) because it defines the
number of protons Z at which we determine the positions
of neutron-drip lines. In order to obtain the positions
of proton-drip lines we may repeat mutati8 mutandis all

and this condition has been used in the calculations of
the present study.

The advantage of using such a condition consists in
avoiding all explicit calculations for odd nuclei as well
as constraints for neutron number ¹ Once the HFB
equations are solved under condition (7) we can calcu-
late the (not necessarily integer) neutron number K(A)
corresponding to the obtained Fermi energy A. We then
establish the one-neutron-drip line as passing between
the even isotope closest to the obtained neutron num-
ber N(A) and the next heavier odd isotope. With this
prescription and approximations (2) and (6) one can de-
termine the position of the drip line with a precision of
+2 mass units.

Outside the one-neutron-drip line all odd isotopes are
unstable, whereas the even ones are stable up to the two-
neutron-drip line de6ned by

S,„:—E '"(K) —E' '"(%+2) & 0, (8)

where S2 is the two-neutron separation energy, and
E'" "(N) and E'"'"(%+2) denote ground-state energies
of neighboring even isotopes, respectively. Considera-
tions similar to those presented above allow us to approx-
imate condition (8) by the HFB equations solved under
the condition

above considerations.
In our numerical calculations the neutron-drip lines

have been determined for even Z between Z=8 and 124,
and the proton-drip lines for even N between N=8 and
210, i.e., well beyond the fission instability limits. An
overview of the results is presented in Fig. 1 where the
scale is large enough that one can read off the exact po-
sitions of drip lines &om the Fig. 1. The convention used
is that of a nuclear chart, i.e. , the even-even nuclides are
represented by squares delimited by the pairs of ties on
the abscissa and on the ordinate. Longer ties show limits
of squares for particle numbers divisible by 20. The lines
in Fig. 1 separate squares corresponding to stable and
unstable nuclides.

The influence of closed major shells on proton-drip
lines is clearly visible at Z=50, 82, and 126. At these
proton numbers the one- and two-proton-drip lines coin-
cide and have long horizontal sections centered around
N=50, 104, and 194, respectively. This corresponds to
closed proton shells to which adding neither one nor two
protons can produce a stable nucleus. At large Z, the
proton shell structure at proton-drip lines is therefore
the same as that for stable nuclei. On the other hand,
for smaller proton numbers the shell structure is not vis-
ible at proton drip lines.

Similar efFects are seen in Fig. 2 where we present the
average proton pairing gap A„[3] and the binding en-
ergy per particle B/A calculated along the one-proton-
drip line as functions of the proton number. At large
proton magic numbers Z=50, 82, and 126 the pairing
correlations disappear and the binding energy sharply in-
creases. At lower magic numbers the pairing correlations
decrease but do not vanish, while the binding energy has
wide maxima, which is a signature of a less pronounced
shell structure. On the other hand, at the one-neutron-
drip line (i.e. , when protons are deeply bound) the proton
pairing gap vanishes at every usual magic number, Fig.
2.

A weakening of the shell structure at neutron-drip lines
is manifest when looking at the results presented in Fig.
1. Neither one- nor two-neutron-drip lines have long
vertical sections at constant N values corresponding to
usual magic numbers. Only wide bends are seen around
N=126, 184, and 258, which are the magic numbers of
the spherical shell model. They illustrate the remaining
influence of the shell structure in nuclei with very large
neutron excess.

This is confirmed by the behavior of the neutron pair-
ing gap DN and of the binding energy along the neutron-
drip line, Fig. 3. The weakness of a shell effect at N=82
is especially striking. It can probably be attributed to
a modified position of the 16&ig2 orbital, which at the
neutron-drip line is located in the middle of the N=82
shell gap. This supports the suggestion [ll] that the
spin-orbit splitting may be smaller at large neutron ex-
cess, because a larger surface diffuseness may lead to a
decreased strength of the spin-orbit interaction form fac-
tor. In fact, it would also be very interesting to determine
the spin-orbit strength at large neutron excess, which can
be done in the frame of the relativistic Hartree-Fock the-
ory [12,13], and see whether it may modify the position
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of intruder states at the neutron-drip line.
In Fig. 1 we also present the results of the HFB cal-

culations with the neutron Fermi energy being fixed at
the value of 2 MeV. This roughly corresponds to the ap-
proximate r-process path [14],which should pass through
nuclei which are at the origin of the abundance maxima.
Available experimental information about the r-process
path suggests that it should pass through nuclides 30Znso,

48 Cd82) and 69 Tmg26 which in Fig. 1 are shown as full
squares.

Our approximate r-process path goes through
69 Tm$26 at K=126, where a vertical section of the path
reappears. This illustrates an increased role of the shell
structure when one moves away kom the drip lines and
when the coupling with continuum states decreases. On
the other hand, such vertical sections do not reappear at

140

120

100

140

120

100

AI I I I I I I 11111111 I I I I I I I I I

11

"flllllll IIIIIIII Illlllll I

1p —drip line

r'
IIIIII IIIIIIII IIIIIIII I

I I I I I I I 11111111 I I I I I I I I I I I I I I I I I I I I I I I I 11111111 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I-

gS

ne

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I T'

I
I

r
I

I

1n —drip line

IIII III II III I I I III IIIII IIIIIIII IIII IIII IIII III I IIIIIIII III I III1 IIIIIIII II I IIIII I Ill l

20 40 60 80 100 120 140 160 180 200 220 240 260

Neutron Number N

FIG. l. One-particle (bottom) and two-particle (top) neutron and proton drip lines obtained within the HFB theory with
the SkP Skyrme interaction. The middle line in the top part of the figure corresponds to an approximated r-process path.
Three full squares represent positions of the three nuclides being at the origin of abundance maxima i.e. Zn50 Cd82 and
1S5
6s Tmig6.
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FIG. 2. Binding energy per particle B/A (bottom) and
the proton pairing gap A~ (middle) calculated at the
one-proton-drip line as a function of the proton number Z.
The proton pairing gap A„calculated at the one-neutron-drip
line is also shown (top).

%=50 and 82, and our r-process path misses the nuclides
30zn50 48 Cd82 by a few mass units. However, dynamic
reaction networks r-process calculations with the HFB
masses should be performed if one wants to properly as-
sess the validity of the force parameters at large neutron
excess [15].

In conclusion, the HFB calculations with the SkP
Skyrme force performed within the spherical approxima-
tion for nuclei with large proton or neutron excess indi-
cate that the shell structure at magic particle numbers

FIG. 3. Same as in Fig. 2, but for neutrons.

is weaker than that in stable nuclei. This effect can be
attributed to the pairing interaction with the continuum
states taken into account in the HFB method. The de-
tailed positions of particle drip lines may certainly be
afFected by the deformation efI'ects. Therefore, the spher-
ical HFB analysis presented here should be extended to a
model allowing for various spatial deformations, and the
work along this line is now in progress.
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