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Band structure systematics and symmetries in even-even nuclei
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It is shown that the experimental in-band energy ratios for the even-even nuclei obey universal
systematics similar to those observed by Mallmann for the quasiground band. Systematic correla-
tions between energy ratios belonging to different bands are also found in certain cases. Finally,
correlations between mixed energy ratios are shown to be useful in characterizing the evolution of
the nuclear collectivity.

PACS number(s): 21.60.Ev

The experimental data show that in the even-even nu-
clei there are level structures which evolve rather reg-
ularly with A, Z, or N, the best known such struc-
tures being the so-called quasiground, quasibeta, and
quasigamma bands (denoted in the following by qgb,
qPb, and qpb, respectively). A valuable collection of such
bands is the compilation of Sakai [1].

An important observation concerning the regularities
of the qgb is that of Mallmann [2], who showed that the
ratios of the excitation energies of the form E(J)/E(2)
fall on universal, smooth curves, when plotted as a func-
tion of the first such ratio, E(4)/E(2); here E(J) denotes
the excitation energy of the state of spin J. This empha-
sizes the fact that the energy of the first excited state (2+)
is a valuable scale factor for the whole band. The first
and most general explanation of these universal curves
was given by the VMI model [3—5].

In this Rapid Communication we point out that other
quasiband structures obey universal systematics similar
to those of the qgb as well, and also that di8'erent en-
ergy ratios related to quasiband structures can be used
in a simple way to display the evolution of the nuclear
collectivity over the whole nuclide chart.

The main point is the recognition of the importance of
the energy di6'erence between any two levels in a certain
band as a scale factor for the whole band, and perhaps
for other bands as well. We therefore deal with energy
di8'erence ratios and study the correlations between two
such quantities. A recent use of the energy ratios of the
type E(J+2)/E( J) within bands has been demonstrated
in Ref. [6].

In order to select the most useful energy ratios, and
also to be able to recognize meaningful patterns in the
experimental correlations studied, we use as a tool the
interacting boson model-1 (IBA-1) [7], which has a wide
applicability, and examine simple predictions based on
its general symmetry properties. It has three limiting
cases, the so-called dynamical symmetries U(5), O(6),
and SU(3), in which the excitation energies can be writ-
ten analytically. The energy ratios can then be expressed
in the form of a numerical constant to which one adds
a term depending on the model parameters. In order
to deal with parameter-independent quantities, we keep
only the dominant, numerical constants, which we shall
refer to as symmetry limits (or, simply, liinits). In this ex-
treme simplification, the energy ratio values coincide with

those of the limiting geometrical models which are known
to correspond to the three dynamical symmetries [har-
monic oscillator for U(5), completely p-unstable rotor for
O(6), and axially symmetric rigid rotor for SU(3), respec-
tively]. This adopted approximation might be thought
too severe in certain particular cases, as it results mainly
from the neglect of the contribution of the Casimir oper-
ator of O(3) (namely, Ii2i) to the excitation energies in
the U(5) and O(6) cases. On the other hand, as it will
be seen below from comparisons with the available ex-
perimental data, the use of these symmetry limits proves
rather valuable. In plots representing an energy ratio
as a function of another, the three symmetry limits are
marked by three points which de6ne, in general, a tri-
angle; this is just a particular, "physical" representation
of the abstract symmetry triangle of Casten [8]. Since
the three symmetry limits are known to encompass the
full range of observed collective nuclear structures, we
expect that these triangles will provide a natural limita-
tion on the location of most of the nuclei in such energy
ratio plots. The aspect of this triangle will dictate what
we expect about the correlation between the two energy
ratios considered. Thus, an interesting situation occurs
when the symmetry triangle has a very elongated shape
(or even reduces to a segment of straight line), in which
case we expect that the experimental points will be con-
fined within a rather narrow region, close to a smooth
curve ("universal systematics" ).

Let us present the case of in-band correlations (be-
tween two energy ratios within the same band structure),
which leads to such a situation. Consider, for a given
band, ratios of the type

E(I) —E(K)"('/') —
E(J) —E(K)

R(I/K + 2) = aR(J/K + 2) + 5 (2)

where E(I) denotes the energy of the state of spin I. We
may choose any three states I, J, K; however, for practi-
cal purposes (for many bands only the first few members
are known) in what follows we shall mean by K the band-
head, and study the ratios with J = K+ 2. Since in each
dynamical symmetry case the excitation energies of any
IBA-predicted band can be expressed, as a function of
the spin I, as [7]
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with

(I —K) (I —K —2) (I —K) (J —I)a= and 6=
(J —K)(J —K —2) 2(J —K —2)

this is a generalization of the result obtained by Ejiri on
the basis of a phenomenological formula for the excita-
tion energies of the qgb [9]. Thus, not only the three
limit values but also the exact values (for each dynam-
ical symmetry) lie on a straight line as defined by Eq.
(2). Therefore, for any IBA-predicted band, the symme-
try triangle for energy ratios R(I/K + 2) as defined by
(1) is a segment of straight line, and we expect univer-
sal systematics in the form of smooth curves close to the
straight lines (2).

As a 6rst application, we consider Mallmann's system-
atics for the qgb [2]. Apparently, the "Ejiri formula"
[usually quoted only for the representation R(I/2) vs

R(4/2)] does not describe well the experimental data
(see, for example, Ref. [10]). We have examined all
the possible correlations R(I/2) vs R(J/2) in the qgb,
for states up to 12+ (below the backbending) for all
the nuclei listed by Sakai [1], and observed the follow-

ing. The systematics with I —J = 2 [e.g. , R(6/2) vs

R(4/2), R(8/2) vs R(6/2), etc.] deviate very little from
the straight lines (2). This is shown in Fig. 1 for the four

plots up to spin 12. The slight deviations from linear-
ity are very well described, in each case, by a parabolic
dependence. The correlations with I —J ) 2 show in-
deed increasing deviations from the straight lines (2), but
these are very well accounted for if we use the empirical
parabolas from Fig. 1. Thus, by using the basic parabo-
las fitted to I —J = 2 (Fig. 1), which represent only
slight departures from the linear relationship (2), we are
able to describe very well any kind of correlation of the
type R(I/J) vs R(I'/J'). In particular, the linear cor-
relation observed by Cizewski [11] between R(6/4) and
R(4/2) is a result of the parabolic dependence of R(6/2)
on R(4/2). One should mention that not all nuclei from
Ref. [1] for which the qgb is known at least up to 6+ ap-
pear in the plots of Fig. 1. A number of 37 (out of the
total of 307) were eliminated due to their considerable
deviation from the generally smooth patterns observed
for all the other nuclei. These deviations, which do not
make the object of the present work, are discussed, for
some of these nuclei, in Refs. [4,11,12].

We have verified further the prediction (2), for the qpb
and qPb (referred to as the lowest K = 2 and K = 0
bands, respectively), which are known in some detail in
relatively many nuclei [1]. Figure 2 shows that the ex-
perimental data are very well described by the straight
lines (2), both for the p band (separately for the even-
and odd-spin members, respectively), and for the P band.
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FIG. 1. Plots of energy ratios R(I/2) vs R(J/2) in the qgb,
for states with I —J = 2. The three big crosses in each plot
are the IBA symmetry limits: U(5)—the lowest, O(6)—the
middle, and SU(3)—the upper one, respectively. The dashed
lines are the straight lines of Eq. (2). The continuous lines
are phenomenological fits with a parabola.
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FIG. 2. Energy ratio systematics within the p band (upper
part) and P band (lower part). These plots are analogous to
the Mallmann plots for the quasiground band (see also the
text). The lines are not fits, but the straight lines calculated
with Eq. (2).
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in the case of the energy ratios (1) belonging to two dif-
ferent bands. One such case is that of the correlation
between the lowest such ratios of even-spin and odd-spin
qpb [B~(6/4) and R~(7/5)], where the three symmetry
limits lie almost on a straight line and the existing ex-
perimental data follow this line rather closely. A second
example is given in Fig. 3, showing correlations between
ratios of the qgb and qpb. In this case the symmetry
triangle is again rather elongated and the experimental
data are well confined within narrow strips close to a
curve which joins the symmetry limits. An exception
here are the light mass (A & 70) nuclei (data exist only
for 4Mg, Fe, Ni, ' Zn, and r Se [1], not shown in
Fig. 3), which appear to lie systematically well above the
average pattern of the heavier ones.

We next examine some cases in which the symmetry
triangle is well extended. We have found it interesting to
consider ratios of a "mixed" sort, such as

CI +

00
I

l.5
I I I ) I I I I

i
I I I I [ I I I I

I

2.0 2.5 3.0 3.5
R,(4/2)

QO
I I I I

f
I I I I

] I I I I
f

I I I I
f

I I I I
(

I I I I

2 3 4 5 6 7 8
R, (6/2)

FIG. 3. Correlations bet@seen energy ratios from the
quasigamma band and the quasiground band. The three big
crosses are the symmetry limits [U(5)—the lowest, O(6)—the
middle, and SU(3)—the upper one, respectively].

Usually, deviations from the universal curves indicate
interesting phenomena. Thus, for example, the Hg
and Hg nuclei (not shown in Fig. 2) deviate strongly
from the general pattern since their P band is disturbed
already at the 2+ state by the shape coexistence phe-
nomenon [13]. Other nuclei with large deviations and
consequently not represented in Fig. 2 are 0 and Mg.

The idea that whenever the symmetry triangle is very
elongated we may expect systematic correlations in the
form of smooth (universal) curves, has also been tested

In such cases, we have found that the symmetry trian-
gle shows various shapes, and the available experimen-
tal data [1] fill in regions which reproduce this triangle,
sometimes a bit distorted and/or displaced. As an illus-
tration, Fig. 4 shows two such plots in which only a few
chains of isotopes were selected, which are well known as
representative of transitions between two symmetries [7].
The usefulness of such plots is immediately clear, as they
reveal, qualitatively, these transitions.

In conclusion, we have observed correlations between
different experimental energy ratios related to band
structures in all the even-even nuclei. These correlations
obey well the expectations based on simple IBA-I predic-
tions. The character of any such correlation between two
energy ratios depends on its associated IBA symmetry
triangle. When this triangle has a very elongated shape,
or is a segment of straight line, the data usually follow
a smooth (universal) curve. The Mallmann systemat-
ics [2] for the qgb are an example of such a situation,
and we have shown that similar systematics exist for the
quasigamma and quasibeta bands, and presumably for
other bands as well. When the symmetry triangle is ex-
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mixed energy ratios as defined by Eq. (4), il-
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selected for display (see also the text).
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tended, the energy ratio correlation plots can be used as
a simple method to examine qualitatively the position of
individual nuclei or of (transitional) classes of nuclei with
respect to the dynamical symmetry limits.

Systematics such as those presented in this work can
be used as means of predicting the whole low-energy col-
lective level scheme of even-even nuclei (and, notably, of
transitional ones) on the basis of a minimum of informa-
tion (e.g. , a few energy ratios). A more increased predic-
tive power, having in view unknown nuclei as well, can

be attained by adding other types of systematics, such
as those of the NzN family [14], that of the 2+ state
energies [15], that of Ref. [16], and possibly others.
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