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Critical test of multi-j supersymmetries from magnetic moment measurements
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Magnetic moment measurements in odd nuclei directly probe the distribution of fermion states
and hence provide one of the most critical tests for multi-j supersymmetries in collective nuclei.
Due to complexity of calculations and lack of data, such tests have not been performed in the
past. Using the MATHEMATICA software, we derive analytic expressions for magnetic moments in
the SO( (6)XSU (2) limit of the U(6/12) supersymmetry and compare the results with recent
measurements in Pt.
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The first examples of supersymmetry were found in
the spectra of collective nuclei in the framework of the
interacting boson-fermion model (IBFM) [1], and have
attracted considerable attention during the past decade
(see Refs. [1,2] for reviews). The single-j supersymme-
tries, which were first proposed [3,4], coupled a fermion in
a single specific orbit to a collective boson core. As there
are usually several single-particle orbitals available for
the fermion, these models had limited success [2]. This
restriction was overcome in multi-j supersymmetries [5]
through the introduction of the pseudospin mechanism
which allowed coupling of any number of single-particle
orbits to the boson core. In a given supersymmetry
scheme, the wave functions are fixed from the outset (i.e. ,

independent of the Hamiltonian parameters) and require
very specific couplings of the fermion states to the bo-
son states. Since the wave functions are independent of
the Hamiltonian, energies are not a sensitive test of the
model, and one has to consider electromagnetic (E2 and
Ml) properties, and one- and two-nucleon transfer reac-
tions. Of these, the E2 transition rates are not very sen-
sitive to the single particle distributions because (i) they
are dominated by the boson contribution, the fermion
contribution to the E2 matrix element (m.e.) being 1/K
smaller than the boson part where N is the boson num-
ber, and (ii) the fermion efFective charges are all taken
to be equal and do not distinguish between different or-
bitals. One-nucleon transfer reactions are sensitive to

the single particle distributions, but the transfer opera-
tor contains up to two free parameters for each j orbital
which allows too much Hexibility to provide a definitive
test.

In contrast, the Ml properties are free of these short-
comings, namely, (i) the boson and fermion contribu-
tions to the Ml m. e. are similar (in fact, the latter
are usually larger), (ii) the g factors of all orbitals dif-
fer significantly, and (iii) the Ml operator for odd nuclei
does not contain any free parameters. Thus magnetic
moments and B(M1) values oKer one of the most criti-
cal tests for probing the coupling schemes predicted by
multi- j supersymmetries. Such tests, with one limited
exception [6], have not been performed in the past due
to the complexity of calculations and the lack of data.
In this Rapid Communication, we point out that the al-
gebraic computations that were previously deemed too
complicated can be performed relatively easily using the
MATHEMATICA software [7]. We derive analytic expres-
sions for magnetic moments in the SO(B+)(6) x SU(+) (2)
limit of the U(6/12) supersymmetry and compare the re-
sults with a new extensive set of data [8] in Pt which,
together with Pt, furnishes one of the best known ex-
amples of this supersymmetry.

The wave functions in the SO(B+)(6)XSU(+)(2) dy-
namical symmetry can be expanded in terms of the
boson-fermion product states as

l [K], [Ni, N2], (a i, o.2, o s), (ri, r2), p, I, 1) =
&B &B '7B +B

o (aB rB LB L&B j J) [lo'B, TB, PB, L&B) x
I j)]

Here the quantum numbers N, a, r label the U(6), O(6), O(5) groups, respectively, and j denotes the piyz& psy2& fs~2
single-particle orbits. The expansion coefficients n are given in terms of the isoscalar factors ( for the group chain
U(6) DO(6) DO(5) OO(3) as [9,10]

~(a r L . gi ( 1iLa+J+1/2L". B I' C[N] (n»0 0)&(r&»0)~L&e
O' OB) +B) QB~ B) j~ J ( J 1/2 J j ~[N&,N2], (»i,»2 ns) ( r~), Lr&& (2)
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where the curly bracket denotes a 6-j symbol and j =
/2j+ 1.

Introducing the boson and fermion creation (annihila-

tion) operators dt, ot„(d&, a~&), the Ml operator in the
IBFM is given by

where g, is the spin g factor of neutrons which, with
the standard quenching factor of 0.6, has the value g, =
0.6g,"' = —2.3. The expectation value of the operator
(4) in the states (1) can be calculated easily and gives for
the magnetic moments

T(M1) = q&[d d] + ) &i,, [0,"0, ] (3)

&B ) &B )QB )+B))

2 1
[+(0& rB 7& LIB j;J)]

2 J+1

P = gaLa+ ).9~

= ~iO[dtd]('),

L, = —Ij(j+ 1)(2j+1)/31"[,',]" (4)

The g factor for bosons, g~, is determined &om the super-
symmetric even-even partner, and for (neutron) fermions
&om the single-particle (Schmidt) values as

9~. = +9,/(2t + 1) for j = t + 1/2, (5)

where tilde denotes az ——(—1)~ a~ . The param-
eters qi and ti~~i in Eq. (3) are determined from the
boson g-factor and single-particle matrix elements, re-
spectively. In the calculation of magnetic moments, in
general, the cross terms with j = l + 1/2 can also con-
tribute to the matrix elements. However, in the case of
the SO( ) (6) x SU( l (2) dynamical symmetry, the pi/2
and p3/2 single-particle states couple to diBerent boson
states, and hence such cross terms all vanish. This ef-
fectively simplifies the magnetic moment operator to di-
agonal terms only which we will rewrite in terms of the
boson and single-particle angular momentum operators
as

x (J+L~ —j)9~+ (J —L~+ j)9~ . (6)

Here the bar denotes J = J(J + 1). The advantages of
magnetic moment measurements for testing the multi-j
supersymmetries noted above are evident from Eq. (6).
For example, the magnetic moments are sensitive to the
occupation of the fermion states because the g~ values
differ significantly. If all the 9 factors were identical (cf.
the usual assumption for E2 effective charges), i.e. 9~ =
g~ ——g, then one would obtain pg ——gJ, which gives no
information about the single-particle distribution.

Using the isoscalar factors given in Refs. [9,10], mag-
netic moments can be evaluated in a straightforward
manner from Eq. (6). However, the algebraic manip-
ulations required are very tedious and lengthy, and they
have not been calculated in the past. We have over-
come this problem by employing the MATHEMATIcA soft-
ware [7] in the evaluation of Eq. (6) and obtained rel-
atively simple expressions for the magnetic moments.
As an example, we show an intermediate and the 6-
nal step in the calculations for the ground-band states,
i[N], [N + 1, 0], (N + 1, 0, 0), (r, 0), 2r, 2r + 1/2):

@2~+i/2 ——[20(N + l)(N + 2)(27 + 5)] (40N(N + 2)r(27 + 5)9gy

+5(N + 7 + 4) (N —r + 1)(2r + 5)gi/2
—2(N —r) (N —7. + 1)(6r + 5)gs/2

+ (N (22r + 35) + N(56r + 202r + 35) + 22r + 213r + 465r) gs/2).
(7)

Results at this step were checked for errors by ensuring that when one uses the same value g for all g factors, pJ ——gJ.
Substituting 9~ from Eq. (5) gives the final result

2Nr N (22r + 35) + 15N(6r + 7) + 8r + 24r + 108r + 70
P y

= g 42(N + 1)(N + 2) (2r + 5)

TABLE I. Magnetic moments for the states
i [N], [N + 1, 0], (N + 1, 0, 0), (7., 0), I, J). The factor

f denotes f = N(N + 2).
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(N + 1)(N + 2)pg

,'(N+ 1)(N+ 2)g.——
—fgn + —(11f + 23N + 70)g,
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fgn + (6—61f + 1321N + 5282)g,
4fg~ ——(79f + 127N + 446)g,
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TABLE II. Magnetic moments for the states l[N], [N, 1], (N, 1, 0), (r, o), L, J). The factor f de-
notes f = N(N + 4).

71 72

(1,0)

(1,o)

(2,0)

(2,0)

(2,o)

(2,o)

L

2 3/2

5/2

3/2

5/2

7/2

9/2

(N + 1)(N + 3)pg
—;.(f+»)g~+ —.'. (5f + 3)g.

—(f + 11)gn ——(95f + 141)g,
—(7f + 41)g~ + —(7f + 141)g,

—(7f + 41)gs ——(119f + 597)g,
—"(7f + 41)g~ + (1211f —2967)g,

-(7f + 41)gs —+3rs(119f —123)g,

) [ exp —th[/ ) [ exp
[

has often been used when discussing energy levels and
transition rates [2]. However, this is not very useful for
the present comparisons of g factors because it takes no
account of either experimental uncertainties or the level
of agreement that might reasonably be expected from
a parameter-Bee calculation. We prefer, therefore, a
graphical presentation followed by a case by case discus-
sion.

We compare in Fig. 1 the experimental and theoret-
ical g factors for the stretched states [(7,0), L = 2v] in
the (N + 1, 0, 0) and (N, 1, 0) representations, for which
there are complete sets of data up to spin 9/2. Aside
from the ground state, to be discussed below, the agree-
ment is good, especially for the (N, 1, 0) representation.
We emphasize that, in contrast to other tests, no free
parameters are used in the present g-factor calculations.
In view of this, the level of agreement is remarkable.

A significant deviation occurs for the ground state
which is measured very accurately. Denoting the basis

TABLE III. Same as Table II but for the states with
(r~~ 2) = (1~ ).

J
1/2

3/2

5/2

7/2

pz
3gB—1

2gB—1

7 gB+
2gB—3

1
6g
1

1O gs
59

254 gs
3
14gs

which is not much more complicated than the corre-
sponding expression for the quadrupole moment. The
results of calculations for all low-lying levels of interest
are listed in Tables I—III.

In the remainder of this Rapid Communication, we
compare the supersymmetry predictions with recent g-
factor measurements in ~ssPt [8], one of the most stud-
ied and best examples of the U(6/12) supersymmetry
[5,9—15]. Table IV compares the experimental g factors
with the theoretical ones obtained Rom Tables I—III us-
ing N = 6, g~ ——0.3 (determined from 4Pt [16]), and
g, = —2.3. In testing the quality of supersymmetry, the
quantitative estimate

TABLE IV. Comparison of supersymmetry predictions
from Tables I—III with the experimental g factors in Pt

(rg, rg) L
~11 f72' ~3
(0,0) 0
(1 o)
(1,0) 2

(2,o)
(2,o)
(2,0) 4
(2,0) 4
CT1) CF2q &3

(1,o)
(1,0) 2

(2,0) 2

(2,0) 2

(2,o) 4
(2 o) 4

(1,1) 1

(1,1)
(1,1) 3
(1,1) 3

J
(7, 0, 0)

1/2
3/2
5/2
3/2
5/2
7/2
9/2

(6, 1, o)
3/2
5/2
3/2
5/2
7/2
9/2
1/2
3/2
5/2
7/2

g~ = v~/J
E (keV) Experiment Theory

0
211
239
525
544
613
667

1.22
0.10(2)
O.25(4)

0.60(20)
0.41(12)
O.34(4)

0.77
0.02
0.40
0.20
0.35
0.13
0.35

99
130
420
455
508
563
222
199
389
450

-0.41(4)
0.36 (3)

0.63(22)
0.16(2)
O.34(3)

0.16(4)

-0.53
0.36
0.20
0.30
0.03
0.35
0.97
0.25

-0.04
0.27

From Ref. [17].

states by [L~ x j), its decomposition is given by

]I/2~) = g5/8 [0& x 1/2) + g3/20 [2, x 3/2)

-V'9/40 12~ x 5/2). (9)

The g factors for the three basis states in Eq. (9) are,
in order, 0.77, 1.37, and 0.37. The basis state [2q x 3/2)
that has the largest g factor has the smallest amplitude.
Thus a possible explanation is that the ground state has
a larger p3y2 component than predicted by the super-
symmetry. An alternative explanation may be the inad-
equacy of the simple Ml operator used for bosons. Such
an operator cannot generate M1 transitions and there-
fore has been modified with the addition of the two-body
operator, [Q x L]( ). The quadrupole operator, Q, has
a vanishing m. e. in the ground state, so this term could
lead to very diferent contributions for the ground and
other states. The calculation of m.e. for two-body op-
erators is, however, rather involved and this possibility
needs to be pursued numerically.
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FIG. 1. Coxaparison of g factors for the stretched states
[(rq, r2) = ( r0), L = 2r] in the (N + 1, 0, 0) and (N, 1, 0)
representations.

For the remaining (nonstretched) states the data are
too scant for graphical presentation. Nevertheless, we
discuss the two J = 5/2 states at 455 and 544 keV, both
of which have relatively large measured g factors with
large uncertainties. There are 13 possible basis states

for 1 = 5/2 with L~ ——2 (twice), 3, 4 (twice), and

j = 1/2, 3/2, 5/2. The average g factor for all these
unmixed states is 0.30, the highest being 0.76 for the
]4 x 3/2) state. All the other basis states have g factors
around the average value or lower. It is extremely un-

likely that both of these 5/2 states are dominated by the
~4 x 3/2) configuration to the exclusion of many others.
In other words, gz/2 0.6 for these states would be very
diKcult to explain in any particle-core model. The su-

persymmetry model is, nevertheless, consistent with the
experimental results as the g factors of these states may
actually have values near the lower limits allowed by the
experimental uncertainties.

In conclusion, we have presented a critical test of the
U(6/12) supersymmetry from g-factor measurements in

Pt. The supersymmetry scheme makes definite
predictions for the boson-fermion wave functions which
have previously been tested through level energies, E2
transition rates, and transfer reactions. In comparison
with these observables, g factors provide a more sensitive
test of the wave functions because they depend directly
on the single-particle distributions. Given that our g
factor calculations are parameter &ee, the level of agree-
ment between theory and experiment is remarkable and,
in general, supports the multi-j supersymmetry model in

Pt. Further g-factor measurements and similar tests
are planned for other nuclei which evidence supersymme-
try.
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