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EfFects of boundary on momentum distribution of quarks in a quark-gluon plasma
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The boundary of a quark-gluon plasma affects the momentum distribution of quarks and conse-
quently the magnitudes of signals for the search of the quark-gluon plasma.

PACS number(s): 24.85.+p, 12.38.Mh, 25.75.+r

Recently, there has been much interest in the possi-
ble existence of the quark-gluon plasma [1]. It is ex-
pected that under high temperature or high baryon den-
sity, quarks and gluons are deconfined to become a quark-
gluon plasma. The deconfinement refers to the circum-
stances where a quark or an antiquark is not confined
within the spatial dimension of a hadron. Quarks are
nonetheless confined within the boundary of the plasma.
Under laboratory conditions where a quark-gluon plasma
may be produced by using relativistic heavy-ion colli-
sions, the expected initial transverse radius of the quark-
gluon plasma is of the order of the radius of the smaller of
the two colliding nuclei producing the plasma, a dimen-
sion of a few fermis. Therefore, a necessary and suK-
cient condition for the existence of a quark-gluon plasma
in heavy-ion reactions is that the quarks in the plasma
can travel freely within a spatial region of many fermis.
The distribution of the transverse momenta provides in-
formation on the transverse boundary for the motion of
the quarks. It can be used to detect the presence of
a quark-gluon plasma. Furthermore, the magnitudes of
the signals for quark-gluon plasma detection are func-
tions of the momentum distribution of the quarks, which
has been generally taken to be that of a thermal distri-
bution [2—4]. As the presence of the boundary affects
the momentum distribution, the boundary effects must
be taken into account in order to give a better estimate
of the magnitudes of signals to search for the plasma.

The boundary effects are of interests also to other
branches of physics. As a problem in general quantum
mechanics, one wishes to know how the momentum dis-
tribution of a fermion system changes as the boundary
extends to greater and greater distances, and what part
of the distribution shows the effects of boundary and
what part is well described by the Fermi-Dirac distri-
bution. The effects arise because the existence of the
boundary leads to the vanishing of the wave functions at
the exterior regions. The decrease of the wave functions
from the interior region to the exterior region gives rise to
the presence of an enhanced high-momentum component
relative to the Fermi-Dirac distribution. The boundary
also leads to oscillations of the momentum distribution in
the low-momentum region due to the uncertainty prin-
ciple and the nonuniformity of single-particle energies.
We wish to study here the effects of the boundary on
the momentum distribution of quarks in the quark-gluon
plasma, using wave functions which satisfy the boundary

q".p„—~(r) Q(r, P, z) =0.

Separation of variables is possible if one assumes a wave
function of the form [6—9]

0(& 0z)=
B,„(r)e' &Cg(z)

R, (r)e' &@2(z)
( iR2 (r)e'i"+ i~ey(z) )

The equations for @q(z) and @2(z) are

(E +0, —m*) C, (z)=0,
with the solution

@~(z) = &-~(z)

~ o+(1 —~ o) sin[II„gz + (1 + A)vr/4]

and

1
42(z) = i 8,4 g(z), —

E+ m*

where A = +1 and (II g) are the eigenvalues determined
by the bag boundary condition iC'q(+L/2) = C'2(+L/2).
The equations which couple Bq and B2 are

conditions.
Previously, Elze and Greiner [5] studied the size ef-

fects on the momentum distribution of a spherical plasma
droplet. Unfortunately, in their expression for the mo-
mentum distribution [Eq. (20) of Ref. 5], the momen-
tum wave functions of the single-particle states are in-
correctly missing. For a finite system, the momentum
distribution depends crucially on the momentum wave
functions. Without the momentum wave functions, Elze
and Greiner could not study effects which are associated
with the wave functions, such as the boundary effects
discussed here.

We consider a quark-gluon plasma in a cylinder of ra-
dius ro and length I, which is presumably formed after
a relativistic nucleus-nucleus collision. We study the mo-
tion of a quark or an antiquark confined in this region,
with the transverse potential represented by a scalar po-
tential m(r). The Dirac equation for the quark in cylin-
drical coordinates (r, P, z) is
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Rg (r) + ——Ri (r) ——Rg„(r)
0P P OP P

potential p, the momentum distribution of the quarks is
given by

+[m* —m (r)]Ri„(r) = —R2„(r)—m, (r), (2a)
t9p

(92 1 0 (v + 1)
R2 (r) + ——R2 (r)— R,„(r)

OT P BP r2

n, A, V, 8+

II&.-,.+(p. )I'+ l~.-,.+(p. ) I']

x
I
1+ ' . I

I&,&(p )I(E„), ,g + m„',~)z)

+[m* —m (r)]R2„(r) = —R,„(r)—m(r), (2b)
t9p

where (m'j are the eigenvalues for states satisfying the
boundary conditions that R;„(r) ~ 0, as r ~ oo, and

+ m*2

We introduce the Fourier transform of f q(z) and R;„
by

where the degeneracy g~ is the product of the number of
colors N„ the number of Qavors Ny, and the number of
spins N, .

To get a general idea of the boundary effects, we con-
sider the case L —+ oo, p = 0 and a sharp boundary with
m(r) = mp for r & rp and m(r) +oo f-or r & rp. The
radial wave functions are [6—9]

and

& ~(p. ) = 1
dz e*"*'f„p(z)2'

Ri„(r) = AJ„+i(Crp) J (Cr),

R2 (r) = AJ (Crp) J +) (Cr),

R, (p )e' ~s = — dre*pr'R; (r)e'"~.1

4 ~.(p) =

The momentum density jo&„(p) for a quark in the state
nAv is given by

j:~.(p) = @-~-(p)~'&-~-(p)
= [l~i.(p.)l'+ 1~2-(p )I']

1+ ' . , ll&. (p.)l'E+ m* 2)

Then, the wave function g for the state (nAv) in momen-

p
7Z, „(p )e"~.

-'X,.(p.).'~.+'l~ p, /(E+ m*)
-( )

* ./( + *)
)

where J are the Bessel functions of the first kind of order
v and A is a normalization constant. The quantity C is
obtained by solving the eigenvalue equation

where x = Cr0 and

(6)

Qz' + (mprp)' + mprp
x+

iPr r sin P—

For a given value of v, the solution of this equation leads
to a discrete set of allowed values for C characterized by
additional quantum numbers (s+), where s corresponds
to the sth solution of Eqs. (6) and (7), and the 6 sign
corresponds to the two different signs of Eq. (6).

The Fourier transform of the Bessel function is

For a given set of quantum numbers (nAv), there can
be many different transverse eigenstates. Each state is
characterized by additional quantum numbers 8+. In a
quark-gluon plasma at a temperature T with a chemical

I

which gives [10]

xe* ~J (C„,~r),

—C...+ J.(p ro) J.+i(C...+ro)+p J.+i(p ro) J.(C...+ro) .

«~. .'~II&.~o,.+(C'...+oo)I'IZ. ..+(s.oo)I'+ I&...+(&...+ )I'I&.+, .~(opo. oo)I'),

where

P0
l7v, s+ (pr ro)

~T V) 8+

For p » 1/rp, the function J,y varies as p
The distribution of the transverse momenta of quarks at a temperature T and a chemical potential p, at p = 0, is

therefore

(Pp dz 27l
= g~ ) 1 + exp((E .~ —p)/T)

A;..+ = js«ds s III&.~o,+(&..~.oo.)l'I&. .~(s.oo)l'+ I&. .~(&..+oo)l*l&~o.~(p.oo)l'I.
0

(10)
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If the quark-gluon plasma is in a continuum with-
out a boundary, the transverse momentum distribution
for massless quarks with p = 0 and p = 0 will be
given by the Fermi-Dirac distribution dK~/d p(dz/2vr) =
[g~7rro2/(2vr)2]/[1+ e "T'~

] (the dashed curves in Fig. 1).
The solid curves in Fig. 1 give the distributions of the
transverse momenta of quarks for rp ——2, 4, and 6 fm at
T = 200 MeV obtained by using Eqs. (9) and (10). The
momentum distribution for rp = 2 fm is quite difFerent
from a Fermi-Dirac distribution. As the radius increases
to 4 fm and larger, the momentum distribution is quite
close to the Fermi-Dirac distribution over a large range
of momentum. However, in the regions of very small and
very large momenta, there are significant qualitative dif-
ferences. In the region of small transverse momenta with
p h/ro, there is a small peak due to the uncertainty
principle and the nonuniformity of single-particle ener-
gies, and the magnitude of the distribution is slightly

I

less than the Fermi-Dirac distribution. As the radius
increases, the small momentum peak becomes sharper
and sharper. On the other hand, in the high-transverse-
momentum region, there is a high-momentum tail, which
varies with the transverse momentum by a power law and
is greater than the Fermi-Dirac distribution by orders of
magnitude. The location at which the distribution begins
to difFer substantially from the Fermi-Dirac distribution
increases with the radius of the system.

How do the magnitudes of the signals estimated by
using momentum distribution for a system with a fi-
nite transverse boundary dier from the magnitudes es-
timated earlier [2—4] by using the Fermi-Dirac distribu-
tion? It is easy to generalize the results of Ref. [3] to
a quark distribution of the general form dN~/dspdsx =
[g~/(2vr) ]f (E), and show that the distribution for the in-
variant mass M of a dilepton pair produced by the quarks
and the antiquarks of the plasma is given by

4m'l ~

and the distribution in dilepton transverse mass M~ = QM2 + PT is

dN, , (M) ( 4
d,M2ZM2d4* ' '2(2 )4T

27r

~( ),=,(~.) i

where o(M) is the qq m l+l cross section, m is the
mass of the quark, F(E) = —I f(E')dE', e(M) is the
root of the equation Dilepton Production
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FIG. 1. Distribution of transverse momentum p~ of
quarks in cylinders of di8erent transverse radii. The radius is
2 fm in (a), 4 fm in (b), and 6 fm in (c). The temperature is
taken to be 200 MeV and p = 0. Solid curves are the numer-
ical results for a quark-gluon plasma vrith the boundary, and
the dashed curves are the predictions from the Fermi-Dirac
distribution.

FIG. 2. Dilepton production probability dN&+ & /
dM dP d x for T = 200 MeV, ro ——4 fm, and P = 0 as
a function of the transverse momentum PT of the dilepton
pair. The solid curves are for the case mith the boundary,
and the dashed curves are the predictions from the Fermi-
Dirac distribution.
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and tU(e) is

(M2 l
to(e) = — ln f(E) + In'

~ [
. (14)&4E) E=.

For a distribution f(E) that is locally an exponential
near E = M/2, we find e M/2, and the production
probability for a given dilepton transverse mass M is
proportional to [f(Mr/2)]2. Using Eq. (12) [ll] and the
local-exponential approximation, we show in Fig. 2 the
diB'erential probability d%~+~- /dM dP d x as a function
of P~ for a dilepton pair with a longitudinal momentum
P = 0, plasma radius ro ——4 fm, and M = 1 and 2 GeV.
The solid curves are the results for the case with a bound-
ary, and the dashed curves are the predictions from the
Fermi-Dirac distribution. As one observes, the produc-
tion probability for the case with a boundary are orders
of magnitude greater than the prediction from the Fermi-
Dirac distribution for P~ ) 4.5 GeV. The deviation in-
creases with the transverse momentum of the dilepton
pair.

The presence of an enhanced distribution at very low
and very high transverse momenta, in the quark distri-
bution of a system with a boundary, may lead to peculiar

features of the transverse momentum distribution of the
pion distribution. In this respect, it is of interest to study
whether the boundary eKects of the quark-gluon plasma
may be the origin of the low-transverse-momentum en-
hancernent observed in NA34 [12] and NA35 [13] exper-
iments or the high-transverse-momentum component of
produced pions in many JACEE events [14].

Here, we have introduced the idea of the boundary ef-
fects for quarks in a plasma. Similar boundary eÃects are
present in the gluon momentum distribution for gluons in
the plasma. The quantitative estimates can be refined by
using a smooth boundary instead of a sharp boundary. A
smooth boundary may lessen the magnitude of the high-
momentum tail, but there remains a general tendency for
a greater high-momentum tail relative to the Fermi-Dirac
distribution.
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