
PHYSICAL REVIEW C VOLUME 48, NUMBER 2 AUGUST 1993
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We investigate theoretical approaches to pion-nucleus elastic scattering at high energies (300(T & 1 GeV). A "model-exact" calculation of the lowest-order microscopic optical model, carried
out in momentum space and including the full Fermi averaging integration, a realistic o8'-shell pion-
nucleon scattering amplitude and fully covariant kinematics, is used to calibrate a much simpler
theory. The simpler theory utilizes a local optical potential with an eikonal propagator and includes
the Coulomb interaction and the 6rst Wallace correction, both of which are found to be important.
Comparisons of differential cross sections out to beyond the second minimum are made for light and
heavy nuclei. Particularly for nuclei as heavy as Ca, the eikonal theory is found to be an excellent
approximation to the full theory.

PACS number(s): 25.80.Ek, 24.10.Eq, 24.10.Jv

I. INTRODUCTION

The pion-nucleus interaction on and below the Ass
resonance has been extensively studied, and microscopic
models of elastic scattering do a reasonable job [1] of
describing the data. The pion-nucleus interaction at en-
ergies above the 433 resonance has received [2—5] much
less attention. In this energy region (300 MeV & T & 1
GeV), the pion has a much shorter wavelength. For ex-
ample, the wavelength at resonance is about 4 fm (about
the size of the nucleus), while at 1 GeV the wavelength
is 1 fm (about the size of a single nucleon). The shorter
wavelength implies that elastic and inelastic data at the
higher energies will provide sensitivity to the details of
the spatial dependence of the ground-state and transition
densities. The data may also prove sensitive to mod-
ifications [6, 7] of the properties of the nucleon in the
nuclear medium, or reveal significant contributions from
exchange currents [8].

Moreover, the pion-nucleon two-body interaction be-
comes much weaker as one goes to energies above the 6~3
resonance. The two-body total cross section becomes less
than 30 mb, which is about 15%%uo of that on the 433 reso-
nance. The first implication of this weaker amplitude is
that the pion is able to penetrate deeper into the nucleus.
A simple estimate [9] from total reaction cross section
studies shows that a projectile can penetrate into a tar-
get to a radius that is equal to the impact parameter at
which the profile function equals one mean free path. In
Fig. 1 the profile functions for C, Ca, and Pb are
pictured, and the arrows indicate approximately how far
into a nucleus a pion of the labeled energy can penetrate.

The pion in the energy region from 500 MeV to 1 GeV
is one of the most penetrating of the strongly interacting
particles.

The second implication of the weaker two-body cross
section is that multiple-scattering theory for the optical
potential becomes increasingly convergent. A simple es-
timate of the convergence is obtained by comparing a
typical second-order term in the optical potential to the
first-order term. For the case of short-range correlations,
one obtains [10]
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FIG. 1. Profile function S(b) for C, Ca, and Pb.
The arrows indicate the depth to which the pion (labeled by
its energy) can penetrate.
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where o. is the total two-body cross section, E, is the
correlation length, and p is the nuclear density at which
the pion interacts (see Fig. 1). The factor of 1/k, where
k is the incident pion momentum, rejects the decreasing
magnitude of the pion propagator in U~ ~ with increasing
energy. On resonance, we find R = 0.1, with R ( 1 only
because p is so small there. At 500 MeV, we find R = 0.04
and, at 1 GeV, R —0.02. Thus differences between the
data and a carefully calculated result utilizing a first-
order optical potential would be a strong indication of the
presence of unconventional phenomena such as mesonic
current contributions, modified nucleon properties in the
medium, or other yet to be thought of eSects.

One option for calculating high-energy pion scattering
is a momentum-space optical-potential approach. This
presents the opportunity [ll] to calculate the scattering
from a lowest-order optical potential including the fol-
lowing features: (1) exact Fermi-averaging integration,
(2) fully covariant kinematics [12], normalizations, and
phase-space factors, (3) invariant amplitudes [ll, 13], and
(4) finite-range, physically motivated two-body off-shell

[13] amplitudes. Within the multiple-scattering theory
developed in Refs. [1, 14] this is an exact calculation of
the lowest-order optical potential. A brief review of this
approach will be given in Sec. II.

A practical difBculty arises when one wants to use
the momentum-space optical model to study high-energy
pion-nucleus scattering. As the projectile energy in-
creases, more partial waves are needed in the pion-
nucleon two-body amplitudes. Below 300 MeV, only S
waves and P waves are needed. Above 300 MeV, D waves
become important. I" waves become significant above
500 MeV and G waves and H waves above 700 MeV. At
the same time the number of pion-nucleus partial waves is
increasing at a rate proportional to the pion momentum.
At high energies the momentum-space approach becomes
prohibitively computer intensive, and one would like to
search for a simpler alternative.

The semiclassical theory immediately comes to mind
as an alternative to the momentum-space approach. It
is often used at high energies not only because it is eas-
ier to compute, but also because the simpler character of
the theory facilitates obtaining physical insights into the
reaction. However, the semiclassical theory is expected
to be a good approximation only for local potentials and
only when the wavelength is sufficiently short. Because
the exact pion-nucleus optical potential appears to be
highly nonlocal, we examine the role that nonlocalities
play in high-energy pion-nucleus scattering. This is done
numerically in momentum space and is presented in Sec.
II A. We undertake this study as a first step in obtaining
a more quantitative measure of the validity of the semi-
classical theory than currently exist in the literature.

In Sec. IIB we present our semiclassical model [15].
In order to have a quantitative as well as a simple model
for confronting data, we include the Coulomb interaction
and the first Wallace correction [16]. We establish the va-
lidity of the semiclassical model both by examining the

size of the Wallace correction and by comparing it to the
model-exact results obtained in momentum space. Com-
parisons of the eikonal model to model-exact calculations
are made in Sec. III.

A previous similar investigation can be found in Ref.
[17]. There a factorized approximation [18] was used
in the momentum-space calculations, so that the full
nonlocality of the optical potential was not considered.
Furthermore, Glauber multiple scattering theory [19]
was proposed, whereas we will examine an even simpler
model, that of a local optical potential with the scatter-
ing solved via an eikonal approximation. A more detailed
discussion that compares and contrasts our results with
previous work is given in Sec. IV. A summary, conclu-
sions and future prospects are presented in Sec. U.

II. SCATTERING THEORY

At higher energies where the pion-nucleon amplitude
becomes a smooth function of energy and is much weaker
than on resonance, the first-order optical potential may
well be adequate for describing all of the conventional
nuclear physics phenomena that enter into the reaction
dynamics. Whether this is so remains for further inves-
tigation. Independent of this question, there is the ques-
tion of whether simpler approaches to the calculation of
the lowest-order optical potential and the scattering from
this potential are reasonably quantitative. It is this ques-
tion upon which we concentrate here. Below we first re-
view the momentum-space optical potential which serves
as our "model-exact" calculation. In momentum space,
we examine the importance of the nonlocalities caused
by both the resonance propagation and the finite range
of the two-body amplitude. Finding that these both can
be accurately approximated, we present a simple eikonal
model.

Both the optical and the eikonal models use the same
target wave functions, which are obtained from Hartree-
Fock calculations [20, 21] with spurious center-of-mass
motion removed as discussed in Sec. II A. They also
use the same on-shell pion-nucleon two-body amplitudes,
which are constructed from Amdt's [22] and Hohler's [23]
phase shifts.

A. Optical potential

A complete description of the momentum-space optical
potential that we use can be found in Ref. [11],and a de-
tailed discussion of the covariant kinematics that we use
can be found in Ref. [12]. The formal multiple-scattering
theory in which this work is embedded is given in Refs.
[1, 14]. Here we provide only a brief overview.

The first-order optical potential in the impulse approx-
imation can be written as
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where k, k~, and k~ y are the momenta of the pion,
the struck nucleon, and the A —1 residual nucleons in the
pion-nucleus center-of-momentum frame, respectively. E
is the incident energy of the pion and the nucleus (in
the pion-nucleus center-of-momentum frame also), and n
is a set of quantum numbers that specifically label the
nuclear bound state.

The target wave function (kivk~ i
~
4~ i,„) defined

covariantly [11] contains a momentum-conserving delta
function b(k~ —kiv —k~ i) and is a function of the
relative momentum between the nucleon and the A —1
residual nucleons. The pion-nucleon t matrix similarly
contains a momentum-conserving delta function and is a
function of the relative momentum between the pion and
the nucleon, m,

(k'ivk'
i
t(E)

i
k~k )

= b(kiv + k' —kiv —k~) (tc'
~

t [(u~ (E,k, kiv)] ( ~) .

B. Eikonal model

The eikonal model we propose to examine results from
first replacing the optical potential of Eq. (2) by a local
potential and then solving for the scattering amplitude
arising from the use of the local potential and the eikonal
propagator. In order to include the Coulomb interaction,
we divide the scattering amplitude as

F(q) = &~~(q) + Fc~(q)

where q is the momentum transferred to the pion, q =
k' —k, F~i is the point Coulomb scattering ampli-
tude, and F~~ is the scattering amplitude calculated
from the sum of the strong nuclear potential plus a
Coulomb correction, which is the difFerence between the
point Coulomb interaction and the Coulomb interaction
of a finite charge distribution. The eikonal approxima-
tion gives for Fc~(q)

Fc~(q) =ik bdbJO(qb)e' ' I c~(E b) (7)

One of these three momentum-conserving delta functions
leads to overall momentum conservation; the others al-
low one to perform two of the three integrals in Eq. (2).
The remaining integral is the Fermi-averaging integra-
tion which must be performed numerically. The details
of how we perform the integration can be found in [11].

The energy at which one evaluates the two-body t ma-
trix, w (E,k, kiv), must be carefully chosen [24] if a con-
vergent perturbation theory is to result for calculations
at and below the 433 resonance region. The energy u is
defined covariantly by first defining the energy available
to the pion-nucleon two-body subsystem,

E ~ = E — (k + kiv) 2 + m2~

and then defining the invariant center-of-momentum en-
ergy for this system,

where k is the momentum of the incident pion in the
pion-nucleus center-of-momentum frame, 6 is the impact
parameter, y~i is the point Coulomb phase (in the eikonal
approximation), and I'cd is the profile function defined
below.

In order to incorporate the distortion and energy shift
caused by the Coulomb interaction, we follow the pre-
scription given in Ref. [25] and write the profile function

I'c,~ (E, b) = 1 —exp(iyciv (E, b) j
= 1 —exp(iyiv[E, b(l + EV~(b)/k )]

+x (b)- x,.(b)), (8)

where V~ is the Coulomb potential of a uniformly charged
sphere, gc is the phase shift caused by that potential,
and the nuclear phase shift y~ is written as

~~ = E~iv —(k~+ kiv) (5)
dz U„i,[E —U~(r), r], (9)

The mass of the A —1 system, m~ q, differs from the
mass of the A-body target, m, ~, by a nucleon mass and
a binding energy, m~ = m~ ~ + m~ + Eg. This en-
ergy must then be shifted by a "mean-spectral energy"
EMs, which is a calculated number [24] that approxi-
mately accounts for the interaction of the intermediate
Ass (or the intermediate nucleon or other hadronic reso-
nance) with the residual nucleus. This first-order poten-
tial produces results for energies near the Ass resonance
that are in remarkable agreement with the data. This
is because [1] the sums of the second-order efFects (Pauli
exclusion, true absorption, and correlation corrections)
cancel among themselves. The use of invariant normal-
izations, invariant phase space, and invariant amplitudes
produces the phase-space factors that are present in Eq.
(2).

The optical potential so defined is then inserted into
the Klein-Gordon equation (with a linear potential)
which is solved numerically to produce our model-exact
calculation.

where

(b2 + 2)1/2 (10)

—4aM f„(0)p„+ "
z

V' p„
f„'(0)

where Z and N are the proton number, and the neu-
tron number, respectively. The scattering amplitude
f&(0) [f~(0)] is the pion-proton [pion-neutron] scattering
amplitude in the forward direction in the pion-nucleus
center-of-momentum frame. The finite range of the pion-
nucleon interaction is included through lowest nonvanish-

and U„g is the strong potential obtained as follows. First
we construct a local potential Uo from the pion-nucleon
two-body scattering amplitude and the target density by

Uo(E, r) = —4~Z f„(0)p„+ " 7' p„
f„'(o)
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ing order and produces the additional terms in Eq. (11)
which are proportional to the derivatives of the scattering
amplitude as shown in Appendix B.

In order to investigate the importance of the lowest-
order corrections to the eikonal propagator as derived by
Wallace [16], we next replace the potential Uo(E, r) by
the potential

Up 25
U„g(E, r) = Uo+ 1+ —lnUj)).

7 dT

This correction (and higher orders) were derived by Wal-
lace [16] as a double expansion of the Fourier-Bessel rep-
resentation of the t matrix. The corrections can be in-
terpreted as correcting for the straight-line path and for
the change in energy along the path. The size of the
corrections are estimated in [16], but a quantitative un-
derstanding is best found by explicit calculation.

III. RESULTS

In this section we investigate the importance of some
of the ingredients of our model-exact calculation of high-
energy pion-nucleus scattering. We will then examine
how well our simple eikonal theory reproduces the results
of the model-exact theory.

The resulting differential cross sections for pions at 500
MeV scattering from 4Pca are shown in Fig. 2. We see
that the correct treatment of the recoil of the two-body
pion-nucleon system only affects the depth of the mini-
mum but not to a very significant degree.

The behavior of the pion-nucleon scattering amplitude
off shell is taken from the doorway-resonance model of
Ref. [13]. Amplitudes which are resonant are separa-
ble in their dependence on the relative momenta, hence
maximally nonlocal. This is the second source of nonlo-
cality whose importance we want to investigate. In the
doorway-resonance model, in each angular momentum,
spin, and isospin channel,

where z, is the on-shell momentum, i.e. , the momen-
tum corresponding to the center-of-momentum energy
cu . This nonlocality, which is also factored in the delta-
hole [26] model, was found quite important [28] for en-
ergies on and below the Ass resonance. For numerical
convenience, we take the form factor to be a Gaussian,
v(K) = exp( —rz/P ), and we vary P from 500 MeV to
4 GeV to investigate the importance of this nonlocality.

A. Contributions from nonlocalities
in the optical potential

The most dificult part of evaluating the optical poten-
tial in the model-exact theory is performing the Fermi-
averaging integration. This is known to be very impor-
tant in the region of the Ass resonance, where proper
accounting for the recoil and propagation of the pion-
nucleus resonance requires a careful treatment of the de-
pendence of the energy u~ in Eq. (5) on the momentum
of the nucleon. Resonance propagation manifests itself as
a nonlocality in the optical potential, and this represents
the first source of nonlocality whose importance we want
to assess for high-energy pions.

To investigate this we calculate elastic scattering of x
from 4oCa first with full Fermi averaging and then utiliz-
ing a closure approximation. The closure approximation
that we use results from taking

1O4

103

N
1o2

b'e

1O'

(13)

This is equivalent to setting the momentum of the struck
nucleon to zero in the pion-nucleus c.m. frame.

On the delta resonance, it has been found [26—28]
that the closure approximation is totally inadequate and
even the "optimally factorized" approximation [28] is not
quantitative. At these higher energies the conclusion is
not a priori clear. The pion-nucleon amplitude is, partial
wave by partial wave, rather energy dependent as the in-
dividual partial waves are resonant. The total amplitude,
however, exhibits only two very broad smooth peaks on
a large background.

1oo

10

e. (deg)
20 30

FIG. 2. DifFerential cross section for elastic scattering of
from Ca at 500 MeV versus center-of-mass angle. The

solid curve is the result of a calculation in which the full Fermi
averaging is performed exactly, while the dashed curve uses
the closure approximation defined in Eq. (13).
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The diff'erential cross sections for vr -4OCa scattering cal-
culated with this variation in the form-factor range are
shown in Fig. 3. We see that the dependence on the
off-shell range is weak at this energy.

There exists some confusion in the literature concern-
ing the possible values for P. First, if one does not include
invariant phase-space factors explicitly, they will appear
effectively in what one might wish to call the form fac-
tor. This difference is then one of semantics. However,
in deciding what might be a reasonable range over which
to vary the form factor, one should treat the kinematic
factors explicitly. In the P-wave channels, an artificial
and incorrect increase (in coordinate space) in the range
of the form factor will also result if the pion-nucleon pole
term [29] is not included in the model of the pion-nucleon
amplitude. For our purposes here, the difference of in-
terest is in examining how the cross section changes in
going from the physically motivated doorway-model form
factors to the higher momentum cutoff. The 4 GeV cut-
off produces an approximately zero-range interaction in
coordinate space. Figure 3 demonstrates that the non-
localities contained in a Bnite-range interaction do not
alter significantly the predicted elastic cross sections for
these high-energy pions.

We have found that the nonlocalities in the optical po-
tential at high energies do not have an important effect.
This suggests that the simple eikonal approach outlined

above could prove to be an adequate model for quan-
titative work at these energies. To investigate this, we
picture the differential cross sections predicted by each
model for m+-" C and sr+-4oCa at 800 MeV/c in Fig. 4
and Fig. 5. The data are from Ref. [4]. As stated ear-
lier, we construct the target density from the same wave
functions as were used in the momentum-space calcula-
tion and use the same on-shell pion-nucleon scattering
amplitude. For 4oCa, both the location of the minima
and the magnitude of the cross section at the forward
angles are in good agreement. The agreement is, how-

ever, not as quantitative for C where the minima are
slightly shifted. This difference is presumably caused in
part by the fact that the kinematics of target recoil enter
explicitly in the momentum-space formulation but not in
the eikonal approach. The eikonal model is thus more
quantitative for the heavier nuclei. We are examining
the eikonal model to see if it can be further improved for
the light nuclei.

The data from Ref. [4] have a quoted accuracy for the
overall normalization of 15%. The discrepancy we find
is larger than this. Before concluding that the difference
demands an enhanced, in the medium, pion-nucleon am-
plitude, we feel it is prudent to wait for data presently
being taken (at 400 and 500 MeV at LAMPF, from 300
MeV to 1 GeV at KEK, and at similar energies at the
AGS at Brookhaven) before reaching a definitive conclu-
sion.
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FIG. 3. Differential cross section calculated from different
form factor ranges P defined in Sec. III for vr - Ca elastic
scattering at 500 MeV. The solid curve is from the "model-
exact" theory. The dotted curve corresponds to P = 4 GeV.
The dashed cur~e is the result from setting P = 500 MeV.

I IQ. 4. Elastic differential cross sections for ~+- C scat-
tering at a pion laboratory momentum 800 MeV/c. The solid
curves are from the momentum-space calculations, while the
dashed curves are from the eikonal model. Data are obtained
from Ref. [4].
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106 104 B. Important features in the eikonal approximation
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FIG. 5. Same as Fig. 4 except the target is Ca.

In this section we investigate the role of the Coulomb
interaction and the first Wallace correction, which are
both necessary if one wants to use the eikonal model to
quantitatively approximate the results of the solution of
the model-exact theory.

First, we find that the Coulomb interaction plays an
important role in determining the depth of the minima
in the differential cross section. To see exactly how im-
portant Coulomb-nuclear interference is, we compare the
calculation of the vr — Ca differential cross section at a
series of energies as shown in Fig. 6 with and without
the Coulomb interaction. The Wallace correction is not
included in either the solid or the dashed curves. We
find that the first minimum in the differential cross sec-
tions becomes very deep when the Coulomb interaction
is included, falling well below 10 ~ mb/sr in the region
of 500—600 MeV. Without the Coulomb interaction, the
deepest minimum is much shallower and occurs at 780
MeV. The inclusion of the Coulomb interaction in the
theory is necessary if a quantitative comparison with the
data for ~ — Ca is to be made. Coulomb-nuclear in-
terference is destructive for vr and constructive for ~+,
which produces a less dramatic effect for sr+- OCa scat-
tering in this energy region.

Wallace has shown in Ref. [16] that the semiclassical
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FIG. 6. vr - Ca elastic differential cross section calcu-
lated from the eikonal model at labeled pion laboratory en-
ergies. The Coulomb interaction is included in all the solid
curves, but not the dashed curves. The Wallace correction is
not included here.

FIG. 7. vr - Ca elastic differential cross sections calcu-
lated from the eikonal model at labeled pion laboratory ener-
gies. The dashed curves are the same as in Fig. 6. The solid
curves include the Wallace correction, but not the Coulomb
interaction.
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approximation can be improved if higher-order correc-
tions (known as "Wallace" corrections) are included. We
examine in Fig. 7 the importance of the first Wallace
correction, Eq. (12), for vr -40Ca scattering. We see
in Fig. 7, in the absence of the Coulomb interaction,
that the Wallace correction is dramatic on resonance,
T = 180 MeV, where it fills in the deep minimum. At
higher energies, the correction interferes constructively
until about 700 MeV filling in the minima somewhat.
At 780 MeV, however, the Wallace correction interferes
destructively with Uo and produce a much deeper mini-
mum.

In Fig. 8 we turn on both the Coulomb interaction and
the Wallace correction; we find a fascinating interplay be-
tween the two. Note that at 400 MeV, for example, the
two corrections are out of phase and tend to cancel. At
680 MeV, however, they are in phase and interfere de-
structively with Uo, producing the very deep minimum.
By 780 MeV they are both out of phase with each other
but in phase with the lowest-order term and thus fill in
the minima. Both the Coulomb and the Wallace correc-
tions are necessary if there is to be a deep minima at
680 MeV, and not at the neighboring energies. We note
that the data of Ref. [4] were taken at a pion laboratory
momentum of 800 MeV/c, which is very near T = 680
MeV. The depth of the first minimum of the differen-
tial cross section for vr scattering over the energy range
400—800 MeV should prove a very sensitive test of the

existence, or lack thereof, of higher-order corrections in
the reaction dynamics.

IV. COMPARISON TO OTHER WORK

Other work on high-energy pion-nucleus elastic scatter-
ing, which utilizes the full Glauber theory, can be found
in Refs. [17, 30]. In particular, a comparison between
the Glauber theory and the optical model on sr+- C has
been made in Ref. [17] and the two approaches were found
to be in good agreement at higher energies. We earlier
noted that the optical-potential model there did not in-

clude the full Fermi averaging, and it was not clear to
what extent the agreement found was caused by the ap-
proximate treatment of the nonlocalities in the optical
potential. Our work clarifies that. We also note that
the Glauber theory they used is considerably more com-
plicated than our eikonal model. To our knowledge, the
Wallace corrections have not been included in any of the
numerical tests of the eikonal model in this energy region.
Hence, the important interplay between the Wallace and
Coulomb corrections that we find has not been previously
noted. We also found that the center-of-mass corrections
in the target wave functions are important for C but not
for 4OCa, which is in agreement with Ref. [17]. Our work
strongly supports their conclusion that pion scattering at
higher energies becomes theoretically and calculationally
simpler to treat at a quantitative level.
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FIG. 8. Dashed curves are the same as in Pigs. 6 and 7.
The solid curves now contain both the Wallace correction and
the Coulomb interaction.

V. SUMMARY, CONCLUSIONS,
AND FUTURE PROSPECTS

We have compared the scattering from the fully mi-

croscopic and nonlocal lowest-order optical potential to
the scattering from a simple local potential in the eikonal
approximation. We have investigated the importance of
several features of the full model. Within the framework
of our "model-exact" optical model, these include Fermi
averaging and the off-shell behavior of the pion-nucleon
scattering amplitude. For the eikonal theory, we exam-
ine the importance of the first Wallace correction and
find that this correction is responsible for a noticeable
improvement of the eikonal theory in comparison to the
"model-exact" theory. In all cases, the Coulomb-nuclear
interference is important and must be included if one is
to compare with data.

This semiclassical eikonal theory put forth here is very
simple, even simpler than the Glauber theory utilized

by others. It appears to be quantitatively valid at high

energy, at least for the first several minima in the diKer-

ential elastic cross section. This makes possible a much
simpler reaction theory than has been needed at energies
at and below the L33 resonance.

We have here only examined elastic scattering. We
plan to extend this work to inelastic scattering in a dis-
torted wave impulse approximation. At that point we

would also be able to address the question of how well

the eikonal approach can reproduce not only the elastic
cross sections, but how well it can reproduce the distorted
wave functions as well.

At high energies and/or for heavy nuclei, use of the full
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momentum-space optical model becomes very time con-
suming and sometimes computationally impossible. In
contrast, the eikonal theory is relatively simple and fast
on the computer. It therefore becomes a matter of con-
siderable practical importance to realize that the physics
is faithfully reproduced by the simple version of the the-
ory out to the position of the second minimum in the
differential cross section.

An examination of the pion-nucleon cross section
shows the complex interplay of resonances. Ultimately,
it is interesting to explore how resonances behave in the
nucleus and how the specific features of the optical po-
tential are suited for nuclear structure studies. In this
pursuit, it will be very helpful to have a simple version
of the theory as developed here. We will pursue these
questions in subsequent work.

The momentum-space optical model has been ex-
tended to treat kaon-nucleus scattering [32]. Results
show qualitative agreement with previous work [6]. Mod-
ifications to the kaon-nucleon amplitudes in the nuclear
medium are needed to eliminate discrepancies between
the theory and the data. On the quantitative level,
results from the momentum-space approach give larger
discrepancies between theory and data than do those
from the coordinate-space calculations used in Ref. [6].
Our eikonal model, which is also a coordinate-space ap-
proach and been shown to be a good approximation
to the "model-exact" momentum-space theory for high-
energy pion scattering, can also be modified to treat
the kaon scattering. Results from the eikonal model
may reveal the sources of the discrepancies between the
rnomenturn-space and the previous coordinate-space cal-
culations. Work on the kaon-nucleus scattering utilizing
the eikonal model is in progress.

trinsic proton density g from the Hartree-Fock density

pHF 1s

d ri (B~m) e~"&~ l p&F(~r —ri])

where B = b/~A and b is the usual harmonic oscillator
parameter. The Hartree-Fock calculation uses a slightly
different b for each orbital, and so we use the average
value in making the center-of-mass correction.

We use + to calculate the rms radius and compare
this to the rms radius measured in electron scattering
(with the finite size of the proton removed). For ~C and
the Hartree-Fock result from Ref. [21], we find that the
rms radius is 2.365 fm from the Hartree-Fock calculation
while it is measured to be 2.297 fm in electron scattering.
We therefore scale the b's in the Hartree-Fock calculation
by 0.9715 (a 3%%uo correction) so that the correct measured
rms radius is reproduced. After the scaling, we calcu-
late the predicted electron scattering and find that these
wave functions reproduce electron scattering data out to
a momentum transfer which is larger than is encountered
in pion scattering. For Ca, these corrections were al-
ready made by Negele [20] and his wave functions are
consistent with the electron scattering data.

APPENDIX B:
FORWARD SCATTERING AMPLITUDE

Using a Taylor expansion, we can write the forward
scattering amplitude for small angles as

f (8) —f(0) + (cos 8 —1)
d 8

APPENDIX A:
CENTER-OF-MASS CORRECTIONS 6I2= f (o) —f'(0)—2' (B1)

The scattering theory developed in Ref. [11] is covari-
ant. However, to implement it covariantly would require
a covariant model of the nucleus. This would clearly
be overkill as the nucleus for the cases of interest is not
moving relativistically. A Galilean invariant model would
thus suKce. Contemporary models of the nucleus, how-
ever, are not Galilean invariant. We use Hartree-Fock
models of the nucleus which contain spurious center-of-
rnass motion. The approach we adopt is discussed in
detail in Ref. [12]. The Hartree-Fock results are fitted to
elastic electron scattering. The spurious center-of-mass
motion is there treated by requiring that momentum con-
servation holds for average values. We make the same
approximation for pion-nucleus scattering.

Specifically we calculate the target wave functions from
the Hartree-Fock model and then calculate the Fourier
transform of the density. We require the intrinsic den-
sity, i.e. , the density without the center-of-mass motion.
If the wave function were a pure harmonic oscillator, then
the correction could be made exactly. Here, we make the
correction as if the Hartree-Fock result were exactly a
harmonic oscillator. The result [31] for obtaining the in-

where

df (8)
d cos 8 cos 8=1

dpi(cos 8)

l
d COS 8 cos 8=1

). t(t+1)
l

We further use the approximation

(B2)

(B3)

and the fact that the momentum transfer q in momentum
space corresponds to i%' in coordinate space, to rewrite
Eq. (Bl) as
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To construct a local optical potential, we multiply f(e)
by the target density p and obtain Eq. (11).

The forward scattering amplitude f (0) and its deriva-
tive f'(0) are calculated from phase shifts in the pion-
nucleon c.m. frame and then transferred to the pion-
nucleus c.m. frame through the relation

(B5)

where r and f ~(0) denote the pion momentum and
forward scattering amplitude in the pion-nucleon c.m.
frame.
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