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Recent laboratory experiments have measured fusion cross sections at center-of-mass energies
low enough that the effects of atomic electrons are important. To extract the cross section for bare
nuclei from these data (as required for astrophysical applications), it is necessary to understand
these screening effects. We present a model in which the evolution of the electron wave function is
treated dynamically in the time-dependent Hartree-Fock scheme, while the motion of the nuclei is
treated classically. We have calculated screening in the d + 2H and d + ®He reactions and give the
effective screening energy U. at small internuclear separations as a function of E. The resulting U.
values do not exceed the previously established adiabatic limits, and thus cannot explain the higher

screening energies derived from experiment.

PACS number(s): 25.70.Jj, 34.20.Cf, 97.10.Cv, 25.45.—z

I. INTRODUCTION AND MOTIVATION

At energies below the Coulomb barrier, the cross sec-
tion for the fusion of two light nuclei drops very rapidly
as the center-of-mass energy E is decreased. This drop
is due to the exponentially decreasing penetrability of
the Coulomb barrier, which for low energies is given by
exp[—2mn(E)], where n(E) = Z;Z,a(2E/uc?)~2 is the
Sommerfeld parameter for initial nuclei of atomic num-
bers Z;, Z; and reduced mass y. Usually, the penetrabil-
ity and a kinematic factor (o< E~1) are factored out of
the cross section by writing

S(E)
E

o(E) = exp[—2mn(E)], (1)
where all of the effects of the nuclear physics are embod-
ied in the “S factor” S(F), which is (barring any sharp
resonances) a much more slowly varying function of en-
ergy than o(FE).

Recent laboratory experiments have measured fusion
cross sections for light nuclei down to E = 3 keV by us-
ing both gas and solid targets. At such low energies, the
electrons can screen the Coloumb repulsion between the
bare nuclei, invalidate the energy dependence expected
from (1) with S(FE) constant, and significantly raise the
measured cross section over that due to the bare nuclei
alone [1]. This enhancement of the cross section due to
electron screening has been experimentally verified re-
cently for several light nuclear systems [2-4], with the
3He(d, p)*He reaction being the most prominent exam-
ple [2].

The classical turning radius for a head-on collision is
r¢ = Z1Z2e2/E. Even for the lowest energy cross sections
measured, this turning radius is well inside the electron
cloud of the target. For example, in the d + 3He collision
at E = 6 keV, the turning radius is 7, ~ 0.005 A. Thus, in
the simplest picture, the effect of electron screening is to
provide a constant additional energy U, to the center-of-
mass energy of the colliding nuclei [1]. The enhancement
of the cross section is then simply
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— U(E + Ue)
=@
_S(E+4+U.) E exp[-2mn(E +U.)]
- S(E) E+U. exp|-2mn(E))
=~ exp {Fﬂ(E)%} (2)

since U, < F and S is essentially energy independent.

The value for the screening energy U, is known in two
limiting cases: when the velocity of the projectile is much
larger (sudden limit) or much smaller (adiabatic limit)
than the Bohr velocity vg = Zac. In the sudden limit,
the obvious assumption is that the electronic wave func-
tion remains constant throughout the collision. The pro-
jectile ion then “falls” through the target’s electron cloud
before colliding with the nucleus. If we denote the depth
of the potential well of the target atom’s electrons by
Ve, the projectile (of charge Z,) gains energy Z,V, in
the laboratory system. Of this energy, only the fraction
p/my is available in the center of mass of the colliding
particles. Thus, for high projectile velocities, we expect
U, = 13.6 €V in the case of d+2H and U, = 54 €V in the
case of d+3He, which are the two systems we are con-
cerned with in this paper. (We use the symbols d, 2H, and
3He to denote the bare deuteron, atomic deuterium, and
atomic helium, respectively.) In the adiabatic limit, the
electrons remain in the lowest energy state of the com-
bined projectile and target “molecular” system that has
the same quantum numbers as the original system. For
the d+-3He system in this limit, U, = 119 eV, the differ-
ence in atomic binding energies between He and Lit. For
d+2H, U, = 20.4 eV assuming an equally weighted linear
combination of the lowest-energy gerade and ungerade
wave functions for the electron [5]. If instead only an
initial gerade wave function is assumed, one would find
that U, = 40.7 eV.

An analysis of electron screening effects on low-energy
fusion cross sections is usually performed by applying
Eq. (2) to the data and determining a best-fit value for
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the screening energy U.. All such analyses to date have
resulted in a value for U, larger than the adiabatic limit
(see [6] for an overview). This discrepancy was confirmed
in a recent study that calculated the screening effects of
the two electrons in the atomic 3He gas target on the
low-energy 3He(d, p)*He data [7]. In this calculation, the
nuclear degrees of freedom were described by a micro-
scopic multichannel resonating group model, while the
two electrons were treated in the adiabatic approxima-
tion, deriving the screening potential from a path integral
Monte Carlo calculation. This calculation clearly under-
estimated the observed screening effects, suggesting the
need to consider the coupling of electronic and nuclear
degrees of freedom.

In this paper we present a calculation of the electron
screening effects in the one-electron d+2H system and
the experimentally well studied two-electron d+3He sys-
tem. We describe the coupling of electronic and nuclear
degrees of freedom by the time-dependent Hartree-Fock
(TDHF) method. That is, we assume that, beyond the
classical turning point, the nuclei behave like classical
particles, subject to the forces they exert on each other
and the force exerted on them by the electrons. How-
ever, the electrons are treated quantum mechanically by
the TDHF scheme, the wave functions evolving in the
time-dependent potential generated by the two nuclei.
In this way, we determine the screening potential U(r)
between the two nuclei and, by equating U, = U(rs),
the screening energy. Our dynamical treatment then al-
lows us to check whether the coupling of electron and
nuclear degrees of freedom causes the screening energy
to exceed the adiabatic limit, as suggested by the exper-
imental data. Unfortunately, we find that the adiabatic
limit is not exceeded.

Our paper is organized as follows. In Sec. II, we briefly
describe the TDHF method applied in our calculation, as
well as the numerical methods involved. Our results are
presented and discussed in Sec. III.

II. THE TDHF METHOD

In the case of d+2H, we assume that the target is
ground-state atomic deuterium and that the projectile is
fully ionized. The wave function describing the electron
evolves through the Schrédinger equation

i%‘;’t) =_ ({)(r,t) + V2>¢(r,t) (3)
where
1 1
0= R T k- R ?

is the potential due to the target and projectile deuterons
at locations R; and R;, respectively. In these equations
and those following, we have chosen atomic units (e =
A=2m=1).

In the case of d4+3He, we assume that the target helium
atom is initially in its Hartree-Fock ground state and that
the projectile deuteron is ionized. We can then write the

electronic wave function as
U(es,52,8) = (5, (2, 0) S5 0(DA(R) — ADa(2)]
(5)

This wave function describes two electrons in a spin-
singlet state (o and 3 are the one-electron spin states),

so that the spatial wave function v for each obeys Eq. (3)
with

4 Z N, )2
20 = R T ) —/dar TT—r|

(6)

where R is the position of the target >He nucleus, R is
the position of the projectile deuteron, and the integral
is the potential due to the other electron.

In accordance with our classical treatment of the nu-
clei, the time dependence of the nuclear position vectors
R,;(t) is determined from Newton’s law, where the force
on each nucleus is the sum of the Coulomb force of the
other nucleus and the force due to the electronic charge
density.

Since impact parameters that lead to nuclear reactions
are small on the atomic scale, we can assume a vanish-
ing impact parameter when simulating the collision’s ef-
fect on the electron(s). This assumption, when combined
with the initial spherical symmetry of the target wave
function, means that the wave function is azimuthally
symmetric about the collision axis. It is then convenient
to express the wave function in cylindrical coordinates as
¥(p, z,t) and to use the evolution method of [8]. For the
d+2H calculations, we used Ap = Az = 0.1 atomic unit,
with N, = 50 grid points along the p axis and N, = 249
grid points along the z axis. The smaller spatial extent
of the atomic wave function in the d+3He calculation
allowed us to use Ap = Az = 0.06 atomic unit.

The initial state of the target atom was prepared by
evolving a trial wave function in imaginary time [9]. The
resulting HF ground state is the lowest eigenfunction
of the discretized Hamiltonian. As long as the over-
lap between the ground state and the trial wave func-
tion is nonzero, this method will converge to the ground
state. The converged energy of the 2H ground state
was —0.504 Hartree, and the converged energy of the He
ground state was —2.824 Hartree. These values can be
compared with the experimental values of —0.50 Hartree
and —2.901 Hartree, respectively, and the exact HF value
of —2.861 Hartree.

III. RESULTS AND DISCUSSION

Figures 1 and 2 show the time evolution of the electron
wave function in the d+2H and d+3He systems, repre-
sented in the usual way by contour plots of the electron
density, |¥(r,t)|2 and 2|¥(r,t)|?, respectively. The con-
tours cover the density above 2 x 10~ in equal steps on a
logarithmic scale. In both cases, the energies of the col-
liding nuclei have been chosen between the sudden and
adiabatic limits: E = 25 keV for the d+2H system and
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E = 20 keV for the d+3He system.

For both the d+-2H and d+3He systems, the electron
densities show significant asymmetries when the two nu-
clei approach each other. This signals the presence of
configurations other than s waves in the electron wave
function and in the case of d+3He clearly indicates that
the system has not yet reached the adiabatic limit at this
energy. In the d+2H system there should be a p wave
present even in the adiabatic limit [5]. If we repeat the
TDHF calculations at E = 5 keV and project the final
states onto the eigenstates of the Hamiltonian, the wave
functions show the behavior expected in the adiabatic
limit.

During the collision, the force along the internucleon
separation on each nucleus due to the electron(s) is given
by

v, O[(Ra(t) 1) -3
R O

Thus, the relative force exerted by the electrons is Fye; =
F; — F,. As a typical example, Fig. 3 shows the relative
force exerted by the two electrons on the colliding d+3He
nuclei at E = 20 keV, corresponding to the situation of
Fig. 2. The electrons induce an attractive force on the

Fi(t) = 2 / e P
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FIG. 2. Similar to Fig. 1, but for the d+*He system at

r t=0.0 E = 20 keV.
r 1 1 1 1 L
C I TS R
N N
L A\ t=4.0 —~ 0 -
L ol
'./@1.h|w|.|.|.|. 2
N N ) —14 —
[ O
r t=5.5 5
C //\ - ]
AN\ = 2 /
L - - ke
- t=7.0 & 5 L
- 5 ///—\’
= '|/|¢6\1\.m111,1,
(3] i [a) ~ -4 T T : T T N
=~ L t=8.0 0 2 4 6 8 10
m - /‘\\ Internuclear Separation (a.u.)
©) L=
<Z( il NS s Lo L FIG. 3. The relative force F,e exerted by the two electrons
5 i t=9.0 on the colliding d+>He nuclei at E = 20 keV.
5 '_ /\\ 20 1 L 1
- 5L il
< N AN
a_ | t=10.0 s 09
<C 25 - L
oc r \ _ =204 -
o L TAR A VP N P N 2
-8 6-4-2 0 2 4 6 8 10 S _40-4 L
DISTANCE (a.u.) 3
_60 — -
FIG. 1. Evolution of the electron wave function in the g
d+2He system at a collision energy E = 25 keV. The plot ¢ -804 =
shows contours of the electron density, equally spaced on a g 1004 |
logarithmic scale; neighboring lines indicate a change in den-
sity by a factor 105. The positions of the two nuclei are -120 T T T -
indicated by crosses. The first plot corresponds to the start- 0 lzt | 4 S 6t ) E; 10
ing configuration, while the last shows the electron density at nternuclear Separation (a.u.
the internuclear separation r; = 58 fm, the classical turning FIG. 4. The electron screening potential U(r), correspond-
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FIG. 5. The screening energy U. as a function of energy for
the d+2H system. The values corresponding to the adiabatic
and sudden limits are marked at the left and right scales,
respectively.

nuclei, thus accelerating their approach. This force is
strongest at separations of order 0.2 A and, as expected,
decreases linearly at smaller distances. The “bumps” on
the tail of the curve are an indication of charge-exchange
processes; they are even more pronounced in the d+2H
case, where the projectile and target nuclei have equal
charges.

From F}j, the electron-induced screening potential
U(r) is obtained by integration. The potential corre-
sponding to the d+3He collision of Fig. 3 is shown in
Fig. 4. At small internuclear separations, r < 7, =
0.005 A, U(r) becomes constant reflecting the fact that
the two nuclei are well inside the electron cloud and the
electrons effectively feel only the charge of the combined
system. For the collision depicted in Fig. 3, we find
U(ry) = 114 eV, which is slightly smaller than the adia-
batic limit, U, = 119 eV.

If we define the screening energy U, to be the screening
potential at the classical turning point and plot this as
a function of E, we arrive at Fig. 5 and Fig. 6 for the
d+2H and d+3He systems, respectively. In either case,
our calculated screening energies recover the values for
the sudden and adiabatic limits at large and small colli-
sion energies, respectively. Further, for the d+3He case,
the adiabatic limit is reached approximately at energies
E < 20 keV, in accord with the assumptions of Ref. [1].
At higher energies, this limit is obviously not valid. How-
ever, here the ratio U./F3/? appearing in the exponential
in Eq. (2) (and thus determining the energy dependence
of the enhancement factor f) becomes very small, so that
electron screening effects can be ignored altogether.

Our calculations show a continuous transition from the
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FIG. 6. Similar to Fig. 5, but for the two-electron d+3He
system.

adiabatic to the sudden limit as the collision energy in-
creases. Importantly, the calculated screening energy
never exceeds the adiabatic limit. Thus, our dynami-
cal TDHF calculation cannot explain why experiments
evidently observe larger electron screening effects than
obtained in the adiabatic approach. If this behavior is in
fact real, then it obviously challenges our understanding
of low-energy nuclear collisions in the presence of atomic
electrons. As our calculation clearly indicates that the
experimental screening effects cannot be reproduced by
treating the electrons on the mean field level, a reason-
able next step is to describe, also, the nuclei quantum
mechanically, in this way accounting for the momentum
distribution of the electrons and the related recoil ef-
fects on the colliding nuclei. Work in this direction is
in progress.

Because of its astrophysical importance, it is critically
important that the discrepancy between theoretical pre-
dictions and the experimental observations of laboratory
electron screening effects be resolved, in order to make ef-
fective use of the remarkable efforts currently being made
to push laboratory cross section measurements to ever
lower energies. This calls both for improved theoretical
studies of these effects and for their independent experi-
mental verification.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation (Grants PHY90-13248, PHY91-15574),
and by the Department of Energy (Contract No. DE-
FG03-87ER40347).

[1] H. J. Assenbaum, K. Langanke, and C. Rolfs, Z. Phys. A
327, 461 (1987).

[2] S. Engstler et al., Phys. Lett. B 202, 179 (1988).

[3] S. Engstler et al., Phys. Lett. B 279, 20 (1992); Z. Phys.
A 342, 471 (1992).

[4] C. Angulo (private communication).

[5] L. Bracci, G. Fiorentini, and G. Mezzorani, Phys. Lett. A
146, 128 (1990).

[6] K. Langanke, in Advances in Nuclear Physics, edited by
J. W. Negele and E. Vogt (Plenum, New York, 1993).

[7] K. Langanke and D. Lukas, Ann. Phys. (Leipzig) 1, 332
(1992).

[8] K. Kulander, K. R. Sandhya Devi, and S. E. Koonin, Phys.
Rev. A 25, 2968 (1982).

[9] S. E. Koonin, Computational Physics
Cummings, Menlo Park, CA, 1986), Chap. 7.

(Benjamin-



