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We study the validity and convergence of the eikonal expansion for the calculation of total cr&

and total reaction O.R cross sections in the case of low-energy heavy-ion collisions. Investigations
are performed by considering few typical optical potentials, varying the incident energy from 10
MeV/nucleon to 300 MeV/nucleon. At low energy, the eikonal expansion does not necessarily
converge and faces a violation of Bux conservation, especially at low-impact parameter. For well-

behaved cases, we find the eikonal approximation to be a convenient starting point. Adding the
first correction leads in general to an acceptable accuracy with respect to the quantum mechanical
result.

PACS number(s): 25.70.—z, 24.10.Ht

I. INTR.ODU CTION

The measurements of the total reaction cross section
o.R constitutes a rather unique way of collecting infor-
mation on the size of unstable nuclei [1—4]. Extracting
nuclear radii from o.~ can be achieved by using the impact
parameter representation of the scattering amplitude [5]

[1 —exp (i21m&(b))]b db .

As known from numerous works, at intermediate and
high energies the phase-shift function y(b) can be cal-
culated in the Glauber model [6]. Its domain of validity
is well established and its use at large enough incident en-
ergies is quite justified. Specific formulations for nucleus-
nucleus scattering have been produced by many authors
(see, for instance, Refs. [7,8]).

On the other hand, because of its appealing simplicity
and of its geometrical character, there are attempts to
apply the same approach at much lower energies [4,9],
where it becomes questionable. The problems arising are
twofold.

Firstly, the Glauber model asssumes the total inter-
action to be described in terms of the interaction be-
tween individual nucleons. At low energy this cannot be
achieved by considering the bare nucleon-nucleon poten-
tial, since medium eKects are known to be important [10].
Besides the necessity of dealing with effective forces, of-
ten density dependent, the coupling to the excited states
should also be included. At high energy, this is done by
using the closure approximation in the intermediate steps
of the multiple scattering.

In other words, at low energy, the construction of the
optical potential and the need for coupled channel equa-
tions are not obviously compatible with the basic as-

sumptions underlying the Glauber model.
Secondly, this model assumes phase-shift additivity.

Prom potential scattering theory this hypothesis is known
to hold asymptotically, at large incident momentum k. In
order to check its validity in concrete examples, it is nec-
essary to consider the Glauber phase-shift function as the
eikonal approximation of an equivalent optical potential
V(r). It is then possible to calculate the corrections to
the eikonal phase, and thus to test the phase-shift addi-
tivity [11].

On the other hand, in the quantum mechanics ap-
proach, supposing the optical potential to be known, cal-
culating total cross sections of heavy-ion reactions re-
quires the summation of numerous high-E partial wave
contributions. Such procedures are easily subject to a
loss in accuracy. By comparison the eikonal approxima-
tion provides us with a very practical tool for comput-
ing total cross sections, reducing the accuracy problem.
Systematic corrections to the eikonal approximation are
available [12,13]. It is thus straightforward to check the
eikonal phase or/and to improve its results by evaluating
the successive terms of the series expansion.

It is very tempting to apply the same approach at low
k. There are, however, two questions to be answered.
The available corrections have been derived from a dy-
namical model valid at medium and high incident ener-
gies [13]. They are not necessarily valid in a low-energy
regime. Secondly, independently of the potential shape,
a rough global criterion for the convergence of the series
expansion is provided as by the ratio Vo/E, Vo being the
strength of the potential and E the incident center of
mass energy. As the successive contributions are propor-
tional to ( & ), the sum converges for Vo/E (( 1. At
low energy, however, this quantity gets close to unity and
the convergence is not ensured.

The purpose of the present work is to discuss the valid-
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ity of the eikonal approximation and its first few correc-
tions in a low-energy regime. Rather than going through
analytical arguments we shall provide few illustrative
quantitative estimates.

An attempt along this line has been made by Hussein
et al. [14]. Within a careful study of the total reaction
cross-section calculations, these authors compare WKB
and eikonal phase-shift functions for a Woods-Saxon po-
tential. Whereas at high energy the two approximations
yield similar results, they di8'er, as expected, at low en-
ergy, the WKB approximation being closer to the quan-
tum mechanical values. For the total reaction cross sec-
tion, as we shall see, the first correction improves the
eikonal result sensibly.

)((, ~b 8 0 1)
a(n+ I)! r rb a~ k

(7)

where the differentiation with respect to & and & are
carried out at fixed k and b, respectively. Derivatives
with respect to k occur only for potential depending ex-
plicitly on velocity. Note that p is the reduced mass and
that we have set h = 1. The kinematic is nonrelativistic.

The zero order term in (7) gives the eikonal phase

+OO

go(b) = —— V(r)dz .
k

II. CHECKING THE EIKONAL EXPANSION

For the sake of clarity, we recall that in the impact pa-
rameter representation, the elastic scattering amplitude
is given by

For local potentials the first and second order correc-
tions are given, respectively, by

E(q) = ik jJ (qbo)[1 —exp (iy(b))]b db, (2)
and

z( g) +~
gi (b) = 1 + b— V (r)dz

where k is the incident momentum in the c.m. system
and q = 2k sin(8/2) is the momentum transfer.

Assuming unitarity, the total cross section is obtained
by applying the optical theorem

( g g2) +
yz(b) = —,3+5b +b,— V (r)dz .

(10)

The total elastic cross section can be calculated by in-
tegrating the squared amplitude over the whole angular
domain (see Appendix):

o.,(
—— F 0 dO

(4)

In order to obtain some insight into the problem, we
have studied a particular example. We consider an inci-
dent Li beam scattered by a C target, in the range of
10 MeV/nucleon to 100 Mev/nucleon. Note that we con-
sider only light elements so that neglecting the Coulomb
phase is not too unreasonable specially since we shall
merely study the total reaction cross section. The opti-
cal potential has a very simple Gaussian shape

The total reaction cross section is then given by the dif-
ference o~ ——oq —oe~.

Separating the real and imaginary parts of the phase-
shift function,

we can write

(Tg ——4~ [1 —cos (y~(b))e x' ]b db,
0

(T~ = 2vr [1 —e x't )]b db .
0

For potential scattering the eikonal expansion has been
derived by Wallace [12], and it has been written in a
compact form by Waxman et al. [13]. It is given by

2 2 2 2
Vep(, (r) = Voe " + iWoe

The strength and ranges are kept independent of the in-
cident energy. Although not realistic this is sufhcient
for the present purpose, since we merely want to check
the merit of the eikonal expansion in given cases rather
than describe experimental situations. Spin eft'ects and
Coulomb phases are ignored.

The first point to discuss concerns the Aux conserva-
tion; it requires ]e x'(

&~ ( 1. This inequality is not
necessarily fulfilled at small impact parameters and low-
incident energy. Therefore it imposes conditions and re-
stricts the physical domain of application of the eikonal
epxansion. This is clearly shown, for instance, by looking
at b=o.

For the Gaussian potential (11), the three first contri-
butions to Imp(0) from the eikonal expansion are given
by
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Imp p
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x (x.„t) given by

3~3A: 0 M x~pjt i/2t'+ 1

Because A is symmetric with respect to x ~ —x, we may
consider the right-half plane only with x ) 0. Remember
that the absorbtive nature of the imaginary part of the
potential requires xy & 0. Thus the curves of Fig. 2
represent the case of a repulsive interaction. The case
for an attractive interaction is its symmetry with respect
to the origin.

In the first quadrant, if x ( x„;q there is no restriction
to the value of y. Above x„;q, however, the physical
domain is bounded by the following restrictions:

B+ i/—4g+g
Beyond y„;t, the Aux conservation condition is violated.

Consequently at low-incident energy, where y can be
large, the eikonal expansion may face a violation of the
Aux conservation. How severe is this deficiency depends
on the specific case considered. The present discussion
has been limited at 6 = 0, which has very little weight in
the calculation of total cross sections, but the same kind
of troubles are expected at finite b. Whether a drastic
subsidiary condition excluding the nonphysical values of
y(b) could lead to a reasonable approximation has not
been investigated.

The second point to discuss concerns the convergence
of the series and the validity of the approximation with
respect to the quantum mechanical results. For this later
we concentrate our eÃort on the total reaction cross sec-
tion. Indeed the total cross section depending on the
scattering amplitude at 0 = 0, the eikonal approximation
works always better for 0.

& & than for OR, which represents
only an average.

For illustrative purposes, we take Vo ———100 MeV,
Wp = —50 MeV, n = P2 ——0.1 fm, i.e. , values that
are typical for low-incident energies. In Table I, we sum-
marize the results. As a function of the incident energy,
we quote ~y~, O'R calculated at the eikonal approximation
and then including successively its two first-order correc-
tions, and Anally the exact quantum mechanical result.

We remark that even at 10 MeV/nucleon the rapid de-
crease of the successive contributions from the eikonal

expansion ensures the convergence. Indeed, we have ver-
i6ed that the next order terms become negligibly small.
It means that the first criterion based on ~y~ ( 1 is too
crude, and somewhat too pessimistic, the magnitude of
the "derivative" terms playing a decisive role. For this
reason one has to be aware that expansions involving a
Gaussian and its derivatives exhibit particular conver-
gence properties [15]. The present results cannot be ex-
trapolated to a Woods-Saxon shape, for instance, with-
out care [16].

Whereas the eikonal approximation is 11% lower
than the quantum result at 10 MeV/nucleon, 6% at 30
MeV/nucleon, and 3% at 100 MeV/nucleon, the first
eikonal correction brings the agreement to 3% at 10
MeV/nucleon, and 1% already at 30 MeV/nucleon. With
the second order included, the quantum value is reached
within 3% at 10 MeV/nucleon.

Consequently, we conclude that the eikonal expansion
could be a powerful tool to calculate total cross sections,
even at low incident energy. It is fairly easy to use, both
to check the convergence of the expansion and to ap-
proach the quantum mechanical result with 1%.

III. FE%' REALISTIC EXAMPLES

To complete the present study of the eikonal expan-
sion, we display in this section few examples somewhat
more realistic than the preceding ones. Among many
possibilities we have chosen to take few optical poten-
tials describing the elastic scattering of Li. This choice
is simply motivated by the current interest for this very
weakly bound nucleus.

The first potential under consideration is taken from
Satchler et al. [17]. It has been calculated for I i + i2C
at 30 MeV/nucleon, using the folding approach with a
DDM3Y e8'ective interaction. It can be well 6tted by a
Gaussian:

2 2

Vq (r) = (—142.7 —i97.1)e

(n = 0.084166 fm, the intensity are in MeV).
Although designed for 30 MeV/nucleon, this poten-

tial has been used at four energies ranging from 20
MeV/nucleon to 300 MeV/nucleon, to study the varia-
tion of noneikonal corrections with incident energy. This

TABLE I. Total reaction cross section calculated for Li- C scattering at diferent energies. The
potential is given by Eq. (11) with Vp = —100 MeV, Wo ———50 MeV, o = P = 0.1 fm . The
eikonal approximation result and its turbo first corrections are compared to the quantal value. Cross
sections are given in mb, energies in MeV.

E/A

10
20
30
40
50
60

E,
40
80
120
160
200
240

y =
I E.

'

2.5
1.25
0.83

0.625
0.50
0.42

Xo

1112.75
1003.87
940.18
894.99
859.95
831.31

Xo+X&

1200.80
1065.45
988.29
935.00
894.15
861.19

Xo + Xi + X2

1206.47
1076.67
995.29
939.47
897.26
863.46

uantal
value
1238.84
1081.48
997.35
940.54
897.90
863.87



F. CARSTOIU AND R. J. LOMBARD 48

TABLE II. Eikonal, first- and second-order contributions to o~ and ca~ for the potential Vj.
Cross sections are given in mb.

20 MeV/nucleon

30 MeV/nucleon

85 MeV/nucleon

300 MeV/nucleon

2857.4
1472.7
2706.0
1397.0
2317.3
1202.7
1849.0
967.3

Xo+ X&

2892.9
1522.42
2733.5
1436.0
2332 ~ 1
1222.9
1857.0
975.0

xo+ Xi + X~

2888.8
1529.2
2730.8
1440.8
2331.7
1224.0
1857.2
975.2

Maximal
deviation

1.1%
3.8%
0.9%
3.15%
0.6%
1.75%
0.5%
0.8%

is not quite realistic, since the optical potential is ex-
pected to vary with energy. Nevertheless, it will fix the
magnitude of the corrections and their variations with
energy in a given situation. The results are summarized
in Table II.

As in the preceding section, we have calculated the
eikonal approximation and its two first corrections for
the total and the total reaction cross sections.

The results for this realistic potential confirm previous
findings. The corrections to the total cross section are
rather small, and reach hardly 1%. As said above, this is
linked to the fact that oz depends only on the elastic am-
plitude at zero momentum transfer. The corrections are
larger for o~, reaching about 4%, but somewhat smaller
than those obtained in Sec. II.

The results show that for both oq and oR the eikonal
expansion converges rather fastly. Very satisfactory val-
ues are obtained with a yo + yi approximation. Finally
we note that the corrections decrease slowly with en-
ergy. Whereas they are below 1% at 300 MeV/nucleon,
they drop only by a factor 2 from 20 MeV/nucleon to 85
MeV/nucleon.

Very similar results have been obtained with a second
potential derived by Satchler et al. [17] for ~Li+~2C at
85 MeV/nucleon. They are not displayed here.

The situation is slightly different for another potential
again taken from Ref. [17]. It describes Li+ C at 30
MeV/nucleon as previously, but a Woods-Saxon imagi-
nary part has been added to the folding potential. It can

also be reasonably fitted by Gaussians insisting on the
potential tails. In this case, the ranges are different for
the real and the imaginary parts. Our parametrization
yields

V2(r) = —142.7e " —i 65.67e

V(r) = —Vp 1+ exp
av )
r r—iRO

i
1+ exp

Q~

(n = 0.084166 fm, P = 0.10957 fm 2, the intensities
are in MeU).

The results are displayed in Table III. We note that
the general features are the same as for potential Vj.
The magnitude of the corrections, however, is bigger and
reaches about 10'%%up for sr~ It pract. ically meets the results
of the preceding section.

The third example is constituted by two phenomeno-
logical Woods-Saxon potentials fitted on recent I i+ Si
quasielastic scat tering data at 29 Me V/nucleon [18].
They both reproduce the data in a satisfactory way. They
differ at the first deep minimum at around 3 in the c.m. ,

as well as in their predictions for O.
q and oR. For both

potentials the diffusitivity of the real part is very large,
suggesting a diffuse refractive interaction region induced
by a neutron halo. They read

TABLE III. Eikonal, first- and second-order contributions to oq and o.~ for the potential Uq.
Cross sections are given in mb.

20 MeV/nucleon

30 MeV/nucleon

85 MeV/nucleon

300 MeV/nucleon

+0

2677.0
981.3

2524.2
923.0
2132.2
773.8
1669.5
593.7

Xo+ Xj.

2719.4
1066.0
2557.6
988.5
2150.6
803.4
1680.9
602.5

Xo+ X~+F2
2718.8
1085.6
2556.5
1000.2
2150.6
805.4
1681.2
602.6

Maximal
deviation

1.5%
10.6%
1.24%
8.4%
0.9%
4.1%
0.7%
1.5%
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TABLE IV. Parameters of the two Woods-Saxon potentials (a and b) fitted to Li- Si elastic
scattering data at 29 MeV/nucleon. Intensities are in MeV, radii and diifusivities in fm. Eikonal,
first- and second-order contributions to cr& and o.R for these two potentials, respectively. Cross
sections are given in mb.

(a)
(b)

(a)

(b)

Vp

70.0
104.38

O'q

4.76
4.908

4585.0
1493.9
5033.2
1910.2

1.315
1.250

Xp+Xi
4657.8
1545.3
5093.6
1968.2

Wp
127.4

340.65

&TV

4.966
5.197

Xp+X'i + X&

4658.8
1546.7
5092.5
1970.6

0.507
0.532

Maximal
deviation

1.6%
3.55'Fo

1.2%
3.2%

The values of the parameters are displayed in Table IV,
together with the results for oq and 0R. In spite of the
fact that the two phenomenological potentials have quite
diferent ranges and intensities for their respective real
and imaginary parts, and while they differ by 10% on o'q

and almost 30% on o~, the relative corrections due to
noneikonal propagation are of the same relative amount.

Again the results are rather similar to those quoted
before. It gives conMence that our conclusions express
general features and are not distorted by peculiarities of
the chosen examples.

IV. CONCLUSIONS

In the present work we have investigated the limi-
tations of the eikonal approximation in the low-energy
regime for the calculation of total and total reaction cross
sections. This has been done by computing the first few
terms of the eikonal series expansion for some specific
optical potentials. In spite of the arbitrariness of our
choice, the results are coherent enough to reveal a gen-
eral behavior.

We found the eikonal approximation to be a good start-
ing point, even at 10 MeV/nucleon, to calculate oq and
o R. Corrections are easily incorporated, which bring the
result within 1% (or better) of the quantum mechanical
value.

As far as Glauber type calculations are concerned we
suggest following the same line by first computing the
phase equivalent optical potential. This can be done by
inverting the phase-shift function in the usual way [6]

hv O y(b) b db

err Or „gb2 —r2 '

where y(b) can take the popular form

APPENDIX A

As far as the total elastic cross section is concerned,
formula (4) is only an approximated relationship [19].
Its derivation implies an integration over the momentum
transfer q from 0 to oo instead of 0 to q = 2k. While
6ghting for the accuracy of O.R, one may wonder about
the corrections to cr, i as given by Eq. (4). In general
this cannot be investigated without numerical integra-
tions and should be done for each particular case.

However, we shall provide here two crude estimates,
sufBcient to get a feeling about the order of magnitude
of the corrections.

1 Gaussian case. Suppose we take

(A1)

Then

I'(q) = e
2Q!

and

(1
—2k /cx

20,'
(A2)

The parameter o. is roughly related to the size of the
system by (r ) =

2
—,. For Li on C at 60 MeV incident

energy, we find 2k /n & 100, which makes the correction
totally negligible.

2 Exponential case. A single exponential is not very
realistic but the di8'erence of two exponentials can give a
reasonable model. So we take

Their conclusions are in good agreement with ours.

Division de Physique Theorique is unite Associee au
CNRS.

y(b) = — dz d r'p~ (r —r') p~ (r') .
2 1 — '«" = Ae ' —ae-/"

) (A3)

Note that the possibility of going beyond the leading con-
tribution in the Glauber model makes this last more in-
teresting than a semiempirical formula.

As we were completing this manuscript we became
aware of a paper by Faldt, Ingemarsson, and Mahalan-
abis [19] devoted to a subject similar to the present one.

ik 2I'(3/2)
~sr

( ~n

( (n2 + q2)3/2

and

with P & n and A & B.
Then

BP
(P + q2) 3/2 )
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(3)' A'

(2 nz

A2 B2

(I + 4k2 )z Pz
B

(I + 4%2 )z

8AB z z erg(4& + +~
)

(~ —P ) /16k + (cr + p )4k + crzpz)
(~'+ P')—

(A4)

2 2
As it can be checked, corrections with respect to q = cm are of the order of ~6&, , &~6k, , or ~6~&, on C; at 60 MeV
incident energy these corrections are smaller than 10

Consequently, within the range of energies, beams, and targets considered in the present work formula (4) seems
justified for our purposes.
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