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Partial-wave analysis of all nucleon-nucleon scattering data below 350 Mev
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We present a multienergy partial-wave analysis of all NN scattering data below T& b = 350
MeV, published in a regular physics journal between 1955 and 1992. After careful examination,
our final database consists of 1787 pp and 2514 np scattering data. Our Gt to these data results
in y /Nsq = 1.08, with Nsq = 3945 the total number of degrees of freedom. All phase shifts and
mixing parameters can be determined accurately.
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I. INTRODUCTION

In this paper we present the results of our partial-wave
analyses of all NN scattering data below T~ b

——350 MeV,
where we mainly focus on the analysis of the np scattering
data. The analysis of the pp data alone has already been
published some time ago [1]. Preliminary results of a
combined pp + np analysis, including the pp as well as
the np scattering data, have also been published [2,3].

The abundance of accurate pp data below 350 MeV is
such that a multienergy (m.e.) pp partial-wave analysis
can be done successfully. Keeping the model input to a
minimum, an excellent fit with y /Ns t, = 1 is feasible.
Here N~ t denotes the number of scattering data. The
m.e. phase shifts can be determined very accurately in
such an energy-dependent analysis.

On the other hand, an analysis of only the np scat-
tering data is much more difIicult. The reason is that
in the case of pp scattering only the isovector partial
waves contribute, whereas in the case of np scattering
also the isoscalar partial waves have to be taken into ac-
count. Moreover, the numerous np data are by far not
as accurate as the pp data. In doing a partial-wave anal-
ysis of the np data it has therefore been customary to
parametrize only the isoscalar lower partial waves, and to
substitute for the isovector phase shifts the results from
an analysis of the pp data. An exception is made for the

So phase shift which is usually also parametrized inde-
pendently. The np isovector phase shifts can furthermore
be modified to account for charge-independence breaking
efFects (e.g. , Coulomb distortion and mass difference ef-
fects). The difFerences between the pp and np isovector
phase shifts are then calculated via a theoretical model,
where one assumes that one fully understands the break-
ing of charge independence and that one knows how to ac-
count for what one thinks to be the most important con-
tributions to this breaking. Several different approaches
have appeared in the literature, each leading to difFerent
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results for the amount of charge-independence breaking.
Therefore, an analysis of the np data is more model de-
pendent than an analysis of only the pp data.

In the np analysis reported here we assume that charge
independence is broken by the electromagnetic interac-
tion, by the neutral-pion and charged-pion mass difFer-
ence, and by the neutron and proton mass difFerence. The
pion-nucleon coupling constants are taken to be charge
independent. We refer to these charge-independence
breaking corrections in the isovector partial waves as
pion Coulomb corrections. For the So partial waves we
make an exception: the pp and np So partial waves are
parametrized independent of one another.

Our way of analyzing the pp scattering data has been
explained in detail elsewhere [1,4]. A similar procedure is
applied to the analysis of the np data where the special
treatment of the lower partial-wave np isovector phase
shifts will be discussed in Sec. IIIB. In general our
method fully exploits the fact that the long-range (elec-
tromagnetic and one-pion-exchange) part of the NN in-
teraction is well known, whereas the short-range part of
the interaction is sufIiciently short ranged for the higher
partial waves to be screened by the centrifugal barrier.
This means that all partial waves with high angular mo-
mentum J are supposed to be well known, and only a
relatively small number of lower partial waves need to
be parametrized. The short-range part of the interaction
in these lower partial waves is represented by an energy-
dependent boundary condition (in our earlier papers it
is referred to as the P matrix [5]), where the boundary-
condition radius is chosen to be 6 = 1.4 fm. The bound-
ary condition is parametrized via a square-well potential
of range r = b. The depth of this potential is independent
of r, but is allowed to be energy dependent and difFerent
in each of the difFerent partial waves. It can be shown
that the depth of this potential is an analytic function of
k, the c.m. three-momentum squared.

This analytic parametrization, together with the fact
that we include the correct electromagnetic and one-pion-
exchange potential tails, causes the energy dependence of
the phase shifts in our m.e. partial-wave analysis to be
described very well. As a consequence, we end up with
an energy-dependent partial-wave solution which gives an

0556-2813/93/48(2)/792(24)/$06. 00 48 792 1993 The American Physical Society



PARTIAL-WAVE ANALYSIS OF ALL NUCLEON-NUCLEON. . . 793

excellent fit to all NN scattering data below T~ b
——350

MeV. We find that for at1 lower partial waves the phase
shifts are pretty well constrained by the NN scattering
data as a whole. This means that our m.e. solution can
also successfully be used to give fairly accurate predic-
tions of NN scattering observables at any scattering an-
gle and at any laboratory kinetic energy up to about 350
MeV.

Let us next compare our energy-dependent (or multi-
energy) analysis with an energy-independent (or single-
energy) analysis. In such a single-energy (s.e.) analysis,
the data in some particular energy interval are used to
determine the phase shifts at one energy. This energy
usually corresponds to the central value of that energy
interval; however, this is not strictly necessary. Several
of such energy-independent analyses at different energies
provide at each of these energies a set of phase shifts
with their errors. A shortcoming of energy-independent
analyses is that the information about the overall energy
dependence of the phase shifts cannot be incorporated.
Also, the intermediate partial waves which are hard or
impossible to determine (J equals 3 or 4, depending on
the energy range) have to be fixed one way or another.
We are in the fortunate position to be able to Bx them
at their values as provided by our energy-dependent m. e.
solution, whereas in most s.e. analyses one has to re-
sort to inaccurate potential-model predictions or to try
to fit these phase shifts anyway. This means that the set
of s.e. analyses covering, say, the 0—350 Me V region re-
quires many more Gt parameters than the m.e. analysis
of the same energy region. Hence, the s.e. analyses are
overparametrized and are much more sensitive to noise.
This will be demonstrated in Sec. VI.

We want to stress that results from energy-independent
analyses can only be properly judged by comparing them
to the results of a corresponding energy-dependent analy-
sis. The s.e. values for the phase shifts should scatter sta-
tistically around the curve representing the phase shifts
as determined in the m.e. analysis. Of course, this is only
true when the m. e. analysis one compares to is of good
quality. We think that this is the case for the Nijmegen
analyses, so we believe that for our analyses the "best"
value for a particular phase shift is its value as obtained
in the m. e. analysis, rather than the value as obtained in
the s.e. analysis. However, since we do not include any
constraints for energies larger than 350 MeV, our results
for the phase shifts at the end of our energy range may
be slightly off.

The outline of the paper is as follows. In Sec. II the
model-independent long-range potential is given. Our
method of parametrizing the lower partial-wave phase
shifts using an energy-dependent boundary condition is
briefly reviewed in Sec. IIIA. The treatment of the np
isovector phase parameters is explained in Sec. III B. The
construction of the total scattering amplitude includ-
ing the various electromagnetic and one-pion-exchange
contributions is briefly discussed in Sec. IV. Section V
includes some details regarding our np database. The
pp database was already discussed in our previous re-
port [1]. The results of the energy-dependent and energy-
independent analyses are presented in Sec. VI.

II. THE POTENTIAL TAIL

In the Nijmegen partial-wave analyses we divide the
NN interaction into two parts: a long-range part VL,

which is well known and essentially model indepen-
dent, and a short-range part Vg which is treated phe-
nomenologically. The latter is represented by an energy-
dependent boundary condition at r = 6 = 1.4 fm and will
be discussed in the next section. Using the long-range
potential VL„ the radial Schrodinger equation

(A+ k )@ = 2M, V@

is solved for r ) b. Here L denotes the Laplacian and M
is the reduced mass. Given the boundary condition and
the solutions of the Schrodinger equation for each partial
wave, it is easy to construct the partial-wave scattering
amplitudes [4].

Relativistic effects are taken into account via the po-
tential and by using the relativistic relation between the
c.m. three-momentum squared k and the laboratory ki-
netic energy T~ b. For np scattering this relation is given
by

M„Ti b(Ti b + 2M„)
(M„+ M„)2+ 2' bM„'

whereas for pp scattering it simply reads

k = 2MpT(~b-

VEM (pp) = Vci + Vc2 + VvP + VMM (pp)

VEM(np) = VMM(np)

(4)

with

Vc2 ——— (A+ k ) —+ —(b, + A: )2M2 r r
(5)

Mpr2 '

MM(PP) = —
2 s [P„Si2+ (6+ 8vp)L Sj4M2r3

For coupled channels Eq. (1) becomes a 2 x 2 matrix
equation. The presence of the centrifugal barrier means
that the Schrodinger equation needs only to be solved
for a small number of lower partial waves (1 ( 4). Still,
the equation has to be solved for each energy at which
experimental data have been measured.

The long-range potential VL, consists of an electromag-
netic part V@M and a nuclear part V~. The electromag-
netic interaction for pp scattering is the same as in our
0—350 MeV pp partial-wave analysis [1] and consists of
the modified Coulomb potential Vc [6], the magnetic-
moment interaction VMM [7], and the vacuum polariza-
tion potential Vvp [8]. In the case of np scattering the
electromagnetic interaction only consists of the magnetic-
moment interaction. Explicitly, we can write the electro-
magnetic interaction as
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and

2M„r3

x " Sg2+ (L S+L A)
1

Here n' = 2k'/M„with rI = n/v~ b the standard
Coulomb parameter [9], p„= 2.793 and p = —1.913 the
proton and neutron magnetic moments, and vz ——pz —1
and K = p their anomalous magnetic moments. Here
we also introduced A = 2(o'q —cr2). The vacuum polar-
ization potential [8] can be written as

where m is the electron mass. Obviously, the expressions
above are only valid for r ) 0.

The longest range of the nuclear interaction VN is given
by one-pion exchange (OPE). We make use of the fact
that in NN scattering we encounter four diferent pseu-
dovector coupling constants at the nucleon-nucleon-pion
vertices: f„„o,f„o,f „,and fp +. For the combi-
nations that actually occur in the OPE potential, we use
the following definitions:

2=for pp w pp: f„=fop ' fop '
2=for np m np: fo = f o fp—p o,

for np —+ pn: 2f, = f„„f„„+. —

In the case of charge symmetry, one has f2 = f02, whereas
in case of charge independence, one has f2 = fo2 ——f2
For pp scattering the OPE potential can be written as

intermediate range due to the exchange of heavier mesons
(like p, w, g). For these heavier-boson-exchange (HBE)
contributions we use the HBE contributions from the
Nijmegen potential [10] denoted by VH&@. For r + 1.5 fm,
the various realistic potential models that have appeared
in the literature are very much alike. This allows us to
make a choice for the boundary-condition radius 6 such
that the tail of the nuclear potential used for r ) 6 does
not introduce too much model dependence. We choose
6 = 1.4 fm.

Although the inclusion of the HBE contributions gives
an improved fit over the analysis where we only include
the OPE potential, there are still indications that this
nuclear potential tail is not perfect. As discussed in our
report on the pp analysis [1), an improvement can be
obtained by multiplying the HBE contributions for the
singlet partial waves with a factor f',& In th. e present
analysis we extend this procedure to the np partial waves
as well, i.e., for all singlet partial waves up to J = 4 the
HBE contributions are multiplied with f'

&
——l.8. So

the nuclear part of the potential tail is given by VN ——

V»p + VHaF. (f'.d).

III. PARAMETRIZATION
OF THE LOWER PARTIAL WAVES

A. Boundary-condition parametrization

The phenomenology necessary to describe the short-
range interaction enters our method via a boundary con-
dition at r = 6 = 1.4 fm,

Vopg (pp) = f„V(m o ), (8)
Pp(b;k ) =b (r)

r=bd,r

and for np scattering it reads

VopF(np) = —foV(m, 0) + (—1) +'2f, V(m p), (9)

where I denotes the total isospin, and where we intro-
duced V(m), which for large values of r is given by

1 (m)'e
V m

)
3

x (cr, . cr2)+ Sg2
~

1+, , +
(mr) mr 2)

where P denotes the quantum numbers (I, s, J) of the
particular partial wave to be parametrized. The radial
wave function y(r) which enters this expression can also
be represented by the solution of the Schrodinger equa-
tion for r ( 6 in the presence of the short-range potential
Vs. In the trivial case that Vs(r) = 0 for r ( b, this
equation can be solved exactly and the radial wave func-
tion is a spherical Bessel function, y~(r) = krj~(kr). The
resulting logarithmic derivative Pf„,~(b; k ) we refer to
as the free boundary condition. When Vg(r) is a con-
stant, independent of r, its contribution can be absorbed
into the parameter A: and we have

A scaling mass m, is introduced in order to make
the pseudovector coupling constant f dimensionless. It
is conventionally chosen to be the charged-pion mass.
When we solve the Schrodinger equation for r & 6 the
potential tail of Eq. (10) is multiplied with an energy-
dependent factor M/E, where M is the nucleon mass
and E is the c.m. energy. Leaving out this M/E factor
in the potential tail results in a small rise in y;„. In
view of the well-known expression for the OPE scatter-
ing amplitude in Born approximation (which is simply
related to the OPE potential), we believe it is better to
include this M/E factor.

The nuclear interaction also contains contributions of

Pp(b; k ) = Pf„, ((b; k —2M„VS p) . (12)

N

Vs,p(k ) = ) a„,p(k )" .
"n=O

When all a p are equal to zero, Pp ——Pg,

(13)

Obviously, this substitution still remains valid when Vp
is an analytic function of the energy, and in our analyses
the short-range interaction is parametrized by such an
energy-dependent, but r-independent square-well poten-
tial of range r = b. Its depth Vs(k ) is allowed to be dif-
ferent for each di8'erent partial wave. It is parametrized
as
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FIG. 1. Energy dependence of the pp Po phase shift using
no parameters (dashed curve) or one parameter (dotted curve)
in the short-range potential Vg. The solid curve represents the
multienergy solution, which requires three parameters in Vz.

In the case of two coupled channels, we start with two
single-channel parametrizations P for / = J —1 and Pb
for t = J+ 1, which form the diagonal elements of a 2 x 2
matrix. The ofF-diagonal elements are then parametrized
as a power series in A: . A convenient parametrization is
given by

cosg sin6I ) f'P 0 l t coso
slI10 cose ) ( 0 Pg ) ( slI10

—sing l
cos e

Contrary to the analysis of the pp scattering data, in
the analysis of the np scattering data isoscalar partial

where the angle 0 is some smooth function of k .
Due to the fact that for r ) b we include the correct

long-range potential Vl. (see Sec. II), the parametrization
of the short-range potential Vs p only requires very few
parameters. Even for the lowest partial waves with 0 &
J ( 2, only one parameter (i.e., an energy-independent
short-range potential) already gives a very reasonable
description of the corresponding phase shifts. This is
demonstrated in Fig. 1. Here the solid curve repre-
sents the pp Po phase shift as a function of the en-
ergy, as obtained in our m. e. analysis (see Sec. VI). The
dashed line represents this phase shift using V~ ——0, i.e. ,
P( Po) = P~„, q. The disagreement with the m. e. re-
sult is rather large, although the general characteristics
are already there. Introducing only one parameter, i.e. ,
an energy-independent short-range potential, the result-
ing phase shift (represented by the dotted curve) is al-
ready very close to the m. e. result. Similar results are
obtained for the other lower partial waves. In general,
the introduction of a second or third parameter in the
parametrization of the short-range potential in the low-
est partial waves is in a sense only necessary to fine tune
the corresponding phase shift.

B. Treatment isovector np phase parameters

waves also contribute. This means that one has to de-
termine almost twice as many partial waves. A prob-
lem arises due to the fact that the np scattering data
are by far not as accurate as the pp scattering data; so
they cannot accurately pin down all these lower partial
waves simultaneously. In doing a partial-wave analysis
of np scattering data it has therefore been customary
to parametrize the isoscalar lower partial waves, and to
substitute for the isovector phase shifts the results from
an analysis of the pp scattering data, whether or not ad-
justed for Coulomb distortion and mass difFerence efFects.
Several ways for making such pp-to-np corrections have
appeared in the literature.

For example, in the Virginia Polytechnic Institute
and State University (VPI-SU) partial-wave analyses by
Amdt and co-workers [ll—13], the np phase shifts are
represented by series expansions which are based on a
plane-wave Born approximation calculation to a combi-
nation of a t-channel (m 0) and a u-channel (m, ~) pole.
The corresponding pp phase shifts are then obtained from
this parametrization by only including the t-channel pole,
and multiplying the result with a Coulomb penetration
factor. A problem with this representation of the charge-
independence breaking in the VPI-SU analyses is that in
these analyses the pion-mass difFerence not only appears
in the OPE contribution to the phase shifts, but also
in the phenomenological parametrization of the short-
range interaction. This introduces an additional charge-
independence breaking. A more serious shortcoming is
that the Coulomb penetration factor overestimates the
eKect of the Coulomb distortion. The pp phase shifts
should be calculated in Coulomb distorted-wave Born ap-
proximation, rather than in plane-wave Born approxima-
tion multiplied by the Coulomb penetration factor. The
latter calculation requires a substantially higher pion-
nucleon coupling constant if one wants to arrive at the
same numerical value for the pp phase shift as obtained
with the proper Coulomb distorted-wave calculation us-
ing a low coupling constant [14,15]. This explains the
fact that in the VPI-SU analysis of only the pp data,
the "best" fit is obtained with f„0.080. However,
the most recent VPI-SU analyses include the Coulomb
distorted-wave calculation for the pp phase shifts using
the low value f2 = 0.075 for both the neutral and charged
pion-nucleon coupling constants with good results [16].

Another way for taking into account the Coulomb ef-
fects is the Graz prescription [17—19], which is used in
the TRIUMF analyses by Bugg and co-workers [20—23].
In the Graz prescription the pp phase shift is written as
the sum of a purely nuclear phase shift b and a resid-
ual phase shift b which represents the contribution due
to the Coulomb interaction. It is then possible [17] to
derive an expression for 6 in terms of b, which can
serve in two ways. Either isovector np phase shifts are
known and the corresponding pp phase shifts can be cal-
culated or pp phase shifts are available which can then
be used to solve for the corresponding isovector np phase
shifts in an iterative way. Either way can be used in a
partial-wave analysis. A serious shortcoming of the Graz
method is that one only corrects for the Coulomb interac-
tion, whereas the neutral-to-charged pion mass difFerence
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is not accounted for. As will be demonstrated below, the
effects on the phase shifts due to the pion-mass difference
are equally important as the effects due to the Coulomb
interaction, so they should not be neglected.

In the Nijmegen analyses we include the efFects due to
the Coulomb interaction, but we also explicitly account
for the neutral-to-charged pion mass difference. First
we calculate pp phase shifts by solving the Schrodinger
equation for some realistic nuclear potential V~ in the
presence of the Coulomb potential V~r ——n'/r. In order
to obtain the corresponding np phase shifts, the pp OPE
part of the nuclear potential is replaced by the np OPE
potential. So the corresponding potentials for these two
cases are given by

pp: V= V~+V~,
np: V = [Viv VopE(pp)] + VopE(np),

(15)

where the OPE potentials, properly modified by a form
factor to account for the spatial extension of the nu-
cleons and pions, are given in Eqs. (8) and (9). In
our calculations we use an exponential form factor [10]
F(k ) = exp[ —(k + m )/A ] with k the momentum
transfer squared and A a cutoff mass. At the pion pole
E'(k' = —m.') = 1.

Substituting these OPE potentials into Eq. (15) the pp-
np phase-shift differences can in principle be calculated
for several values of the pion-nucleon coupling constants.
In that way we can also allow for a possible breaking of
charge independence in the coupling constants and the
pion Coulomb corrections are essentially parametrized
via these coupling constants. The dependence of our
analyses on the pion-nucleon coupling constants is inves-
tigated elsewhere [2,24]. In this paper we assume a com-
mon charge-independent value f = 0.075 for all pion-
nucleon coupling constants, which is consistent with the
result of [24].

For the nuclear potential V~ we use an updated version
of the Nijmegen soft-core potential [10]. The parameters
of this Nijm92pp potential [25] have been fitted to the pp
scattering data below 350 MeV with a y per datum of
1.4. The dependence on the particular nuclear potential
model that is used is rather small. For instance, when
we use the original Nijmegen potential [10] for Viv, the
m. e. np analysis with the corresponding pion Coulomb
corrections results in a y which is 7.4 higher than the
analysis where we use the pion Coulomb corrections cal-
culated via the Nijm92pp potential. Similarly, for the
parametrized Paris potential [26] the difFerence in y is
only 2.5.

In Table I we demonstrate the effect on some of the
phase shifts when we include the &differenc between the
OPE potentials for pp and np scattering. We first give
the pp phase shifts of the Nijm92pp potential including
the Coulomb interaction, then the phase shifts after the
Coulomb interaction is removed, while in the last column
we list the np phase shifts as obtained after also cor-
recting for the pion-mass difference. The significance of
the inclusion of this modification in the OPE potential is
also apparent &om the analysis of the np scattering data.
When we only correct for the absence of the Coulomb in-

TABLE I. EfFects on the phase shifts due to the removal
of the Coulomb interaction (next to last column) and subse-
quently including the pion-mass difFerences in the OPE po-
tential (last column). Phase shifts are in degrees.

Ti~b

10 MeV

25 MeV

50 MeV

Partial
wave

Pp
3p

D
PG

'p1
3p
'D2
3P
P1

3P
'D2

With
Coulomb

3.860
—2.049
0.642
0.164
9.007

—4.905
2.445
0.685

12.215
—8.275

5.721
1.686

Coulomb
removed

4.231
-2 ~ 235

0.734
0.178
9.349

-5.126
2.629
0.716

12.334
-8.508

5.974
1.735

Pion-mass
difFerence

3.784
—2.052

0.699
0.155
8.564

—4.851
2.514
0.670

11.438
—8.211

5.753
1.701

IV. THE SCATTERING AMPLITUDE

In this section we briefI. y summarize the expressions for
the various parts of the scattering amplitude for reasons
of completeness. The wave function for the N% scatter-

teraction in the np isovector partial waves (which essen-
tially corresponds to applying the Graz prescription), the
m. e. analysis of the np data gives a y which is 22 higher
than the analysis where we also include the modification
in the OPE potential due to the pion-mass difference in
these partial waves.

The np So partial wave is parametrized independently
of the pp data (as is also customary in other analyses).
The reason is that there is clear evidence for breaking of
charge independence in the So scattering lengths which
carries over into an approximately 2 phase-shift differ-
ence of the So phase shifts for the pp and np systems at
higher energies (see Sec. VI). These difFerences cannot
be explained as being only due to the difFerence between
the pp and np OPE potentials.

Before concluding this section we summarize the way
the lower partial waves are parametrized in our analyses.
The pp lower partial waves up to J = 4 are parametrized
via an energy-dependent, but r-independent square-mell
potential. The same type of parametrization is used
for the np isoscalar partial waves up to J = 4 and
for the np So partial wave. The np isovector phase
shifts (except the So phase shift) are obtained from
the corresponding pp phase shifts by including the pion
Coulomb corrections described above. (A possible dif-
ference between the neutral-pion and charged-pion cou-
pling constants can also be accounted for and has been
discussed elsewhere [2,24].) For the intermediate par-
tial waves (5 ( J ( 8) we use the phase shifts cal-
culated via the OPE plus HBE contributions of the
Nijmegen potential [10]. All higher partial waves are
given by the OPE phase shifts, adjusted for electromag-
netic efFects (Coulomb, magnetic moment, vacuum po-
larization) where necessary.
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ing process can asymptotically be written as

ys ( )
alt ega + ) g,M'; (e, y),

s' m'

where (' denotes the spin state, and M'; (0, P) are the
matrix elements of the spin-2 spin-2 scattering ampli-
tude with 0 and P the polar angles. All KK scattering
observables can be expressed in terms of the M-matrix el-
ements [27,28]. The partial-wave decomposition is given
by

M'; (0, $) = ) +4vr(2l+ 1)Y', (0, $)

l l(i' -s'l~' —11& s)
z

2ik
XCrl s J (17)

where C '
M is a Clebsch- Gordan coeKcient and

Y' (0, P) is a spherical harmonic.
Using the familiar nuclear-bar phase shifts and mixing

parameters, the spin-triplet coupled S matrix with total
angular momentum J is parametrized as

s'= ( e2' ' cos2s ie'i '+s'l sin2sg )
( ie'&"+"l sin2sg e'*" cos2sj )

with bi ——bJ i J and b2 ——bJ+i J. For the spin-singlet
spin-triplet S matrix with tt = J we have

e ' ' cos 2pl ie'i '+ ' 'l sin 2pl i
i ie*&s'+s' '& sin 2pl e ' ' ' cos 2pl

lmax

Mtot MEM + MOPE + ) (MPsr, l ™OPE,/) & (20)
l=o

where pl is the nuclear-bar spin-fiip mixing angle as intro-
duced by Gersten [29]. For identical particle scattering
(i.e. , for pp scattering) it is identically zero, and the S ma-
trix for l = J decouples. In our analyses we do not (yet)
parametrize the spin-fiip mixing angles. We only include
the contributions due to the neutron-proton mass dif-
ference in the np magnetic-moment and OPE scattering
amplitudes. This implies, for example, that we explicitly
distinguish between scattered and recoil analyzing power
data in np scattering.

The phase shifts which parametrize the partial-wave
S matrix can conveniently be written as a sum of two
parts: the purely electromagnetic phase shifts, and the
phase shifts of the nuclear plus electromagnetic interac-
tion with respect to electromagnetic wave functions. Be-
cause of the short range of the nuclear interaction the
latter phase shifts rapidly approach their OPE values for
increasing orbital angular momentum J, so only a limited
number need to be parametrized explicitly. Moreover,
the electromagnetic part of the scattering amplitude is
known explicitly.

The total scattering amplitude Mt t can now syinbol-
ically be written as

7j' C
—ir] ln —(1—cos 0)

k 1 —cos0 (22)

with Pl(0) the Legendre polynomials, and the Coulomb
phase shifts defined as ol = arg 1 (I+1+i@).The properly
antisymmetrized M-matrix elements are now given by

(s', m'~Mc, (8) is, m)

= [fey (0) + (—1)'foal (Vr —0)]8, ,8

For the relativistic correction V~2 to the Coulomb po-
tential we use the 1/r approximation of Eq. (5). The
advantage of using this approximation is that; it can
be absorbed into the centrifugal barrier, and the radial
Schrodinger equation with V~i + V~2 can be solved ex-
actly in terms of Coulomb functions with noninteger I,.
The phase shifts of V~2 are then given by

(l —A) vr

Pl = f7' &l+ )
2

(23)

where A satis6es A(A + 1) = l(l + 1) —nn'. The corre-
sponding amplitude reads

f~2(g) = . ) (2l + 1)e 'i ' 'l [e '~' —1] Pl(8),
1

2zk
l

(24)

and again the corresponding M-mat;rix elements are ob-
tained via antisymmetrization.

Expressions for the vacuum polarization amplitude and

where l denotes the highest orbital angular momen-
tum of the partial wave that is explicitly parametrized
(in our analysis by means of a boundary condition or via
the phase shifts of the OPE plus HBE contributions of
the Nijmegen potential). The expressions for the partial-
wave OPE amplitudes in plane-wave Born approxima-
tion can easily be derived. For np the mass difFerences
between neutron and proton and between neutral and
charged pions can explicitly be accounted for (see, e.g. ,
Refs. [15,28]). The pp OPE amplitude has to be calcu-
lated in Coulomb distorted-wave Born approximation to
account for the Coulomb distortion efI'ects. The evalua-
tion has to be done numerically, because it involves the
evaluation of integrals of Coulomb functions with Yukawa
potentials. The expressions for the M-matrix elements
can be found in Ref. [15].

The various parts of the electromagnetic amplitude
MFM correspond to the various parts of the electromag-
netic potentials as given in Eq. (4). In evaluating these
parts one has to correct for the fact that each contribu-
tion is included separately. The details of these modifi-
cations are extensively discussed in Ref. [7] and will not
be repeated here. Here we merely list the various ampli-
tudes.

For pp scattering we have

MEM (PP) ™Cl+ M&2 + MMM + MVP ~ (21)

The point-charge Coulomb potential V~i gives rise to the
well-known scattering amplitude

fo, (0) = ) (2l+ 1) e 'i ' ') —1 Pl(0)
2zk

l
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for the vacuum polarization phase shifts 7. ~ were derived
by Durand [8]. In our calculations we use modifications
to these expressions [30] to be able to extend the energy
range to energies below T~ b & 1 MeV. For the expres-
sions for the magnetic-moment amplitudes in both pp
and np scattering we again refer to Ref. [7].

V. THE DATA

Our data set consists of all pp and np data below
T~ b

——350 MeV published in a regular physics journal
between January 1955 and December 1992. We therefore
do not include preliminary data that have only appeared
in conference proceedings. We regard it more appropriate
to wait with the inclusion of these data into our database
until the experimentalists have published their final re-
sults in a regular physics journal. In most cases, however,
we do have their preliminary data and we have investi-
gated how they fit in with the other data in our database.
Examples of such data are pp differential cross sections
0 (0), analyzing powers A„, and depolarizations D (all at
12.0 MeV), and analyzing powers A„at 25.68 MeV by
the Erlangen group [31,32]. For np we mention the spin
correlation coeKcients A» between 18 and 50 MeV by
the Karlsruhe group [33]. We find that these data have
no major consequences for the conclusions drawn in this
paper using the present database.

Most of the data can be found in the nucleon-nucleon
scattering data tables of Bystricky and Lehar [34,35].
We have consulted all original papers while building our
database. This implies that we have corrected for some
minor printing errors in the scattering data tables. We
have also included data that are not contained in these
tables. These groups are denoted by a dagger in Ta-
ble II. Our database was composed in close collaboration
with the VPI-SU group. Data that are not included in
the data set NN931 of the VPI-SU partial-wave analy-
sis SAID [36] (mainly because they do not live up to our
rejection criteria anyway) are denoted by an asterisk.

Dispersion relation predictions [37] and data obtained
through quasielastic scattering are not included as exper-
imental data. We also exclude pp total cross-section data
(crt, t;, Aol. , AcrT), because of ambiguities in their defini-
tion and because it is not always clear how the Coulomb
nuclear interference term has been treated by the exper-
imentahsts.

renormalized by a factor 1.0069, where the previous over-
all scale uncertainty of 2% should be reduced to 0.39%.
We use the renormalized data.

The other new experiments comprise 1 A„datum at
183.1 MeV [39] and 20 A„data at 185.4 MeV [40]. The
corresponding y values for these three groups in the pp
analysis are as follows:

Ti b (MeV)
50.04

183.1
185.4

x'
4.98
2.28

12.96

+dat a
10

1
20

Reference
[38,42]
[39]
[40

H. ng data

Including these data, our pp database now comprises
215 groups with a total of 1656 scattering observables
or, counting the 131 normalization data, 1787 scattering
data. Of these groups, 22 have a Hoated normalization,
which means that we keep their normalization free.

We have taken the opportunity to reinvestigate the
parametrization of the lower partial waves. The reason is
that the seven-parameter energy dependence of the So
phase shift in our original pp analysis [1] showed noise.
Also, we had to include 8( So) = 19'+2' at 425 MeV as
an extra datum to ensure a proper energy dependence at
the end of our energy range, near 350 MeV. This should
be compared with the np analysis where we find that
the boundary condition for the So phase shift can be
parametrized with three parameters and where we do not
have to include an extra datum at 425 MeV. We have
reparametrized the boundary condition for the pp So
phase shift where we now need four parameters and where
we can drop the constraint at 425 MeV. Although the

,.„with this parametrization is about 12 higher than
the y,„with the former parametrization, the smooth-
ness of the energy dependence of the m. e. phase shifts
strengthens our belief that the new parametrization is to
be preferred over the old one. Moreover, when we start
with four parameters for the So and successively add
one parameter at a time, the y only showed a signifi-
cant drop after we added the seventh parameter. This
is an indication that with seven parameters the So was
overparametrized. In our present energy-dependent pp
analysis we need 21 parameters to parametrize the lower
partial-wave boundary conditions, which makes the num-
ber of degrees of freedom Ng f —1613.

The pp scattering data can be found in Table I of a pre-
vious report [1]. In the meantime we have added three
groups of polarization data [38—40], which were published
after we finished our pp analysis. The very accurate 10 pp
polarization data by the Ziirich group [38] at 50.04 MeV
were analyzed and discussed in detail in Ref. [41]. There
it is shown that the magnetic-moment interaction has
to be included in order to describe these data properly.
A recent absolute calibration measurement of the trans-
verse analyzing power in proton-carbon elastic scatter-
ing [42] implied that these 50.04 MeV A„data should be

All np data are listed in Table II. We give them explic-
itly, because with the pp database as given in Table I of
Ref. [1] we have provided a self-contained and complete
database. In Table II all analyzing powers (scattered or
recoil) and polarizations (beam or target) are denoted by
the same symbol P, although in our actual calculations
an explicit distinction has been made whenever this was
applicable.

Starting with the complete np database of 3298 scat-
tering observables, the boundary-condition parameters
were adjusted to obtain y;„.As a criterion for the total
number of boundary-condition parameters to be fitted
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TABI.E II. Data reference table. A dagger denotes data not included in the nucleon-nucleon scattering data tables
(Refs. [34,35]). An asterisk denotes data not included in the data set NN931 of SAID (Ref. [36]).

Ti~b (MeV)

0.0
0.0
O.O2364St

0.060-0.550'
0.4926—3.186
0.841—19.957

l.500-27.5 15
2.535
2.72
3.01
3.33
3.69
4.01
4.34
4.65
4.91
5.10
5.24

7.17—14.02
7.6t

10.03t
11.0
12.Ot

13.5t
13.Vt

14.0
14.Ot

14.1
14.1
14.1
14.1
14.1
14.1
14.1t
14.5
14.8t
15.7

15.8-111.5
16.0t
16.Ot

16.2
16.4
16.4
16.8
16.9
16.9t
16.9t
1V.Ot

17 4t
17.8—29.0

17.9
18.S'
19.0t

19.565—27.950
19.665
20.5
21.1
21.6
21.6t
22.0t
22.2t
22.5
22.5
23.1
23.1
23.1
23.1
23.7
24.0
24.0
24.0

24.63—59.35
25.Ot

25.0t
2S.Ot

25.30—31.06t
2S.S'
25.8

No. , type

2 op
1 Gp
o tot
o tot
o tot
o tot

27 otot
otat

2 o'

2 o'

3 o
4 cr

4 o
4 o.
4 o.
4 a
4 o.
4 a

6 otot
4 P
12 P
1 P
8 P
1 P

1 Ay„
3 CT

1 A„„
6 o.
4 n
6 o
17 o
8 cr

10 P
5 P
8 P
1 P
16 o.

otot
1 P
5 P
3 P
3 P
4 P
1 P
4 P
11 P
4 P
6 P
1 Dt

5 otot
11 o
4P
6 P

3 otot
&tot

9 P
6 P
7 P
sP
8 P
5 cr

12 o.
6 o
2 P
2 P
6 P

4 Ayy
4 P
3 o'

4 o.
2 o
otot

5 o
16 P
8 P
2 o

1 Dt
8 o

4.36
0.01
2.70
2.42
0.91

19.26

22.37
3.78
0.59
2.80
1.72
1.70
0.66
2.70
2.82
1.30
4.35
6.19

15.12
10.82
10.53
0.04

19.07
0.02
6.66

17.89
1.99
2.32
2.58
1.70

11.66
12.51
3.94
5.31
8.46
0.54

11.06
67.07
0.01
6.53
0.54
2.77
1.81
0.02
3.70

15.87
0.33
3.76
2.05
6.62

16.29
2.57
4.28
2.70
0.30
7.02
5.40
1.57
5.69

12.65
1.70
8.45
3.05
0.33
0.50
3.11
0.45
1.49
2.90

17.97
0.45
9.14
5.58

22.84
7.31
0.24
0.06
5.07

% error

None
None
None
None
None
None

None
None

3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7

None
3.0
4.0
3.5
3.0
3.0

None
None
None

Floats
0.73
4.0

None
None

3.0
3.0

None
3.0

Floats
2.0
3.0
3.0

None
9.3

None
4.4
6.0
3.0
3.0
2.1

None
None

1.9
3.0
3.0

None
None
18.8
3.0

None
4.0
3.1
1.0

None
3.3

12.2
3.5
7.7

12.2
10.9
1.2
0.43

None
0.3
1.0
3.3
2.9

None
None

3.0

Pred. norm b

1.009(36)
1.O23(36)
1.011(29)
1.023(25)
1.011(26)
1.021(20)
1.030(22)
1.036(19)
1.OS6(19)
1.062(18)

1.016(28)
O.969(2S)
0.999(35)
1.054(24)
0.999(28)

0.546(9)
0.992(4)
1.041(11)

1.001(27)
1.034(24)

1.008(29)
48.9(6)

1.035(4)
0.999(28)
0.989(22)

l.oo(9)

O.999(43)
l.062(49)
1.024(22)
l.ool(3o)
0.999(21)

1.038{8)
0.998(25)
1.003{29)

O.89(13)
l.o2o(2s)

0.967(33)
0.967(23)
1.002(2)

1.02(12)
1.005(31)
1.02(6)
o.99(lo)
l.os(ll)
0.989{8)

l.oo2(2)
1.01O(2)
1.061(11)
0.972(19)

1,013(10)

Reject

1.161 MeV,
9.885 MeV

170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0

All

70.0

14.0

All

All

Ref.

[43,44]
[4s]
[46]
[4v]
[48]

[49]
[so]
[sl]
[52]
[s2]
[s2]
[s2]
[s2]
[s2]
[s2]
[s2]
[s2]
[s2]
[53]
[s4]
[ss]
[s6]
[54]

[s8]
[s9]
[6o]
[61]
[62]
[63]
[64]
[6s]
[66]
[s4]
[6v]
!57]
[68]
[69]
[»]
[s4]
[vo]
[71]
[v2]
[s6]
[73]
[74]
[v4]

[v6]
[77]
[78]
[s4]
[vs]
[v9]
[8o]
[81]
[73]
[72]
[82]
[vs]
[83]
[84]
[8s]
[S6,86]
[s6]
[8v]
[86,88]
[Vl]
[89,90]
[91]
[92]
[93]
[83]
[94]
[vs]
[9s]
[76]
[96]

Comment

e,h

d
d~l

Institute

Kyoto
Har well

Columbia

Har well
Madison
Madison

Budapest
Budapest
Budapest
Budapest
Budapest
Budapest
Budapest
Buda, pest
Budapest
Budapest
Liverpool

TUNL
Madison

Los Alamos
TUNL
TUNL

Erlangen
Grenoble
Erlangen

Jena
Kyoto

Los Alamos
Haifa,

Tokyo
Auckland

TUNL
Hamburg

TUNL
Glasgow
Har well

TUNL
TUNL

Auckland
Madison

Cape Town
Los Alamos

Virginia
TUNL
TUNL

Karlsruhe
Bonn

Liverpool
Oak Ridge

TUNL
Kar lsr uhe
Canberra

Los Alamos
Har well
Virginia

Cape Town
Cape Town

Karlsr uhe
Karlsruhe

Los Alamos
Har well

Los Alamos
Los Alamos
Los Alamos
Los Alamos

Madison
Madison
Madison
Madison

Davis
Karlsruhe

Madison
Karlsruhe

Los Alamos
Bonn
Davis
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TABLE II. ( Continued. )
Ti b (MeV)

25.8
25.St

26.O-V2. 5t
27.2
2V.4t
27.5
27.5t
29.6
29.6
29.9t
30.0
30.0t
31.6
32.5
32.5
32.9t
33 Ot

35.St
36.0t
37.5

39.0—350.Ot

3O.Vt

40.0t
40.0
40.0t
42.5
45.0t
47.5
50.0t
50.0t
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0t
50.0
50.0
52.5
55.1t
57.5
58.8
60.0
60.9
61.0t
62.2t
62.5
63.1

65.0t
66.0t
67.5
67.5t
6v.5t
6v.5t
VO. ot
70.0
70.0
76.2t
76.7
77.0'
80.0
80.0
86.5

88.2—150.9
89.5
90.0
90.0

93.4—106.8
95.0
96.0
96.0t
96.8
98.0
99.0

100.0
105.0

No. , type

8 cr

1 Dt
crtot

4 o
5 cr

11 cr

8 P
11 P
3 P
5 cr

12 P
8 P
2 P
1P
15 cr

6 cr

8 P
6 a
8 P
17 cr

crt ot
6 o
2 cr

15 P
sP
22 cr

2 cr

22 cr

2 cr

6 cr

8 o.
12 o
4 P
4 P
7 P
16 P
9 P
8 P

4 Ayy
4 Ay„
23 a'

2 cr

23 cr

9 cr

16 P
9 cr

1 o.

2 cr

23 cr

19 o

2 cr

1 AcrI,
11 a
12 P
19 P

20 A,
2 cr

24 a
16 P
1 cr

11 cr

17 P
24 cr

16 P
11 cr

crt ot
24 cr
18 o.

16 P
4 crtot
15 P
4 cr

32 cr

11 cr
9 P
24 cr

16 P
7 cr

3.78
3.98
4.05
1.37
6.27

23.80
6.72
2.06
1.31
3.47

14.16
4.42
2.30
1.06

41.06
14.05
7.49

16.99
8.12

33.23
56.77
21.62

2.49
11.65
13.46
47.61
0.48

53.28
0.11

17.14
5.37

10.66
0.91
0.35
3.98

15.45
8.93

15.33
3.50
2.22

43.71
0.71

48.67
5.86

23.56
7.98
0.03
2.46

68.39
28.72

0.17
1.50
9.81
9.35

24.14
15.57
0.89

102.5
24.73

2.75
9.26

101.2
50.73
10.13
20.44
0.32

32.35
24.41
10.58
1.82

32.59
0.60

114.2
17.10
5.83

36.01
7.28
2.33

% error

3.0
None
None

1.3
1.0
2.5
3.0

None
10.0
1.0
8.33
2.9

None
None

2.1
1.0
2.9
1.0
2.9
1.8
1.0
1.0

None
6.02
2.9
1.8

None
1.7

None
1.0
3.0
3.0

None
None

3.6
4.79
3.6
3.4
7.9

25.0
1.7

None
1.8

10.0
3.89

Float~
None
None

1.7
Float~

None
6.0

10.0
4.0
4.0
6.0

None
1.4
3.90

None
10.0
7.6
1.5
4.23

10.0
None

1.6
Float~

5.12
None

8.0
None

4.0
10.0
14.3
1.7
7.31
8.0

Pred. norm

1.006(6)

0.995(9)
1.008{3)

0.974(20)

0.96(6)
1.004(3)
1.06(8)
0.997(19)

1.005{3)
0.964(18)
0.O90(4)
0.961(19)

1.006(3)

0.956(41)
0.9VV(20)

1.021(5)
0.994(10)
1.02V(5)

0.O95(29)
0.978(28)
1.048 (26)
0.945 (20)
l.ov(s)
1.34(26)

1.058(16)
1.096(26)
1.156(11)

1.038(6)

1.064(40)
1.0V5(1V)
0.988(10)
1.044(10)
1.032{15)

1.117(27)

1.109(17)

1.055(26)
1.180(19)

1.102(17)
1.058(35)

1.076(41)

1.11V(19)
1.09(13)

0.970(44)
0.913(23)

Reject

All
151.4

All

All

All

All

All

All

120.6o

All

All

All
86.2

159.7, 165.8

49.5

All

49.6
All
All

All
All

145.0

All

All

Ref.

[o6]
[ov]
[os]
[89,90]
[s3]
[s5]
[v5]
[oo]
[56]
[s3]
[sl]
[V5]
[100]
[100]
[s5]
[s3]
[75]
[s3]
[75]
[s5]
[101]
[s3]
[102]
[sl]
[v5]
[s5]
[102]
[s5]
[102]
[s3]
[96]
[o6]
[103]
[103]
[104]
[sl]
[105]
[v5]
[103]
[106]
[s5]
[102]
[s5]
[lov]
[sl]
[los]
[102]
[102]
[s5]

[109]
[102]
[110]
[lov]
[111]
[111]
[112]
[102]
[85]
[sl]
[102]
[107]
[113]
[s5]
[sl]
[107]
[114]
[s5]
[115]
[sl]
[116]
[llv]
[118]
[119]
[107]
[120]
[s5]
[sl]
[121]

Comment

e, n

m
f, l

Institute

Davis
Bonn

Leuven
Madison

Karlsruhe
Harwell

Karlsruhe
Davis

Los Alamos
Karlsruhe

Har well
Karlsruhe
Hiroshima
Hiroshima

Har well
Karlsruhe
Karlsruhe
Karlsruhe
Karlsruhe

Har well
Los Alamos

Karlsruhe
Leuven
Harwell

Karlsruhe
Har well
Leuven
Har well
Leuven

Karlsruhe
Davis
Davis
Davis
Davis
Davis

Harwell
Davis

Karlsruhe
Davis
Davis

Harwell
Leuven

Harwell
Princeton

Harwell
Oak Ridge

Leuven
Leuven
Harwell

Los Alamos
Leuven

PSI
Princeton

PSI
PSI
PSI

Leuven
Har well
Harwell
Leuven

Princeton
Harwell
Har well
Harwe 11

Princeton
Harvard
Harwell

Berkeley
Harwell
Harvard
Har well
London

Uppsala
Princeton

Harwell
Har well
Har well
Oxford
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r&.b (Mev) No. , type % error

TABLE II. (Continued. )
Pred. norm Reject Ref. Comment Institute

107.6
108.5
110.0
118.8
120.0

125.0—168.0
125.9—344.5t

126.0
128.0
128.0
128.0
128.0
129.0
129.0
129.0
130.0
130.5
137.0
137.0
140.0
142.8
150.0
152.0t
155.4
162.0
168.5
177.9

180.0—332.0t

180.0—332.0t
1S1.Ot

181.0t
181.8
182.0
194.5
195.6
196.0
199.0
199.0
200.0
200.0
200.0
210.0
210.0
211.5

212.0—319.0
212.0
212.0

220.0'
22O. Ot

220.0f
220.0
220.0~
220.0
220.0
220.0
220.0
224.0
224.3
229.1
239.0
239.5
240.0'

247.2—344.3
247.2
257.0
260.0'
265.8
267.2
280.0
284.0'
284.8
300.0
304.2
307.0
309.6
310.0
313.0'
319.0
319.0
320.0'
324.1

11 a'
24 o
16 P
ll a
16 P

atot

6 P
10 a
10 P
1 Dt
5 Dt
9 cr

16 a'
15 o'

14 o
11 a
5 a
7 cr

14 P
11 a
16 a
13 a
11 a
43 a'
11 o'

44 cr

4 aaI.
4 AaT
10 P

10 Ayy
11 a
14 a
42 a
11 cr

16 cr
7 cr

8 P
atot

21 cr

31 a
11 a
16 a
43 a'

atot
4 cr
39 cr

33
16 P
16 P
16 P

16 A„„
10 Dq
7 At
7R,

Rt) 1 R',
16 cr

11 a
49 o'

18 cr

11 o'

34 cr

4 atot
53 a
19 cr

35 cr

63 cr

11 cr
35 cr
19 o
73 cr
35 cr
79 cr

8 P
11 cr

19 P
19 o
7

64 cr

36 cr
81 o.

18.61
33.88
18.86
15.52
8.16
3.64
3.27
5.66
3.00

11.76
0.01
9.29
5.03
8.55

11.83
11.97
13.87
9.59
4,29

25.69
3.96
8.61

162.6
25.48
63.00
14.51
46.51
0.97
1.55
9.15
8.41

14.94
11.37
76.11
20.20
48.57
9.94

25.38
0.15

53.85
182.2
13.02
42.84
31.35
0.39
0.51

44.01

221.2
17.51
13.17
21.62
8.16
8.27

12.23
15.04
1.59

70.82
11.19
64.62
45.98

5.43
313.3
56.11
38.94
89.60

250.1
59.13
6.49

244.8
114.3

79.64
194.7
79.87
13.03
13.38
27.44
88.86
3.40

77.84
150.1
92.15

10.0
1.8

10.03
10.0
14.9
12.0
1.5
4.1
7.G

S.G
None

8.0
16.0
7.0
6.5
4.0

10.0
None
10.0
4.4

10.0
6.5

None
10.0

Float~
10.0

Floats
4.3

12.4
4 0
8.G

10.G
(s.o)

Float~
10.0
(s.s)
2.1

10.0
None

2.1
Float~
10.0
(3.6)

Float~
(o.s)
2.0
3.2

Floats
3.5
2.5
3.0
5.5
3.0
3.0
3.0

None
(3.2)
10.0

Floats
(3.1)
10.0

Floats
0.09

Float~
(3.o)

Floats
Float~
10.0

Floats
(s.o)

Floats
Float~

4.0
3.0

10.0
7.2

(2.4)
(2.o)
3.9

Float~
4.0

1.094(19)

0.96(6)
1.102(21)
o.97(9)
1.20(9)
1.007(5)
0.969(27)
1.031(12)
1.017(45)

1.02(8)
0.997{49)
a.o2s{v)
1.058(11)
1.051(25)
l.oso(as)

l.ovs(32)
1.046(21)
1.038(13)
1.039(8)

l.ov3(ls)
1.092(7)
1.OV7(16)
1.083(7)
0.980{35)
0.95(10)
1.010(15)
o.9vo(13)
1.114(18)

1.060(18)

o.o6s(o)

1.039(20)

1.063(7)
o.os4(7)
0.996(12)
l.oos(4)

0.997(19)
0.982 (16)
1.023(24)
1.032(13)
1.001(30)
0.997(29)
1.071(25)

o.o96(2a)
l.oss(v)

l.oss(2v)

1.042(7)

1.029(6)
1.011(20)

1.053(5)

a.oo3(4)
1.004(24)
0.929(28)
1.007(36)

O.91V(12)
1.007(3)

l.os7(s)

All

All
39.5

39.6

119.6

All
All

All
86.6, 96.3

All

All
All

All

88.57, 90.45
92.34, 94.29

All

144.18

All

All

All
All

All
All

11.4
All
All

All

47.8

53.4, 147.7
All

All

[107]
ssl
[sl]
[lov]
[sl]
[122]
[123]
f124]
[12s]
[12s]
[126]
[12v]
[12s]
[128]
[129]
[13o]
[107]
[118]
[121]
[131]
[lov]
[129]
[132]
[aov]
[133]
[aov]
[133]
[134]
[134]
[13s]
[13s]
[lov]
[136]
[133]
[lov]
[136]
[137]
[13v]
[13s]
[a37,13s]
[139]
[aov]
[136]
f133]
[14o]
[14o]

[140]
[139]
[141]
[141]
[142]
[141]
[142]
[143]
[143]
f144]
[136]
[lov]
[133]
[136]
[lov]
[139]
[145]
[133]
[136]
[139]
[133]
[aov]
f139]
[136]
[133]
[139]
[133]
[146]
[lov]
[14v]
[136]
[14o]
[140]
[139]
[133]

e,n

f, l
d, f

f
d, p

f, l
d
n

d, p

d
f, l

d)p
f,n

f, l
d~p
d

d~p
f, l

d
d~p
d

d, p
d

Princeton
Harwell
Har well

Princeton
Har well
Harvard

SIN
Harvard
Harvard
Harvard
Harvard
Harvard
Har well
Har well
Harvard
Har well

Princeton
London
Oxford

Har well
Princeton

Harvard
Harvard

Princeton
Los Alamos

Princeton
Los Alamos

SIN
SIN

Bloomington
Bloomington

Princeton
Princeton

Los Alamos
Princeton
Princeton
Rochester
Rochester

JINR
JINR

SIN
Princeton
Princeton

Los Alamos
TRIUMF
TRIUMF

TRIUMF
SIN

TRIUMF
TRIUMF
TRIUMF
TRIUMF
TRIUMF
TRIUMF
TRIUMF
TRIUMF
Princeton
Princeton

Los Alamos
Princeton
Princeton

SIN
Princeton

Los Alamos
Princeton

SIN
Los Alamos

Princeton
SIN

Princeton
Los Alamos

SIN
Los Alamos

Berkeley
Princeton

Berkeley
Princeton
TRIUMF
TRIUMF

SIN
Los Alamos
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Tl b (MeV) No. , type Pp error

TABLE II. (Continued. )

Pred. norm Reject Ref. Comment Institute

325.0

325.O~

325.Ot

325.0

325.Ot

325.0
325.0
325.0
325.0'
325.0
340.0'
343.0
343.8
344.0
344.3
350.0
350.0
350.0

42 P

19 P
19 P
21 P

19 Ayy
12 Dt,
9 A. ,
9R,

1Rt, 1R'
8 Dt
37 CT

4R,
11 cr

21 cr

80 u
10 o
7 0'

12 P

54.11

12.73
15.58
29.17

25.05
11.98
7.13

14.87
2.25
4.27

174.6
5.73

13.16
82.07
74.53
17.18
6.20
6.85

12.0

3.1
2.5
3.0

5.3
3.0
3.0
3.0

None
12.0

Floatg
None
10.0
(2.1)
4.0

Floath
Floatg

4.3

0.905(14)

0.984(16)
0.978(14)
1.O2O(14)

0.965(24)
1.o io(3o)
1.O13(27)
1.OO2(23)

1.00(11)

0.991(40)

1.035(5)
O.968(6)
0.974(7)
0.992(31)

45.0, 50.0
55.0, 60.0

44.99, 50.08
60.31, 118.39

153.5

All

All
131.51

46.35
85.12, 126.13

[148]
[141]
[141]

[142]
[141]
[142]
[143]
[143]
[144]
[148]
[139]
[144]
[1o7]
[136]
[133]
[149]
[14o]

[15o]

d
dip

f, l
d

TRIUMF
TRIUMF
TRIUMF

TRIUMF
TRIUMF
TRIUMF
TRIUMF
TRIUMF
TRIUMF
TRIUMF

SIN
TRIUMF
Princeton
Princeton

Los Alamos
Liverpool
Liverpool

Pittsburgh

The number includes all published data.
Predicted norm with which the experimental values should be multiplied before comparison with the theoretical values.
Adjustment of the original eicperimental energy of 3.205 MeV to 3.186 MeV according to Davis and Barschall [151].
Numerical values were taken from the nucleon-nucleon scattering data tables [34].

'Numerical values were taken from the Brookhaven National Laboratory database.
Rejected due to improbably high y (rejection criteria).
Floated normalization because these data are relative only.

"Datum at 70.0' rejected as suggested by the authors (see Ref. [61]).
'Datum at 14.0' rejected in accordance with the suggestion by MacGregor, Amdt, and Wright [152].
'Renormalized by a factor of 0.76 according to Brock et al. [66].
"Renormalized by a factor of 0.84 according to Simpson and Brooks [82].
'Disagreement between single-group fit and multienergy fit too large.

Rejected due to improbably low y (rejection criteria).
"Part of a group of data with points with Tj b ) 350 MeV.
Data are those normalized to the Yale phase-shift analysis YLAN4M (see Ref. [129]).
Forward-angle data sequentially rejected, so total group rejected.

~Renormalized by a factor of 0.974 according to Dubois et al. [21].
'Renormalized by a factor of 1.028 according to Dubois et al. [21].

we apply the rule that we only include an additional pa-
rameter if this really improves the quality of the fit. All
data which were more than three standard deviations ofI'

were rejected and the parameters were adjusted again.
Some groups have an experimental normalization error
that contributes more than nine to y, probably due to
an underestimation of systematic errors by the experi-
mentalists. These groups are floated by us and in Table II
we have put their original experimental normalization er-
ror between parentheses in the column labeled "'%%uo error. "
Groups that have an improbably low or high y are also
rejected. These groups are indicated by "f" and "m" in
the column labeled "Comment, " respectively. We explic-
itly checked that for our final solution these adjustments
to our database are still justified.

Making all these adjustments results in the rejection of
932 data, which gives us our final data set of 211 groups
with a total of 2366 np scattering observables. The num-
ber of groups with an experimental normalization error
is 148, so we have 2514 scattering data. The number of
groups that are floated is 16. To parametrize the lower
partial waves we need 18 boundary-condition parameters.
The total number of degrees of freedom is Ndf ——2332.

Our total database including the pp as well as the np
data now comprises 4301 scattering data and the num-
ber of degrees of freedom is 3945. We need 39 parameters
for the boundary conditions of the lower partial waves.
The multiplication parameter for the HBE contributions
of the singlet waves, f',&

—— 1.8, and the boundary-
condition radius 6 = 1.4 fm were not fitted but fixed
at these values. They are therefore not included in Ndf.

A large number of np total cross-section data are
not explicitly included in our database. These total
cross-section data were measured to search for a possi-
ble fluctuation in the energy dependence of the np to-
tal cross section. The reason was that in their mea-
surement of the cross section at low energies, Hrehuss
and Czibok [52] found a small but statistically signifi-
cant periodical fluctuation in the energy dependence of
the cross section. Shortly after their publication, to-
tal cross-section measurements were reported by sev-
eral other groups [49,153—155] who did not find such a
structure. We do not find any evidence for a periodical
fluctuation in the cross section either. From Fig. 3 of
Ref. [52], the oscillatory behavior is seen to be largest at
0, = 170'. And it is just these o.(170') data that do
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not fit in with our analysis. Three of the groups of to-
tal cross-section measurements contain many data: 1652
data in Ref. [153],800 data in Ref. [154], and 425 data in
Ref. [155]. This number of 2877 total cross-section data
in the 0—30 MeV energy range should be compared with
our set of 2514 much more diverse data (cross sections,
analyzing powers, spin correlations, rotation parameters,
etc.) in the 0—350 MeV energy range. To analyze these
2514 scattering data we have to solve the Schrodinger
equation for the lowest partial waves at approximately
375 different energies. When we also want to include the
2877 total cross-section measurements we have to solve
the Schrodinger equation for an additional 2850 ener-
gies. In our point of view, the very small amount of
new information these data possibly contain does not
justify the enormous increase in computer storage and.
time, which would be needed if we were to include them
in our final database. Since there are only 17 data in the
Harwell measurement by Clements and Langsford [49],
we decided to keep this small group in our database, and
to study the other three groups separately.

First, we compared the total cross sections as predicted
by our analysis with the experimental values given by
these three groups. For the 1652 Washington data [153]
the prediction is excellent and. we fi.nd y = 1411.9. For
the 425 LINAC data [155]we find that there are nine data
points which are more than three standard deviations off.
Leaving out these nine data points we find the reasonable
value of y = 558.3 for the remaining 416 data. At the
low end of the energy range the Karlsruhe data [154] are
too low when compared with the prediction of our m. e.
analysis, whereas at the high end of the energy range
they are too high. A similar observation is made by these
authors themselves [154] when they compare their results
with other measurements. Our y prediction for these
data is y = 4474, which is much too high for 800 data.
This group of data will therefore no longer be included
in any of our analyses.

In our next step the data in the remaining two groups
were clustered at a number of central energies and then
included in the database of the analysis. For the data of
the LINAC group each successive set of three energies was
in that way represented by one (properly weighted) da-
tum at the central energy. This resulted in a group of 142
data. A similar procedure was used for the Washington
data, where now each successive group of seven data was
lumped into a datum at one energy, resulting in a group
of 236 data. Including these two groups in our database,
one of the adjusted LINAC data and two of the adjusted
Washington data are found to be more than three stan-
dard deviations off. Performing the m. e. np analysis af-
ter removing these three data, we And y = 147.6 for the
141 adjusted LINAC data and y = 233.9 for the 234
adjusted Washington data. The y on the other 2514
data of our database rises with 8.3. However, we still
decided. not to include these data in our d.atabase. As al-
ready stated above, their inclusion requires an enormous
increase in computer storage and time, whereas their in-
fI.uence is relatively small. The only conclusion we want
to make here is that the LINAC and Washington data are
in agreement with the other data in our database and

with the predictions of our partial-wave solution. The
Karlsruhe total cross-section data, on the other hand,
are very much off.

Next we discuss some of the groups of data we found
had to be rejected. All 282 Harwell differential cross-
section data by Scanlon et al. [85] at 14 energies between
22.5 and 108.5 MeV are rejected by us. The reason is that
most of these groups have a large y and the phase shifts
determined in a single-group analysis differ very much
from their m.e. values. From this we conclude that there
is something systematically wrong with these data. We
therefore decided to reject the entire experiment, includ-
ing the groups at 22.5 and 27.5 MeV which appear not to
be in conHict with the other data. Our rejection of these
data is in agreement with earlier analyses by other groups
who also find them to be erroneous (see, e.g. , [156]). On
the other hand, the Harwell total cross-section data [69]
can be described very well in our analysis. Of the 17 Har-
well polarization data at 77.0 MeV [113],three data are
more than three standard deviations off. After removing
these data the remaining group of 14 data still has a y
which is improbably high.

The group of 32 differential cross-section data at 96.0
MeV by the Uppsala group [119]has a large y2 which is
mainly due to the backward-angle data. These backward-
angle data are much higher than the prediction of our
m.e. analysis. The Uppsala data were obtained by tak-
ing the weighted mean of five measurements in different
(but overlapping) angle regions. We have tried to include
these original measurements [157] in our m. e. analysis,
but we found that only the group which does not contain
any backward-angle data is in good agreement with the
other data in our database. Also, single-group analyses
of these data result in phase shifts which are very much in
disagreement with our m. e. results. For example, in some
of these single-group analyses the resulting eq mixing pa-
rameter is larger than 10 . In view of our m. e. result for
c~, we believe that such a solution is totally unaccept-
able. The Uppsala group [119] states that the slope of
their backward-angle data indicates a larger importance
of L & 3 phase shifts than previously assumed. However,
in our experience 96.0 MeV is too low an energy for L & 3
phase shifts to be accurately determined in a single-group
or s.e. analysis. On the other hand, these phase shifts are
already fixed pretty well in the m.e. partial-wave analysis
(i.e. , by the data at higher energies), so there is not too
much room for varying these phase shifts. We therefore
believe that these data are in error and hence we do not
include them in our final database.

The group of 13 Harvard cross-section data at 152.0
MeV [132] does not contain a normalization error. As
such it gives a very high y . Floating this group reveals
that the slope is in error, and the resulting y is still
much too high.

One of the groups of Los Alamos cross-section mea-
surements by Bonner et al. [133] (at 194.5 MeV) has a y
which is somewhat higher than allowed according to our
three standard deviation criterion, so it is removed from
our database. The same applies to the 21 cross-section
data at 200.0 MeV by Kazarinov and Simonov [138].
These latter data were also rejected in the partial-wave
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analysis by Dubois et al. [21].
All nine groups of Princeton differential cross-section

data by Shepard et al. [136] had to be floated by us,
because their normalization errors gave an improbably
high contribution to y . Even then each group has a

which is improbably high. Therefore, all 158 data are
rejected by us. Also the four Princeton total cross-section
data [145] give a y2 which is much too high.

Finally, we also reject the eight groups of SIN cross-
section data by Hiirster et al. [139],which were measured
in steps of 20 MeV starting at 200 MeV. The reason is
the following. For each group the first few data with c.m.
angles of about 140 —150 are more than three standard
deviations OK When we remove these data and refit our
model parameters, again the next one or two angles are
more than three standard deviations OK, so we have to
reject these as well. Refitting again yields other angles
which have to be rejected. We therefore believe there is
something systematically wrong with the shape of these
cross-section measurements. It is in disagreement with
the shape resulting from the other data in this energy
region, so all 276 data are rejected by us.

This explains the bulk of data rejected by us. The
remaining 87 np data are rejected because of similar rea-
sons: Some groups have a y which is improbably low,
some individual data are more than three standard devi-
ations OK, etc. The number of 932 np data that we reject
appears to be large. One can argue that it could be pos-
sible that these rejected data contain important physics,
which our present approach cannot handle. However, we
explicitly checked that the m. e. values for the phase shifts
almost do not change when we ease our rejection criteria
in that we also keep data that are within four standard
deviations with respect to the other data. In that case
we still have to reject more than 400 data, which are
very much in disagreement with the other data in our
database. The result of this analysis strengthens our be-
lief that the 932 np data we reject are indeed statistically
bad data and therefore that their rejection is valid.

We conclude this section with a remark regarding the
very low-energy np data. The value for the np scattering
cross section at "zero energy" oo, and the (n, p) coherent
scattering length a„can be expressed in terms of the sin-
glet scattering length a, and the triplet scattering length
aq according to

crp ——vr(3a, + o,.), a„= (3a, + a. )/4p, .

Here p, = (1+M /M~) i with MH the hydrogen mass.
The two most recent experimental values for o0 are in
disagreement with each other. Houk Ands [43] o'o

20.436(23) b, whereas Dilg finds [44] op = 20.491(14) b.
Because these accurate values are within two standard
deviations &om each other, we cannot use our statistical
criteria to decide which of these two measurements best
fits in with the other np scattering data of our database
(i.e. , we predict a value for cro which lies somewhere in
between these two experimental values). For that reason
both measurements are included in the database. A more
careful analysis of these two experiments will be deferred
to the near future.

VI. B.ESUITS

If our model is correct and if the database constitutes a
correct statistical ensemble, one expects for Ndg degrees
of freedom a g of

A. Energy-dependent analyses

Our first step in analyzing the %N scattering data was
to redo the m.e. pp partial-wave analysis, now includ-
ing the new analyzing-power data [38—40]. For the 1787
scattering data with 1613 degrees of freedom, we expect

/1VQf ——1 .000 + 0.035. We find y, „(pp) = 1787.0,
or y /Kdf = 1.108. The boundary-condition parameters
which parametrize the lower partial waves are given in
the upper half of Table III. These parameters c have

TABLE III. Boundary-condition parameters for the lower
partial waves. The upper half refers to the parameters used
in the pp analysis, and the lower half to the parameters used
in the np analysis. The coefFicients c are in MeV fm and
correspond to n /2M, of Eq. (13).

s (&&)
Po

1

P (J=2)
0(J = 2)
P (J=2)
F3

P.(J = 4)
0(J = 4)
Pb(J = 4)
'a4

So (np)
1

P. (J = 1)
0(J = 1)
P, (J = 1)
3 D
F

P (J=3)
0(J = 3)
P, (J = 3)
3 Q

Co

—15.003
58.325
64.926
61.420

-24.221
0.015

29.998
—18.794
—79.252

0
0

466.566

—17.813
139.438
—40.955

—0.370
155.090
—16.902
248.730

7.468
-0.223

0
0

C1

0.174
-6.430

5.082
—15.678

—0.112
0.013

0
0

13.768
0
0
0

—1.016
—23.412

4.714
0.009

—12.053
-3.506

0
0
0
0
0

C2

3.074
2.119

0
0

—0.371
0
0
0
0
0
0
0

2.564
2.479
1.779

0
0
0
0
0

0
0

C3

—0.180
0
0
0
0
0
0
0
0
0
0
0

For all analyses presented in this paper, we find that y
is about three standard deviations higher than the cor-
responding expectation value. This result implies that
there is still room for improvements in our model and
that the diQ'erence is at least partially due to small short-
comings in this model. We also determined the sec-
ond and higher moments of the y distribution of our
database and we find that they compare very favor-
ably with their theoretical expectations. For more de-
tails regarding these statistical considerations, we refer
to Ref. [4].

Before discussing some of the salient features of hav-
ing such a good m e. partial wave solution, we will
first present the detailed results of our energy-dependent
(m.e.) and energy-independent (s.e.) pp and np analyses.
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dimension (MeV fm ") and are related to the coefficients
o„ofEq. (13) according to c„=a„/2M„, with k2 in units
of fm . For coupled channels we use the parametriza-
tion of Eq. (14), with 0 in rad. The m. e. results for each
group of data are practically the same as those from our
previous pp analysis [1], so we will not reproduce Table I
of that paper again. The y results for the three groups
of new analyzing power data have been given in the pre-
vious section.

The pp phase shifts and mixing parameters of the lower
partial waves with their statistical m. e. errors are listed in
Table IV. Here and in the other tables, all pp phase shifts
are the phase shifts of the electromagnetic plus nuclear
interaction with respect to electromagnetic wave func-
tions (hEEMM+~, following the notation of Ref. [4]). They
can easily be converted to phase shifts of the Coulomb
plus nuclear interaction with respect to Coulomb wave
functions (b&ii+~), which are the phase shifts one usu-
ally calculates, e.g. , using potential models. For l g 0
we simply have bEM+N = b&1+N, whereas for the So we
have to use

1 . EM C'1
So . ~EM+N ~~1+N + +0

where for details we refer to Ref. [4]. The errors given
for the m. e. phase shifts are purely statistical, and are
directly related to the uncertainty in the fitted boundary
condition parameters parametrizing these partial waves.
They are rather small which can be understood from the
fact that we need only 21 boundary-condition parameters
to describe 1787 data.

For the analysis of the np scattering data the val-
ues for these m. e. pp phase shifts up to J = 4 (except
for the iSO phase shift) are used as input for the pion
Coulomb corrections as described at the end of Sec. III B.

These provide the m. e. values for the isovector np phase
shifts. For the 2514 scattering data with 2332 degrees of
freedom we expect y;„/Kgg = 1.000 + 0.029. We find
Z~;„(np) = 2489.2, or y /iVd~ = 1.067. The boundary-
condition parameters are listed in the lower half of Ta-
ble III. The m. e. results for each group of data are given
in Table II. There we give the y values, the predicted
normalization with which the experimental data should
be multiplied before comparing them with the theoretical
values, which data were rejected, and why they were re-
jected. The np So and isoscalar phase shifts and mixing
parameters which are parametrized by a boundary con-
dition are listed in Table V. We do not give a m. e. error
on the G4 phase shift, because for this partial wave the
boundary condition does not contain any free adjustable
parameters. The np isovector phase shifts (except the

So) are given in Table VI. The values for the pion
Coulomb corrections can be read ofI' the tables by tak-
ing the difFerence between the pp phase shifts of Table IV
and the corresponding np phase shifts of Table VI. These
pion Coulomb corrections are very diAerent from the cor-
rections given by the VPI-SU analyses [11,12] or the Graz
prescription [17). For example, in contrast with these lat-
ter two methods, in our analysis the P np phase shifts
are smaller than the corresponding pp phase shifts. The
charge dependence in the So partial wave is not due to
a theoretically calculated pion Coulomb correction, but
arises from the independent parametrizations used for
the pp and np systems, respectively.

We have also performed a combined partial-wave anal-
ysis. In this analysis we simultaneously G.t the pp as well
as the np data, so the pp phase shifts will then change
in such a way that the corresponding np phase shifts
(as obtained via the pion Coulomb corrections) give rise
to a drop in the total y . To be specific, in the com-

TABLE IV. pp isovector phase shifts and their multienergy error in degrees as obtained in the multienergy pp analysis.
Errors smaller than 0.0005 are not shown. The lower part lists the phase shifts as obtained in the combined pp+ np analysis.

Tlab
1

10

25

50

100

150

200

250

300

350

100

200

300

'Sp
32.684
+0.OO5
54.832
+0.017
55.219
+0.025
48.672
+0.039
38.899
+0.049
24.97
+0.08
14.75

+0.13
6.55

+0.16
—0.31
+0.18
—6.15
+0.25
-11.13
+0.46
24.97
+0.08

6.55
+0.16
—6.22
+0.23

1 Q
0.001

0.043

0.165

0.696
+0.001

1.711
+0.004

3.790
+0.018

5.606
+0.033

7.058
+0.045

8.27
+0.06

9.42
+0.08
10.69
+0.14

3.782
+0.017

7.039
+O.O43

9.42
+0.08

G'4
0.000

0.000

0.003

0.040

0.152

0.418
+0.001

0.700
+0.003

0.993
+0.010

1.272
+0.024

1.503
+O.O48

1.64
+0.08

0.418

0.993
+0.008

1.501
+o.o4o

Pp
O. 134

1.582
+0.006

3.729
+0.017

8.575
+0.053
11.47

+0.09
9.45

+0.11
4.74

+0.14
—0.37
+0.17
—5.43
+0.21

—10.39
+0.33
-15.30
+0.57

9.55
+0.09
—0.27
+0.17
-10.44
+0.29

Pg
-0.081

-0.902
+0.001
-2.060
+0.002
-4.932

+O.OO8
-8.317
+0.017
-13.258
+0.032

—17.434
+0.045

—21.25
+0.07
-24.77
+0.12

—27.99
0.19

—30.89
+0.27
-13.245
+O.O3O
-21.18
+0.06

—27.80
0.16

E3
-0.000

-0.005

—0.032

-0.231

—0.690

-1.517
+0.003
—2.100
+0.010
—2.487
+O.O25
—2.724
+0.049
—2.84
+0.11
—2.87
+0.13
—1.518
+0.002
-2.499
+0.021
—2.89
+0.07

P
0.014

0.214
+0.001

0.651
+0.002

2.491
+0.008

5.855
0.016

11.013
+0.025
13.982

+0.039
15.63

+0.052
16.59
+0.07
17.17
+0.10
17.54

+0.15
11.013
+0.021
15.65

+0.05
17.15

+0.09

82
-0.001

-0.052

-0.200

—0.810
+0.001
-1.712
+0.004
-2.659
+0.017
—2.873
+0.029
-2.759
+0.037
-2.542
+0.046
—2.34
+0.09
—2.21
+0.11
-2.654
+0.016
—2.731
+0.035
—2.27
+0.06

3 Q
0.000

0.002

0.013

O. 105

0.338

0.817
+0.004

1.197
+0.014

1.424
+0.034

1.47
+0.06

1.34
+0.11

1.04
+0.16

0.816
+0.003

1.414
+0.029

1.30
+0.09

3+
0.000

0.000

0.001

0.020

0.108
+0.001

0.478
+0.007

1.032
+0.022

1.678
+0.039

2.325
+0.051

2.89
+0.06

3.30
+0.11

0.471
+0.006

1.656
0.034
2.95

+0.05

6'4

-0.000

-0.000

-0.004

-0.049

-0.195

-0.539

-0.849

-1.108

—1.314

—1.47

-1.588
+0.001
-0.539

-1.107

—1.473

H4
0.000

0.000

0.000

0.004

0.026

0.108

0.211

0.321

0.428

0.526

0.608

0.108

0.321

0.526
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TABLE V. np So and isoscalar phase shifts and their multienergy error in degrees as obtained in the multienergy np
analysis. Errors smaller than 0.0005 are not shown. The lower part lists the phase shifts as obtained in the combined pp+ np
analysis.

T1&b
1

10

25

50

100

150

200

250

300

350

100

200

300

'So
62.068

+O.O3O
63.63
+0.08
59.96
+0.11
50.90
+0.19
40.54
+0.28
26.78
+0.38
16.94

+0.41
8.94

+0.39
1.96

+0.37
—4.46
+0.43
-10.59
+0.62
26.71
+0.38

8.80
+0.42
—4.68
+0.55

P
—0.187

-1.487
+0.004
—3.039
+0.012
—6.311
+O.O39
—9.67
+0.08

—14.52
+0.14
-18.65
+0.16

—22.18
+0.18

—25.13
+0.20

—27.58
+0.22

—29.66
0.33

-14.55
+0.14
-22.19
+0.20

—27.51
+0.28

F
-0.000

—0.011

-0.066

-0.415

-1.101

—2.089
+0.003
-2.702
+0.011
-3.235
+0.027
—3.88
+0.05
—4.72
+0.08
—5.80
+0.12
-2.090
+0.004
-3.246
+o.o37
—4.75
+0.11

D
0.006

0.222

0.846

3.708
+0.003

8.966
+0.017
17.28

+0.06
22.13
+0.10
24.51
0.11

25.40
+0.11
25.45
+0.12
25.08
+0.19
17.27

+0.07
24.47
+0.12
25.38
+0.16

G4
0.000

0.001

0.014

0.169

0.716

2.154

3.618

4.987

6.232

7.337

8.294

2.154

4.987

7.337

S
147.747
+0.010
118.178
+0.021
102.611
+0.035
80.63
+0.07
62.77
+0.10
43.23
+0.14
30.72
+0.14
21.22
+0.15
13.39

+0.17
6.60

+0.23
0.502

+0.32
43.19
+0.14
21.28
+0.16

6.82
+0.27

0.105
+0.001

0.672
0.004
1.159

+0.010
1.793

+0.025
2.109

+0.048
2.42

+0.09
2.75

+0.11
3.13

+0.12
3.56

+0.13
4.03

+0.17
4.57

+0.25
2.42

+0.09
3.19

+0.13
4.18

+0.20

D
—0.005

-0.183

—0.677
+0.001
—2.799
+0.006
—6.433
+0.017
-12.23
+0.05

—16.48
+0.09

—19.71
+0.14

—22.21
+0.16

—24.14
+0.18

—25.57
+0.30
-12.22
+0.05

—19.73
+0.14

—24.27
+0.21

3 D
0.000

0.002

0.006

0.048

0.324
0.003
1.457

+0.014
2.736

+0.033
3.74

+0.06
4.37

+0.09
4.62

+0.12
4.60

+0.16
1.451

+0.016
3.72

+0.07
4.58

+0.14

0.000

0.013

0.081

0.549

1.600

3.469
+O.OO2

4.804
+0.008

5.723
+0.020

6.357
+0.037

6.80
+0.06

7.13
+0.09

3.469
+0.003

5.730
+0.023

6.83
+0.07

Gg
—0.000

-0.000

—0.004

—0.053

—0.258

—0.934

—1.737

-2.534
+0.001
—3.265
+0.001
—3.902
+o.oo4
—4.440
+o.oo7
-0.934

-2.534
+0.001
-3.903
+o.oo4

bined analysis the pp boundary-condition parameters are
changed with the result that y on the pp data rises with

= 7.7 &om 1787.0 to 1794.7, but y on the np data
drops with Dy = 20.1 from 2489.2 to 2469.1. So the to-
tal y drops with Ly = 12.4 from 4276.2 to 4263.8, and

/Ngf —1.081. However, the rise in y on the pp data
in the combined analysis, together with the fact that in
our present approach the analysis of the pp data alone
is less model dependent than the combined analysis, we
believe that the phase shifts as obtained in the analysis
of the pp data alone are closer to the "true" pp phase
shifts. The differences between the phase shifts of the
combined analysis and the two separate analyses are very
small, but increase with increasing energies. To demon-
strate the magnitude of these differences Tables IV—VI
also contain the results from the combined analysis at
100, 200, and 300 MeV.

B. Energy-independent analyses

Although the energy-dependent analysis is far more
superior than a set of energy-independent analyses (see
the next section), we still decided to present the results of
these analyses for reasons of comparison and to illustrate
the situation.

Our s.e. analyses are performed by only Gtting the Go

constant of Eq. (13) for each partial wave. The other
boundary-condition parameters are held fixed at their
m. e. values in order to ensure the proper local energy
behavior. It is important to note that in that way we
explicitly include the constraints provided by the m. e.
solution: all phase shifts that are not fitted (i.e. , the in-
termediate and higher partial waves) are kept at their
m. e. values. In our s.e. analyses the data are clustered

TABLE VI. np isovector phase shifts in degrees as obtained via the pion Coulomb corrections in the multienergy np analysis.
The lower part lists the phase shifts as obtained in the combined pp+ np analysis.

Tl Kb
1
5

10
25
50

100
150
200
250
300
350
100
200
300

1 D
0.00
0.04
0.16
0.68
1.73
3.90
5.79
7.29
8.53
9.69

10.96
3.89
7.27
9.69

'G4
0.00
0.00
0.00
0.03
0.13
0.39
0.68
0.98
1.28
1.52
1.67
0.39
0.98
1.52

3P
0.18
1.63
3.65
8.13

10.70
8.46
3.6S

—1.44
—6.51

—11.47
-16.39

8.55
—1.34

—11.53

P1
—0.11
—0.94
—2.06
—4.88
—8.25

-13.24
—17.46
—21.30
—24.84
—28.07
—30.97
—13.22
—21.23
—27.88

3F
—0.00
—0.00
—0.03
—0.20
—0.62
—1.41
—1.98
—2.36
—2.60
—2.73
—2.76
—1.41
—2.37
—2.77

P
0.02
0.25
0.71
2.56
5.89

10.94
13.84
15.46
16.39
16.95
17.31
10.94
15.47
16.93

—0.00
—0.05
—0.18
—0.76
—1.63
—2.58
—2.80
—2.70
—2.49
—2.30
—2.18
—2.57
—2.67
—2.23

F
0.00
0.00
0.01
0.09
0.30
0.76
1.12
1.33
1.35
1.19
0.87
0.76
1.32
1.16

3F
0.00
0.00
0.00
0.02
0.10
0.45
0.99
1.63
2.26
2.81
3.21
0.44
1.60
2.88

8'4
—0.00
—0.00
—0.00
—0.04
—0.17
—0.49
—0.79
—1.05
—1.26
—1.42
—1.54
—0.49
—1.05
—1.42

H4
0.00
0.00
0.00
0.00
0.02
0.09
0.19
0.29
0.39
0.48
0.56
0.09
0.29
0.48
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FIG. 2. (a) Energy dependence of Vz for the pp Po partial wave (solid curve). The bullets represent the values for Uz as
obtained in the single-energy analyses. (b) The total potential in the pp Po partial wave. The solid line is the value for Vz
at Tj b = 200 MeV, and the dashed curve is the OPH potential, including the heavier-boson-exchange contributions of the
Nijmegen potential [10].

around ten energies from 382.54 keV (the interference
minimum) up to 320 MeV. These analyses provide us
with ten error matrices. The error matrix is the inverse
of half the second-derivative matrix of the y hypersur-
face with respect to the phase shifts which are varied
within that particular energy bin. These error matrices
for the pp, the np, and the combined pp+ np analyses
are available upon request. They can conveniently be
used, for example, to make a quick comparison of the
predictions of a potential model with the NN scattering
data [158].

The energy dependence in our m.e. solution of V~(k )
for the pp sPo partial wave is shown in Fig. 2(a). The
black bullets with their error bars are the short-range
potentials as obtained in the s.e. analyses. The large er-
ror bar at, e.g. , T~ b

——25 MeV reHects the fact that in
a s.e. analysis at 25 MeV the pp Po phase shift can-
not be determined very accurately. The s.e. result at
10 MeV is clearly oK with respect to the m.e. curve. A
similar discrepancy occurs in the Pi partial wave (not

shown). Apparently, some of the pp data around 10 MeV
are not completely consistent with the other data in our
database. This was already inferred from the results of
one of our earlier, preliminary analyses [2]. This figure
also nicely demonstrates that all s.e. results are statisti-
cally scattered around the m. e. solution (as they should).
In Fig. 2(b) we show what the total potential for the Po
partial wave looks like. The solid line is the value for
the short-range potential corresponding to its value at
T~ b

——200 MeV and the dashed curve is the OPE po-
tential, including the HBE contributions of the Nijmegen
soft-core potential [10].

A similar picture for the np Pq partial wave is shown
in Fig. 3. The s.e. short-range potentials for this partial
wave at 25 and 100 MeV reQect the fact that the np data
cannot pin down the P~ partial wave at these energies,
due to a lack of accurate differential cross-section data.

The lower partial-wave phase shifts are plotted in
Figs. 4 and 5. The solid curves represent the results
from the energy-dependent analyses, and the black dots
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FIG. 3. Same as Fig. 2 but for the np Pq partial wave.
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denote the results form the energy-independent analy-
ses with their errors. In Fig. 4 the isovector np phase
shifts as given via the pion Coulomb corrections are rep-
resented by the dashed line. The np So is parametrized
independently of the pp So and hence is shown sepa-
rately in Fig. 5. The s.e. errors are the square roots of
the diagonal elements of the error matrices.

Our s.e. values are statistically scattered around the
curve representing the m. e. result, as they should. We
also give the s.e. results from the 1992 VPI-SU solution
VL40 which can be found in SAID [36], and from the 1992
analysis by Bugg and Bryan [23].

For most pp phase shifts the agreement is very good.
A peculiar exception is the Po phase shift from the VPI-
SU analysis at 75 MeV. The difference with our m. e. so-
lution amounts to almost six standard deviations. For
the isoscalar np phase shifts the spread in the results of
the three different s.e. solutions (Nijmegen, VPI-SU, and
Bugg) is larger, where the Nijmegen s.e. results are still
close to the Nijmegen m. e. solution. The differences are
at least partially due to the different treatments of Axing
the np isovector phase shifts (see Sec. III B). Other differ-
ences between these three analyses are in the treatment
of the electromagnetic interaction and in the treatment

80
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FIG. 4. Isovector phase
shifts of the pp and np analy-
ses in degrees vs T& b in MeV.
Solid line: multienergy pp val-

ues; dashed line: multienergy
np values. ~: single-energy pp
values; o: Amdt et aL [36];
Bugg [23].
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of the higher partial waves.
Although for some phase shifts there appears to be a

large difFerence between the three s.e. solutions, this does
not truly reHect the uncertainty in these phase shifts.
As already stressed before, the m. e. result provides the
"best" value for the phase shift, and it can be determined
very accurately.

The large values for the eq mixing parameter of the
VPI-SU solution at 50, 75, and 100 MeV are probably due
to the fact that they do not remove the erroneous Har-
well [85] and Uppsala [119]data. These data have a large
inHuence on eq as determined in an energy-independent

analysis, whereas their inHuence in an energy-dependent
analysis is much smaller. We do not find any evidence for
a large eq in our energy-dependent analysis. This is in
disagreement with a recent claim based on the results of
a set of s.e. analyses below 160 MeV [159]. But then this
set of s.e. analyses is to a certain extent a kind of VPI-
SU analysis: it uses the same computer code [36] and the
same database (including some recent new data). It is
not understandable that the results of these s.e. analyses
were not compared with the results of a m.e. analysis,
because this would have revealed that such large values
for eq can easily be ruled out.
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C. Multienergy versus single energy

As already mentioned in the Introduction, the set of
s.e. analyses requires many more fit parameters than the
m. e. analysis covering the same energy region. As a rep-
resentative example we here compare our m. e. and s.e.
analyses of the NN data below 350 MeV. In our m. e.
analysis of these data we need a total of 39 parameters to
adequately describe the energy dependence of the phase
shifts. Each additional parameter is superBuous in the
sense that the statistical error on such a parameter turns
out to be larger than the value of the parameter itself.

Also the resulting drop in y;„ is negligible. On the
other hand, for the set of ten s.e. analyses covering the
same energy range we have a total of 116 parameters.
The difference of 77 additional parameters indicates that
the set of s.e. analyses is strongly overparametrized and
hence contains noise. Although the total y reached in
the ten s.e. analyses is 180 less than the y;„reached in
the m.e. analysis, this drop is only obtained at the ex-
pense of introducing 77 extra parameters (compared to
the 39 parameters needed in the m.e. analysis).

Another shortcoming of doing s.e. analyses is that the
data in the energy interval where the s.e. analysis is done
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FIG. 5. Isoscalar phase shifts
and So phase shift of the np
analysis in degrees vs T& b in
MeV. Solid line: multienergy
np values. ~: single-energy np
values; o: Amdt et al. [36];
Bugg [23].
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can be such that they are very insensitive to variations
in the value of one particular phase shift (e.g. , the ab-
sence of np spin correlation data often implies that the
si mixing parameter is ill determined). In that case that
particular phase shift cannot reliably be determined in
the s.e. analysis, whereas its value can be determined
very accurately in the m.e. analysis (see below).

Similarly, it is possible that the energy interval we want
to investigate in the s.e. partial-wave analysis contains an
erroneous set of data, which can be described reasonably
well by adjusting one of the phase shifts without aKect-
ing the description of the other data too much. That

particular phase shift will then difFer very much &om its
m.e. value, which makes this solution unacceptable. Not
comparing with the results of the energy-dependent anal-
ysis (and therefore, with the constraints imposed by all
the other data) will not show the incorrectness of this
solution. This can give rise to incorrect conclusions.

Because the y;„obtained in our energy-dependent
analysis is so close to the theoretical expectation value,
we believe that we have a unique solution, which is then
also rather stable. The values for the phase shifts and for
the theoretically calculated scattering observables as well
as the statistical m. e. errors on these quantities are then
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essentially correct. When we include new data in the m.e.
partial-wave analysis, the phase shifts are not expected to
change by more than one or two m.e. standard deviations.
So the values and errors determined in the m.e. analysis
are much more stable than those determined in the s.e.
analysis. In two cases we will demonstrate this.

Recently, very accurate pp analyzing-power data at
50.04 MeV [38,42] have become available, as well as an np
longitudinal total cross section [110] and a set of np spin
correlation data at 67.5 MeV [112]. These experiments
were expected to pin down the NN phase shifts around
50 MeV much more accurately. I et us see, what inQuence
these experiments had on our m.e. solution. The 50.04
MeV pp A„data mainly affect the tensor (T) and spin-
orbit (LS) combinations of the P phase shifts. Without
the new 50.04 MeV data our m. e. values for these phase
shifts at 50 MeV are

A~ = —3.745 (22) and Ar, g = 2.601 (34),

whereas with these data included they read

Az = —3.733 (12) and Ar, g = 2.606'(21) .

In the s.e. analysis covering the 50 MeV region these
phase shifts change from

Az = —3.759'(43) and b, l,s = 2.509'(87)

to

Az ———3.741'(14) and AL, s = 2.592'(28),

when the 50.04 MeV data are included. Similarly, the
67.5 MeV A, and Aol, data mainly affect the Pq phase
shift and eq mixing parameter. Without the new data our
m. e. values for these phase shifts at 50 MeV are

b( Pi) = —9.78'(ll) and si ——2.15'(7),

whereas with these data included we get

h( Pi) = —9.67 (8) and si ——2.11'(5) .

The influence of these data in the s.e. analysis of the
np data covering the 50 MeV region is much more pro-
nounced. Without these new data there are no np data
around 50 MeV that pin down the c q mixing parame-
ter. As a consequence, it has the unrealistic high value
of si ——5.69 (64) and rules of statistics do not apply
anymore. The statistical errors on the s.e. phase param-
eters are much too small and the actual errors should
be amended with large (unknown) systematic errors. In-
clusion of the 67.5 MeV data improves the s.e. analysis
considerably and we find si ——2.57 (36), in good agree-
ment with the m. e. analysis. Prom these examples we see
that our m. e. solution is very stable when we add these
accurate new data, whereas the same is not necessarily
true for the phase shifts as determined in a s.e. analysis.

Similarly, we investigated that the inclusion of the
still unpublished data by the Erlangen [31,32] and Karl-
sruhe [33] groups does not change the m. e. values for the
phase shifts by more than one or two standard deviations.

D. Normalizations

The fact that the m. e. phase shifts can be determined
very accurately also implies that angular dependences of
cross sections, analyzing powers, spin correlation param-
eters, etc. , are fjxed rather well. As a consequence, the
normalization on a particular group of such data can be
determined very accurately in the m. e. analysis. In al-
most all cases our determination of the normalization is
(much) more accurate than the uncertainty quoted by the
experimentalists. An illustrative exception once again
involves the 50.04 MeV pp analyzing-power data. Orig-
inally these ten A„data were presented with a 2% nor-
malization uncertainty [38]. When we assume that the
normalization for these data is unknown (i.e. , we leave
the normalization as a free parameter), we find in the
m.e. analysis Ns i ——1.0150(71),which is consistent with,
but more accurate than, the experimental determination
of N,„i ——1.00(2). Including this latter experimental
value we find Nqg i ——1.0133(67). Later in a separate
experiment [42] there was a new determination of the
normalization, yielding N,„2 ——1.0069(39). When we
compare this with our determination Ng ~ we see again
the consistency, but now the error in N,„2 is smaller than
our error in Ng ~. Renormalizing the original A„data
with this factor 1.0069 and including the new scale un-
certainty of 0.39%, we determine our new normalization
to be Nth 2

——1.0019(34), which is in excellent agreement
with the determination by the experimentalists.

One should realize, however, that this very accurate
experimental determination of the normalization is only
applicable at a small selected set of energies (for details,
see Refs. [39,42]). At any other energy, it is extremely
difBcult or even impossible to achieve this high accuracy,
whereas our m.e. analysis provides an accurate determi-
nation of the normalization of any group of data at any
arbitrary energy below 350 MeV. This has important con-
sequences. For instance, in the case of differential cross-
section measurements it is only the shape that is really of
importance, and it is not necessary to go through the ex-
perimentally very dificult procedure of determining the
absolute normalization to a high accuracy. This was al-
ready demonstrated in an earlier paper by our group [24],
where we discussed the 11 sets of differential cross sec-
tions by Bonner et al. [133], where the measurements
below 300 MeV have a &ee normalization, whereas the
measurements above 300 MeV have a Gnite normaliza-
tion uncertainty of 4'%%uo. There we showed that in our
m. e. analysis the normalization for each set can be de-
termined with an accuracy of 0.7'%%uo. There is almost no
difference between the sets with a free normalization and
the sets with the 4% normalization uncertainty.

Even in the extreme case where all groups of data are
given a Bee normalization, we can still determine the
normalizations very accurately, where the errors are only
slightly larger.

VII. SUMMARY

We have performed m. e. partial-wave analyses on the
pp data, on the np data, and on the combined database
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including the pp as well as the np data. For the pp anal-
ysis we find y;„(pp) = 1787.0 for 1787 scattering data
with 1613 degrees of freedom. The np analysis yields
y2,„(np) = 2489.2 for 2514 scattering data with 2332 de-
grees of freed. om. The combined pp+ np analysis yields

j11 4263 8 for 430 1 scattering datawith 3945 degrees
of freedom, where the pp data contribute y (pp) = 1794.7
and the np data y (np) = 2469.1. All three analyses have
an excellent y2/Ng t = 1, which is significantly lower
than any other m. e. partial-wave analysis we know of.

In these m. e. analyses all lower partial-wave phase
shifts are accurately known. Hence, the results of any
s.e. analysis should always be compared with this (or
any other high-quality) m. e. analysis in order to judge
whether or not the resulting s.e. phase shifts are realis-
tic. Our energy-dependent solution is expected to be very
stable under the inclusion of new experiments. Conse-
quently, we can give very accurate predictions of all NN
scattering data at any angle and at any energy below 350
MeV. We have to make a proviso, however. Since we do
not include any constraints on the energy behavior of the
phase shifts beyond 350 MeV, the results at the high end
of our energy range (Ti b & 325 MeV) may be somewhat
less reliable. A first indication for this shows up in the
preliminary results of a pp analysis of all data up to 500
MeV, which includes inelasticities [160]. The y2 on the
300—350 MeV data in this latter analysis is somewhat
higher than in the analysis presented in this paper. We
believe that the results for the phase shifts obtained in
the 0—500 MeV analysis are closer to the "true" values,
because now the energy dependence near 350 MeV is not
only dictated by the data below 350 MeV.

An advantage of having an accurate m. e. solution is
that the normalization on a group of differential cross
sections, analyzing powers, or spin correlation parame-
ters can be determined very accurately. There is no im-
pediment in only measuring the angular distribution of,
e.g. , the difFerential cross section and to forgo the exper-
imentally much more difFicult determination of the abso-

lute normalization. However, we are still in need of more
accurate data. For instance, around 10 MeV there are
inconsistencies between the pp scattering data, whereas
in the 100 MeV region the quality and variety of both
pp and np data is very poor. Moreover, in order to be
able to do an analysis of the np data, we had to resort
to some particular assumptions to provide us with the
isovector phase shifts. An independent analysis of the np
data, parametrizing the isoscalar as well as the isovector
partial waves, is under investigation. However, because
of the large number of partial waves to be parametrized,
it is still rather difBcult to perform such an analysis and
it would be very helpful to have more high-accuracy np
experiments at our disposal.

Finally, we mention that for the S~- D~ coupled chan-
nel, we can also easily extrapolate the energy dependence
to the deuteron pole. In that way we are able to ex-
tract some of the deuteron parameters from the scatter-
ing data. Preliminary results using this method have
been published some years ago, when we analyzed the
np scattering data below 30 MeV [161]. A detailed ac-
count of the determination of the deuteron parameters
and the other low-energy parameters using the energy
dependence as given by our present m. e. analysis will
be left to a future paper. Here we only quote the re-
sult of this extrapolation which yields B = 2.2247(35)
MeV for the deuteron binding energy. This is in excellent
agreement with the experimental deterinination [162] of
B = 2.224 575(9) MeV.
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