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Medium-energy hadron-nucleus scattering in the 1/N expansion formalism
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The algebraic-eikonal approach to the medium-energy hadron-nucleus scattering is generalized to ar-
bitrary interactions and boson types using the 1/% expansion technique for the interacting boson model.
The results are used in a comparative study of proton scattering from deformed nuclei in the sd and sdg
boson models. The two models give almost identical results for a pure quadrupole interaction but widely
di6'er when a hexadecapole interaction is included.

PACS number(s): 24.10.Eq, 25.40.Ep, 21.60.Ev

I. INTRODUCTION

Medium-energy proton-nucleus scattering experiments
have demonstrated that the distorted-wave impulse ap-
proximation breaks down at high momentum transfers
and multiple scattering e6'ects must be included for a
proper description of data [1]. The traditional coupled-
channel calculations give improved agreement, however,
they are time consuming and not very illuminating. An
alternative approach pioneered by Amado, Dedonder,
and Lenz [2] is to use the eikonal approximation [3]
which leads to analytic expressions for scattering cross
sections, and provides valuable insight into these process-
es (see [4] for a review).

Recently, Ginocchio et al. [5] combined the eikonal
approximation with the interacting boson model (IBM)
[6] opening the way for a unified description of hadron
scattering from collective nuclei. In the initial work [5],
the U(5), O(6), and SU(3) dynamical symmetries of the
IBM were exploited to obtain closed analytic expressions
for the transition matrix elements. As the dynamical
symmetries are not realized in majority of nuclei, realistic
applications of the model [7—9) still had to be done nu-
merically, e.g., diagonalization of the IBM Hamiltonian
and calculation of various matrix elements.

The IBM with s and d bosons gives an adequate
description of the quadrupole properties of low-lying lev-
els. Recent electron [10] and proton [11] scattering ex-
periments have shown, however, that this success does
not extend to the E4 properties. This and other
shortcomings of the sd IBM [e.g. , existence of %=3+
and 4+ bands, lack of boson cutoff in B(E2) values] can
be resolved in the sdg model as demonstrated by calcula-
tions in deformed [12] and transitional [13]nuclei. Clear-
ly, it is desirable to extend the above eikonal+IBM cal-
culations to the sdg model especially in the case of J=4+
states. Numerical implementation of such a calculation,
however, is rather dificult due to the much larger sdg
basis space.

The 1/N expansion [14,15] provides approximate ana-

lytic solutions for general IBM Hamiltonians with arbi-
trary kinds of bosons, and is particularly useful in cases
where numerical diagonalization is not practical because
of large basis spaces. The purpose of this paper is to use
the I/N expansion technique to generalize the results in
Ref. [5] to arbitrary interactions and boson types. The
analytic expression obtained for the transition matrix ele-
ment is then used in a systematic study of medium-energy
proton scattering from deformed nuclei in both the sd
and sdg models.

II. REVIEW OF THE EIKONAL APPROXIMATION
AND THE IBM

Here, we brieAy review and generalize the previous
work done on the algebraic eikonal approach to
medium-energy hadron-nucleus scattering (see [5] for de-
tails). The Hamiltonian for hadrons of mass m scattering
from a nucleus is given by

V +HiB)v(+ Vo (i ) + V(l(1 &B )
2m

(2.1)

21

IIii)~=/ stnt+ $ KkT'"'T'"',
I k=0

nt =g bt b( (2.2)

T(k) —y t [b tb ](k)

jl

where n,I and T' ' are the boson number and multipole
operators. The parameters consist of the single boson en-
ergies c.&, the multipole strengths, and coeKcients ~I, and
tk~I, respectively. Of the two interaction terms in Eq.

Here r is the projectile coordinate and H&B~ describes
the collective excitations of the target nucleus. Introduc-
ing the boson operators bI, l =0,2, 4, . . . , l „,a general
IBM Hamiltonian with one- and two-body terms can be
written as
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V, (r) = —2M p(r), (2.3)

where f is the hadron-nucleon forward scattering ampli-
tude, and p(r) is the nuclear density (normalized to mass
A ) for which we take a two-parameter Fermi form

p(r)p[ 1 +e(r —R)/d] (2.4)

Finally, V„(r,B ) in (2.1) represents the coupling between
the projectile and the boson degrees of freedom generical-
ly denoted by B. It has the same form as Eq. (2.3) with
p(r) replaced by a hadronic transition density operator
p„(r). With the usual assumption of one-body transition
operators in the IBM, the spin zero density operator can
be written as

p„(r)=g akt(r)[bJbt]'"'I' '(r) .
kjl

(2.5)

(2.1), V, (r) represents the optical potential that the pro-
jectile feels in the presence of the target. It is indepen-
dent of the boson operators and hence cannot induce ex-
citations in the target. A standard form for the optical
potential is

ak t(r)—:ak(r) r p(r), jul,k —1

J dp

d
+kJJ( ) pk(r)

d
~k

(2.6a)

(2.6b)

Figure 1(a) shows typical quadrupole form factors ob-
tained from (2.6). The norrnalizations of akJt(r) will be
discussed in Sec. IV together with systematics. There are
additional constraints on akJt (r) if the experimental
B(EA, ) values are to be reproduced, e.g.,

Here, the k sum runs over k =2,4, . . . , 2l,„dictated by
the tensor properties of the boson operators and by the
fact that the diagonal matrix element of V„(r,B) in the
ground state should vanish as it is already contained in
V, (r). The quadrupole form factors az t(r) in (2.5) have
been determined from electron scattering experiments for
various nuclei. The seniority breaking (jul) form fac-
tors are surface peaked like the first derivative of the den-
sity (2.4), and the seniority conserving ones oscillate on
the surface like the second derivative. In the absence of
any other experimental information, we use the Tassie
form factors [16] for all multipoles

B(EA,)= I J dr r + (J =A
II XakJt(r)[b)'bt]'"IIo&I'

jl
(2.7)

where we assumed that hadronic form factors are twice
as large as the electromagnetic ones. Equation (2.7) has
an important ramification for the large N behavior of the
densities which will be used in the next section. Since the
matrix elements of the boson multipole operators are pro-
portional to X, the densities akjt should scale as I/X to
produce a finite B(Ek) value in the large X limit.

When the projectile energy is much larger than the in-
teraction energies ( V, and V„), so that its trajectory is
little deflected from a straight line, one can use the eikon-

al approximation to describe the scattering. In addition,
for medium-energy hadrons, one can neglect the nuclear
excitation energies described by K,BM in (2.1). Under
these approximations, the scattering amplitude for the
projectile going from momentum k; to kf while the nu-
cleus is excited from an initial state J;M; to a final state
JfMf is given by

k,
(q)= f d b e' (J M Ie'k ' —1 JM) (2 8)
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FIG. 1. (a) Form factors az(r) and pz(r) obtained from Eq. (2.6). The parameters of the Fermi density are R = 5.97 and diffuseness
d =0.66 fm. The normalizations are determined from experimental B(E2) values as described in Sec. IV. (b) Profile functions t (b)
and t&(b) for the form factors az(r) and P,(r)
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where q=k& —k; is the momentum transfer, and y(b) is
the eikonal phase that the projectile acquires as it
traverses the nucleus,

citation of a nucleus from the ground state (J;=M; =0)
to a final state J,M becomes

A/, (q) =i 'k, d~(')(~/2)
y(b) = — f dz[ V, (r)+ V„(r,B ) ] .

A k.
l

(2.9) X f b db JM(qb)(e'rUg' 5—&;),0
(2.14)

y(b) = „ f dz p(r),
1

(2.10)

y(b) = f dz g a„;(r)[b"br ]'"'Y'"'(r),
i kjl

where y and g are the optical and transitional phases,
and introduce the transition matrix element U&; as

U/, . = (J/M ~
e 'r' '

~ J;M; ) . (2.11)

The matrix element U&; can be greatly simplified by using
the peripheral approximation Y'"'(r)= Y'"'(b) in (2.10).
This amounts to neglecting contributions from (z/b)
and higher-order terms in (2.10) which is justified for a
surface interaction. Then the transition phase can be
written as a rotation of a reduced transition phase y' '

through the Euler angles b = (P, ~/2, 0)

y(b)=R(b)y' '(b)R (b),
y' '(b)=gpJI~(b)bl b,~,

jim

(b)= ( —1)
E k

1/2

(2.12)

& jml —m~ko)

X f dzakJI(r) .

From Eq. (2.6), the b dependence of $1~~ is described by
the profile functions t k(b) = f dz ak(r) and

tpj, (b) =f dz Pk(r) which are shown in Fig. 1(b). Acting
with the rotation operators on the nuclear states, the ma-
trix element (2.11)becomes

Here+ the z axis is chosen along the incident beam direc-
tion k so that the impact parameter b is perpendicular to
k, i.e., r=b+zk. Since V, is independent of the boson
operators, it will be convenient to split y(b) into two
parts

y(b) =y(b)+y(b),

where we have introduced the reduced transition matrix
U(0)

fi

U(o, '=(JO~e'r ' '~00),fi (2.15)

III. TRANSITION MATRIX IN THE 1/N FORMALISM

The 1/N expansion is an angular momentum projected
mean-field theory which provides analytic solutions for
general IBM Hamiltonians with arbitrary kinds of bo-
sons. The technique had been discussed in length else-
where [14], and was shown to give an accurate represen-
tation of the low-lying collective bands when compared
to the exact diagonalization results [15]. Since the details
can be found in the literature, we do not consider it fur-
ther here. (Some of the relevant formulas needed in the
derivations are listed in Appendix A. ) In this section, we
use the 1/N expansion technique to evaluate the transi-
tion matrix (2.14).

For axially deformed systems, it is more convenient to
work in the intrinsic frame. Introducing the intrinsic bo-
son operator b =g&xlblo, the ground band can be writ-
ten as a condensate of N bosons

(3.1)

which contains all the nuclear structure information.
From a group theoretical view, the boson operators in
(2.2) close under the group SU(n), n = ,'l, „(1—,„+3)+1,
and the boson states form a basis for the symmetric irre-
ducible representation of SU( n ) of rank N. Thus the
transition operator in (2.15) is simply a transformation
operator of SU(n), and its matrix elements correspond to
the representation matrix for this irreducible representa-
tion. In the next section, we show that UI;

' can be evalu-
ated relatively easily using the 1/2V expansion.

U/; =g D~~~(b)D~'~(b)( J&M e'r '~'~ J;M ) . (2.13)f

Substituting (2.13) into (2.8), the azimuthal angle integra-
tion is given by the integral representation of the Bessel
function J~~ ~ ~. Thus the scattering amplitude for ex-f i

Here xl are the normalized mean-field amplitudes which
are determined from H~&M by variation after projection.
Cxoing to the intrinsic frame breaks the rotational sym-
metry which has to be restored via angular momentum
projection. Substituting (3.1) in (2.13) with the appropri-
ate projection operators, the reduced transition matrix
element becomes

U(0) dQdQ'Dao'(0)( —ib R (Q)e'r R(Q')(bt)
i

—),
(8m. ) [JV (J)JV (0)]' (3.2)



MEDIUM-ENERGY HADRON-NUCLEUS SCATTERING IN THE. . . 777

where the normalization JVg (J),

JV (J)= f d QD oo'(Q)( —
~b R(Q)(b )

~

—),
(3.3)

had been calculated previously as a I/jV expansion [see
Eq. (Al)].

To evaluate the matrix element in (3.2), we need to
know the effect of rotations and SU(n) transformations
on a single boson operator (i.e., the representation ma-
trix). For rotations, this is given by Wigner D matrices

R (Q)b(~ R (Q) =g D' ' (Q)b( (3.4)

which determines the set of eigenvalues and eigenvectors
e", [yl" ], where v is an index denoting different solu-
tions. The order of the eigenvalue equation in (3.8) de-
pends on l,„and m. For example, in the sd model, it
has order 2 for m =0, and order 1 for m =1,2. In the
sdg model, the order becomes 3 for m =0; 2 for m = 1,2;
and 1 for m =3,4. Thus the solution of (3.8) is trivial in
the sd model and can be easily accomplished in the sdg
model.

To make the connection with the transformation ma-
trix, we next consider transformation of eigenbosons un-
der SU(n). It can be easily shown from (3.7) that the
eigenbosons simply acquire a phase

m'

Similarly, for the special SU(n) transformation in (3.2),
one can write

~ (0) . (0) iee'+ 8 e '+ =e 8~
m m

Substituting (3.6) into (3.9) and using (3.5), we obtain

(3.9)

U(m)bf
lm e ~ 1'1 1'm

1'
(3.5) (3.10)

where Ul. l
' is the transformation matrix. It had been de-

rived previously in the special case of SU(6) [5]. Here we
give a derivation for a general SU(n) group. First, con-
sider the eigenbosons of the transition phase g' '

b, (3.6)
1

which satisfies

which can be solved to yield for the transformation ma-
trix

U(m) y e' myu U (3.11)

Transformation for X boson operators follow from that
of a single one through the relationship

(3.7) U(bi )NU
—1 —

( Ub t U
—1)N (3.12)

X (t'jlmylm emyjm
1

(3.8)

Substituting (2.11) and (3.6) into (3.7), and working out
the commutator leads to the eigenvalue equation Equipped with the transformation properties of the bo-

son operators, Eqs. (3.4) —(3.5), the matrix element in
(3.2) can now be easily evaluated using boson calculus,

( —
~b Rt(Q)e'x R(Q')(bt)

~

—)=[ y xix, D"' (Q)U' 'D'"(Q')]
ll'm

—:[f(Q,Q')]

Substituting the D matrices and UI,
&

' (3.11) into (3.13), we obtain a particularly simple form for f,

f(8,$, 8', P')=pe' '~ ~ 'g e f' (B)f' (8'),

f'(8)=gx&y&' d"0(8),
I

and the transition matrix (3.2) becomes

(3.13)

(3.14)

Ug'=, f si Bnd 8 desi B'ndB'dP'PJ(cosB)[f(8, $, 8', P')]
(4')'[JV (J)JV (0)]' ' (3.15)

Since the P integrals in (3.15) involve the difference
(t —P, one of them is trivial and gives 2~ after a coordi-
nate transformation. This leaves a three-dimensional in-
tegral behind which can be evaluated numerically. Our
aim here, however, is to use a large N expansion for the
integrand in (3.15) and obtain an analytical expression for
the transition matrix.

The standard technique for approximating integrals of
the form (3.15) is the method of steepest descent which
gives the leading-order term (in N) correctly, and hence it
is especially good for large N. This method exploits the
fact that the main contribution to the integral comes
from the region where f has a maximum. At the max-
imum, f is approximated by a Gaussian and the result-
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ing integral can be evaluated without difficulty. To find
the extremum points, consider the derivatives of
f(8,8', P),

vanish at this point. Therefore it is not a maximum and
not likely to contribute to the integral. To see this more
explicitly consider

af'(8)
ae

™
„

- ae
=g e' ~g e f" (8') =0, (3.16a) f(0,0,$)=pe ' gx,yl"0

V I

'2

(3.17)

af. (8 )

ae . . - ae, =pe' &ge f (8), =0, (3.16b)

ay
=i g me' ( g e f" (8)f" (8')=0, (3.16c)

which should vanish simultaneously. From the symme-
try of f(8, 8', P) with respect to 8+-+8', it is clear that
8=8' at the maximum. Thus, to satisfy (3.16a) and
(3.16b), either f (8) (3.14) or its derivative should vanish
for all m and v. Noticing that f'(8) involves an arbi-
trary sum of the d functions with different weights for
each m and v, this would be possible only if the d func-
tion or its derivatives vanish simultaneously for each I.
Common zeros of the d functions and its derivatives
occur only at 8=0, m /2, m. (see Table I). Since f(8,8', P)
has the same value at 0=0 and m., it is sufficient to con-
sider only one of them. Inspection of Table I shows the
following. (i) For 8=8'=0, Eqs. (3.16) are satisfied ir-
respective of the value of P. However, all the second
derivatives involving (() and hence the Hessian of f also

which can be estimated using yI'0=x&. Then, from the
orthogonality of the eigenvectors, only the V=1 term
contributes to the sum in (3.17). Since e0 is the largest
(positive) root and predominantly imaginary,
f(0,0,$ ) =exp ( ie 0 ) ( 1, and [f(0,0,$ ) ] ~0 for large N.
(ii) For 8=8' =m /2, Eqs. (3.16) are satisfied when
sin2$ =0, i.e., P =0, m /2, m, 3n /2, 2m. At P = m /2 and
3'/2, the second derivative off with respect to P and its
Hessian are positive hence they correspond to the mini-
ma of f. For the other values of P, the reverse is true,
and these are the maxima of f needed in the calculation.
In fact, using [ vr/2, 3n /—2] for the P integral limits in-
stead of [0,2vr] to avoid the maximums at the end points,
there are only two maxima of f at /=0 and vr making
equal contributions to the integral.

In evaluating the integral it is more convenient to use
the variable z=cos8. Since the erst and second deriva-
tives of d'" (and hence f) with respect to 8 and z are the
same at 8=~/2, f has the same Gaussian form with
respect to either variables. The nonvanishing second
derivatives of f(z, z', P) at z=z'=/=0 are given by

f() —=f(0,0,0)= g e QC(mxly'jm
even m I

2

(3.18a)

=1 a' le' 1
e g xlyl"f, a a' „„, f, .„ (3.18b)

1 a f 1

2
ef, aZ (0,0,0) f0 even m

g (l m )cl xlyl
1

g Cl'm Xl'yl'm
I'

(3.18c)

$2f 1 2 mm2e gc, xy,"
f0 aP (0 0 0) f() even m l

2

(3.18d)

where the coefficients cI follow from Table I as

(/2 &(l —m)!(l +m)!
(l —m)!!(l+m)!!

Using the method of steepest descent with Eq. (3.18), the integral in (3.15) can now be approximated as

(3.19)

TABLE I. Special values of the d functions and its derivatives for 8=0 and m/2 I17].

0=m/2

d(l) (0)
d2

d9'
d(l) (g)

—,'+l (8,—8 i)

——'l8 0+ —'V l(l —2)6

i )(l+m)/2 &(l —m)!(l +m)!
&

(l m)!!(l +m)t) +m even

( ))(l+~+, )/2 (l —m)!!(l+m)!!
~

&(l —m)!(l +m)!
—(l —m')d(')
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1=4m f dz f dz' f dPPJ(z)f0expI ,'—N—(f2z 2—f,zz'+f2z' +f3/ ) j . (3.20)

For large N, the limits of the P and z integrals can be extended to +00. The resulting Gaussian integrals are standard
and give

N

I= »2 f dz Pz(z)expIgz }, g= —
—,'Nfz(1 f, /—f2) .

N (f2f3)'" (3.21)

Care needs to be exercised in evaluating the z integral in (3.21), as the limits cannot be extended to + ~ in this case.
This happens because f i /f 2 has a 1/N expansion whose leading term is 1 (see Appendix B), and hence g in (3.21) is nei-
ther large nor is it clearly negative. An exact evaluation can nevertheless be carried out by expanding the exponential
and integrating the powers of z using the result [18]

0, if n (J/2

f dzz2 P (z)=, 2 (2n)!I (n —J/2+ —,')
(2n —J)!I (n +J/2+ —', )

(3.22)

It is clear from (3.22) that the first nonzero term in the expansion comes from n =J/2. Factoring out this term, the
remaining series is given by the confluent hypergeometric function, and the integral in (3.21) can be written in a closed
form,

N 2J+1!!(f2fi)'i~
(3.23)

Substituting the integral (3.23) into (3.15) and the leading-order normalizations from (Al), we obtain for the transition
matrix

U' '= —(2J + 1)' "
(2g) M( —'(J + 1) J+—'' )fi (2J+1)!!(f f )'i~ (3.24)

where M is a conAuent hypergeometric function. Equa-
tion (3.24) has a similar functional dependence as the ex-
act SU(3) result in the large N limit [5]. In fact, as shown
in Appendix B, substituting the SU(3) values in (3.24)
reproduces that result. Note that so far we have ignored
any Coulomb effects. In the final calculation of cross sec-
tions, we have included Coulomb scattering using the
prescription given in Refs. [7] and [19].

Here ek are the boson effective charges. Suitable choices
for the multipole operators are discussed below for the in-
dividual cases. Finally, the mean fields for a given IBM
Hamiltonian are determined through the variational
principle as in Ref. [14],and listed in Table II for the par-
ticular cases used below.

A. sd boson model

IV. SYSTEMATICS FOR DEFORMED NUCLEI

by demanding

ektkji =
—,
' f dr r"+ a&&i(r) .

0
(4.2)

In this section, we use the results derived in Sec. IV to
discuss the cross-section systematics for medium-energy
(800 MeV) proton scattering from deformed nuclei in
both the sd and sdg models. Specifically, we have rare-
earth nuclei in mind, and use parameters typical of this
region, e.g., the target nucleus has 2 =160 and N =14
bosons, Fermi distribution (2.4) has radius R =1.1A '

and diffuseness d =0.66 fm, and the proton-nucleon for-
ward scattering amplitude (2.3) is given by
f /k; =o (r+i )/4n, cr =41 mb, r =. —0. 17. The normali-
zations of the form factors are determined from the elec-
tromagnetic multipole operators

T«)=ek gtk, i[b, bi]'" (4.1)
jl

TABLE II. The sd (top rows) and sdg (bottom rows) mean
fields used in the calculations.

X=O
y = —&7/4
y= —&7/2
q=0
q =1/2
q=1

Xp

1/&2
0.643
1/&3
0.663
0.592
0.523

1/&2
0.766

v'2/V'3
0.725
0.772
0.808

0.188
0.230
0.272

The sd IBM has been most successfully applied to the
rare-earth region with the simple Hamiltonian

H=~Q Q, Q=(s d+d s)+y(dtd )' ', (4.3)

and the E2 operator T(E2)=e2Q which is known in the
literature as the consistent Q formalism (CQF) [20].
Here, we use the CQF to describe proton scattering. The
effective charges deduced from the experimental B (E2)
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values are almost constant in the region which is taken as
e2=0. 13 e b. In Fig. 2, we show the effect of the y pa-
rameter in (4.3) on cross sections for the J =0 and 2
states of the ground band. With increasing g, cross sec-
tions are enhanced which can be interpreted as due to
larger deformations. Most of the rare-earth nuclei fall in
the middle (g= —+7/4) which is represented by the
dashed line.

We next consider the effect of the hexadecapole in-
teraction using the same E2 charge and g= —~7/4.
The hexadecapole operator in the sd model,
T(E4)=e4(d d )' ', is an effective operator and should be
used with care. Since it is seniority conserving, one
would expect to use an oscillating form factor (2.6b).
However, experimentally it is found to have a surface
peaked form factor, and therefore we choose to use the
form (2.6a) in the following. The E4(0&—+4&) matrix ele-
ments follow a sinelike curve in the rare-earth region,
changing sign in the middle of the 50—82 shell. Such a
variation follows from a microscopic mapping of the bo-
son Hamiltonian [21]. Here, we implement it phenome-
nologically by varying e4 in the range [ —0.05, +0.05]
e b which roughly covers the E4 data. Figure 3 shows
cross sections for the J =0, 2, and 4 states of the ground
band for different choices of the hexadecapole strength.
Apart from a slight shift to the right with increasing E4
strength [which is due to the different r dependence in the
E2 and E4 form factors (2.6a)], the cross sections basical-
ly retain their shapes. This means that one can simulate
the effect of the E4 operator by simply adjusting the E2
strengths. In other words, the effective E4 operator in
the sd model does not contain any new information. An
interesting side remark here is the opposite behavior of
the interference patterns for the elastic and inelastic
scattering which is constructive for the former and des-
tructive for the latter when the interactions have the
same signs (the reverse is true for different signs). Al-
though the inhuence of the hexadecapole interaction di-
minishes with decreasing spin, it is appreciable enough

even for the J=0 state which necessitates simultaneous
description of cross sections for all states.

B. sdg boson model

A pure quadrupole form for the Hamiltonian as in (4.3)
leads to a too strong coupling of g bosons at variance
with experiment. We therefore modify (4.3) by adding a
one-body g boson energy with e =1 MeU, which gives a
similar description of the low-lying levels as in the sd
model with the same Ir (

—20 keU). The quadrupole and
hexadecapole operators are replaced by

Q=( d+dt )+ (dtd)' '

+q (dtg +g td )(2)+q (g tg )(2)

T' '=(s g+g s) +h 22(d d)' '

+hz4(dtg+gtd)' '+h44(g g)' ' .

(4.4)

Due to renormalization, one needs smaller effective
charges in the sdg model. In order to obtain the same
matrix elements as in the sd model, we use in the follow-
ing e2 =0. 113. e b, and vary e4 in the range
[ —0.028, +0.028] e b . In the SU(3) limit, the quadru-
pole parameters are given by (q22, q24, q44)= (

—1.242, 1.286, —1.589). It was shown in Refs.
[14,15] that by weighting the SU(3) values with (q, l, q)
where q varies in the range [0,1], one can mimic the sd
Inodel results with a variable g; that is, the parameter q
here plays the role of y. That this similarity in static
properties is also carried to proton scattering is demon-
strated in Fig. 4 which shows cross sections for the J=0
and 2 states of the ground band for q =0 (y-unstable lim-
it), q =

—,
' (intermediate), and q =1 [SU(3) limit]: the

curves in Figs. 2 and 4 almost overlap. This result per-
sists even for scattering to higher spin states (e.g. , Fig. 7),
indicating that renormalization of g boson effects, which
is known to hold for static quadrupole properties [22],
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FIG. 2. Effect of the y parameter in the quadrupole operator on cross sections for the J=0 and 2 states of the ground band. The
solid and dotted lines correspond to the SU(3) (y= —&7/2) and O(6) (y=0) limits, and the dashed line to a midvalue (y= —&7/4).
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FIG. 3. Effect of the hexadecapole interaction on cross section for the J=0, 2, and 4 states of the ground band. The solid line is
for e4=0 {quadrupole interaction only), and the dashed and dotted lines are for e4=+0.025 e b and e4= +0.05 e b, respectively.
The direction of increasing e4 is indicated.

also extends to dynamic properties.
The choice of the E4 operator is more complicated due

to lack of data. A contending choice for deformed nuclei
is to determine it from the E2 operator through a com-
mutation relation which ensures coherence of the quadru-
pole and hexadecapole mean fields [23]. This approach
yields for h;1 in (4.4)

h 22 'q24 hi4 q44 h44 q24+ (q44 q2iq44 I—) ~q24, —

(4.5)

where q r=( jOlOI20)q &, h &=(j010I40)hjr The resu. lt-
ing values for q =—,

' together with the SU(3) (2,2) tensor
operator and its scaling with ( —,', 1, —,

'
) similar to the quad-

rupole operator are shown in Table III. The e4 values are
chosen to given the same B(E4) value. As in the sd mod-

el, we keep the same E2 charge and use q =
—,
' when in-

cluding the hexadecapole interaction. Figure 5 shows the
effect of the coherent choice of the E4 operator on cross
sections for the J=0, 2, and 4 states of the ground band
(in order to avoid cluttering, we do not show any inter-
mediate e4 values here). Comparing Figs. 3 and 5, we get
a completely different picture. The E4 operator in the
sdg model contains new information whose effects cannot
be simulated by changing the E2 strengths. Other re-
marks made for the sd model concerning the interference
pattern and the necessity of simultaneous 6ts remain
same (even reinforced). The effect of different E4 opera-
tors (Table III) on cross sections is demonstrated in Fig.
6. The cross sections are slightly shifted which indicates
that by adjusting the E4 strength one can obtain similar
results for widely differing E4 operators. Thus the struc-
ture of the E4 operator can only be resolved by measur-
ing the excitation cross sections for the side bands.
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FIG. 4. Same as in Fig. 2 but in the sdg boson model. The solid line corresponds to the SU(3) quadrupole interaction, and the dot-
ted line to the y-unstable limit. The dashed line shows an intermediate situation.
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Finally, Fig. 7 shows cross sections for the excitation of
the first 6+ state in both the sd and sdg models. In the sd
model, contrary to the sdg model (and experiment), in-
clusion of the hexadecapole interaction leads to a very
sharp drop in the cross section which suggests that the
effective E4 operator in sd model may have a very limited
usage.

V. SUMMARY AND CONCLUSIONS

The I/N expansion provides approximate analytic
solutions for general IBM Hamiltonians with arbitrary
kinds of bosons. It had previously been applied to a
variety of nuclear structure problems, and proven espe-
cially useful for the sdg model where numerical diagonali-
zation is difficult due to large basis space. In this work,
we have extended its application to medium-energy
hadron-nucleus scattering in the algebraic eikonal frame-
work, deriving a general analytic expression for the tran-

sition matrix accurate to leading order in N.
Using this result, we have made a systematic study of

proton scattering from deformed nuclei contrasting the
behavior of the sd and sdg models. The main conclusions
emerging from this study are (i) the quadrupole interac-
tion leads to almost identical cross sections in both mod-
els indicating that renormalization of the g boson is also
valid for dynamical quadrupole properties, and (ii) the
hexadecapole interaction gives very different results sug-
gesting that the effective E4 operator used in the sd mod-
el cannot describe the hexadecapole properties adequate-
ly.

We have not presented any applications to specific nu-
clei here because data exist for scattering to J=4+ states
only for the ground band (more extensive data exist for
the J=2+ states but they have already been well ana-
lyzed [7,8]). It is clear from the last section that study of
the ground band J =4 state alone is not very informative
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FIG. 6. InAuence of the different choices for the hexadecapole operator on scattering cross sections for J=2 and 4 states of the
ground band. The solid line represents the coherent hexadecapole operator, the dashed and dotted lines correspond to the SU(3) (2,2)
tensor and its scaling, respectively.
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0-11 TABLE III. Parameters e4 and h, l for different choices of the
hexadecapole operator.

10

10
E

(

10

Coherent
SV(3) (2,2)
Scaled SU(3)

e4 (eb')

0.028
0.018
0.025

0.958
1.517
0.759

h24

—0.592
—1.185
—1.185

h44

—1.942
1.281
0.641

105 JV (J)= 1 — (J+ai)
aN aN

-6 ' ' I

10
0 5 10 15 20

1 2+ (J +a2J+uz)—
2!(aN)

, (Al)

FIG. 7. Cross sections for excitation of the first 6 state in
the sd (solid lines) and the sdg (dashed lines) models with

(e4 )0) and without (e4 =0) hexadecapole interaction. y In+ lx2
I

as a i
=a + 1 —a, /a, a&

=6a i
—2, etc.

(A2)

where the coeScients a; are defined in terms of the mo-
ments of the mean fields a„[a=—ao, I =l(l + 1)]

as almost any choice for the E4 operator gives similar re-
sults (Fig. 6). Theoretical calculation of cross sections for
excitation of the side bands, along the lines presented in
this paper, is in progress. We therefore urge for experi-
mental study of higher-lying J=4+ states in deformed
nuclei via medium-energy proton scattering.

Finally, we emphasize the simplicity of the results
compared to the coupled-channel method. The main
computational eft'ort here is the numerical evaluation of
one-dimensional integrals which takes a few seconds of
CPU on a VAX computer. A similar coupled-channel
calculation would take hours. Thus the 1/N formalism
would be especially useful in a parameter search situation
where calculations had to be repeated many times.

The 1/N expansion technique has already been applied
to sub-barrier fusion [24] with matching advantages over
the coupled-channel method. Plans are also underway to
use it in electron-molecule scattering which had been
treated previously in the algebraic eikonal approach us-
ing the dynamical symmetries [25].

APPENDIX B

The coefficients f; (3.18) can be expanded in 1/N as

y f(n)/Nn
n —0

(Bl)

even m

even m

odd m

(mcI ) =
—,'l, (B2)

the sums over U and m can be done yielding

f(o) —
1 f(o) —f (o) —f(0) — ~ IX 2—

I
(B3)

Here, we derive the leading-order terms f ' in (Bl)
which are obtained from (3.18) by replacing the exponen-
tials with 1. Using the closure relation g„yummy&'~ =|)&&
and the identities obtained from the properties of the d
functions [17]

(c, ) =1, g (I/c) ) =
—,'l,

ACKNOWLEDGMENTS

S.K. would like to thank Dr. J. Ginocchio for his hos-
pitality and useful discussions at the Los Alamos Nation-
al Laboratory where part of this work was carried out.
This work is supported by the Australian Research
Council.

which proves that g in Eq. (3.21) has a vanishing leading-
order term.

In the SU(3) limit, assuming identical form factors for
the sd and dd terms, the eigenvalue equations (3.8) gives

y zo
=+2/3 e o

= +24'2oo

yoo =+2/3 y2() = I/(/3 eo = —8()
APPENDIX A

The integral in Eq. (3.3) is basic to the 1/N expansion
technique, and appears in the evaluation of all matrix ele-
ments. It is given in the form of a double expansion in
1/N and J=J(J =1) [14,15]

y,', =1, e', =-,'eo,

+22 e2 0
1 1 & 1

The second derivatives in (3.18) become

(B4)
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fo=exp(ieo), f&=2exp(ieI) jfo, f2=f3=2 . (B5)

Introducing g = —i &2NQ2o&& as in [5],g in (3.21) becomes
g = —3g l2 leading order in N. Finally, substituting
these values into (3.24), we obtain

Xe 'M( —,'(J+1),J+—,'; ——'g),
which agrees with Eq. (9.6a) of Ref. [5].
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