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Separable expansions of the NN t matrix via exact half-ofF-the-energy-shell methods
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Recently a method was proposed by which one can obtain rank-1 (for uncoupled channels) and
rank-2 (for coupled channels) energy-dependent separable t-matrix representations which are e~act
on and half ofF of the energy shell. Fully ofF shell, this representation, though accurate at low energies,
is flawed. For uncoupled channels, if the phase shift passes through zero, the representation has a
pathology. Here we investigate two methods which overcome this; one due to Haberzettl which
we extend to coupled channels, and the second which is based upon selective combination of the
elements of Sturmian expansions. We investigate and compare all methods of separation over a
range of energies up to 250 MeV for the So and Sq channels with the Paris interaction. Special
attention is paid to the convergence of the higher-order Haberzettl expansion and to the comparison
of the extended methods for energies around the zero-phase-shift pathology for the So channel.

PACS number(s): 21.30.+y

I. INTR, ODUCTION

Despite the fact that the three-body problem can be
solved exactly [1,2], separable forms remain essential for
solution of many-body problems [3—7]. Even so, it has
been known for many years that separable representa-
tions of the two-nucleon (NN) t matrix facilitate conve-
nient and quite accurate solutions of the Faddeev equa-
tions for bound and scattering three-nucleon problems
[8—10]. That spurred studies to find separable represen-
tations of most sophisticated, particle exchange model,
NN interactions (among which those of the Paris [11]and
Bonn [12] groups are noteworthy). One reason for such
developments was that phenomenological interactions of
the past, while parametrized to give correct on-shell NN
t matrices (and so agree with measured NN data) were
arbitrary with regard to off-energy-shell properties of the
t matrix; properties which are directly involved in three-
body problem calculations. It has long been hoped that
such dependences, along with determination of realistic
three-body forces, would permit the use of data from
three-nucleon systems to discriminate between the di-
verse postulates of the basic NN interaction. Indeed
such was the case when the Ernst-Shakin-Thaler (EST)
separable expansion procedure [13] was used [14] to de-
fine the PEST (for the Paris force) and BEST (for the
Bonn force) separable interactions [15, 16] at a low rank
(usually ( 6). But there are many techniques one can
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now apply to obtain useful separable representations (of
t matrices, for example) and an excellent review of them
is to be found in Ref. [17].

Herein we are concerned with two specific methods of
defining very low rank (( 4) separable expansions of a
realistic t matrix, and with the link between those meth-
ods. The first, a W-matrix expansion, is based upon
the formalism of Bartnik, Haberzettl, and Sandhas [18].
In that formalism, the Lippmann-Schwinger equation is
so modified that solutions can be found for both bound
and continuum cases in terms of solutions (the W ma-
trices) of nonsingular, real but inhomogeneous integral
equations. The relevant t matrix (in each angular mo-
rnentum channel) is then a rank-1 (uncoupled) or rank-
2 (coupled) separable product of (half-off-shell) W ma-
trices plus a remainder matrix [18—20]. All remainder
matrices are real and exactly zero half off of the en-
ergy shell. For low energies (( 100 MeV in the center
of mass), the separable representations of the t matrices
obtained by ignoring the remainders is reasonable [20].
Better representations, however, can be obtained by us-
ing higher-order W-matrix expansions [21] in which the
remainder matrices are iteratively expanded. We demon-
strate herein that such is the case. It was also suggested
[21] that higher-order expansions would alleviate the sin-
gularity effect that occurs when the uncoupled on-shell
t matrix is zero. That suggestion is considered herein,
along with rank-N W-matrix expansions which can be
made for coupled two-nucleon channels as well. For each
of those channels, a pathology occurs when the determi-
nant of the coupled matrix on-shell is zero.

The second method of interest, the Sturmian splitting
method (referred to hereafter as the SSM), is based upon
use of an expansion scheme involving Sturmians [22, 23].
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In this scheme, Sturmian expansions of sufficiently high
order (as to reproduce the full t matrices as accurately
as one requires) are taken. Then, by simply grouping
contributions to each separable representation into a set
having attractive character and a set having repulsive
character, it is possible to avoid any pathology so defined
above. The result is a rank-2 W-like separable interaction
for uncoupled channels (rank 4 for coupled channels). As
in the original method [18, 20, 21], this remains exact on
and half off of the energy shell while also representing the
imaginary component of the full t matrices precisely. As
we shall show, this scheme can provide good descriptions
of the fully-off-shell properties as well.

In the next section we give a brief summary of the W-
matrix method [18,20] (WM), and then present its exten-
sion to higher rank in a coupled channel formalism with
the scheme as presented by Haberzettl [21] (HM) for the
uncoupled case. Then, in Sec. III, after a brief descrip-
tion of Sturmian expansions of NN t and K matrices,
we present the SSM by which low-rank separable W-like
representations of those t matrices can be obtained. Our
results are presented and discussed in Sec. IV with em-
phasis placed upon comparing the results of (low rank)
HM calculations with those of the SSM at energies near
to zero phase (determinant) pathologies.

II. COUPLED CHANNELS, RANK-N,
W-MATRIX THEORY

W-matrix theory is an interesting approach to specify-
ing a separable expansion of NN t matrices (in each two-
body channel) in that it gives an energy-dependent repre-
sentation that is exact both on and half off of the energy
shell. The basic theory is that of Bartnik, Haberzettl,
and Sandhas [18]. It is similar to a proposition [24] given
several years ago, but differs from that scheme by be-
ing continuous across positive and negative energies. It
has also been extended to describe coupled NN chan-
nels [20], in which cases the separable forms have rank 2.
They remain exact on and half off shell.

Our interest is to find how good an approximation
these separable representations are fully off of the energy
shell. Then, there is a nonzero remainder which in all
channels is explicitly real and which can be determined,
also explicitly, from W-matrix equation solutions. For
negative energies, an example of the value of the approx-
imation is its use in evaluation of the triton binding en-

ergy. In this circumstance, the "on-shell momentum, " k
can be treated as a variational parameter. By so doing, a
number of studies [25, 26] with uncoupled potentials, and
one now with coupled interactions [27], have found excel-
lent agreement between exact three-body binding energy
calculations and those made using optimal WM separa-
ble representations. The optimal choice being with that
value of k for which the remainders to the original rank-1
(rank-2) W matrices are minimal.

At low positive energies, the approximation to the
fully-off-shell t matrices is quite good [20]. Therefore
the method gives separable interactions appropriate for
n-d scattering [25] and breakup [28] calculations. How-
ever the approximation deteriorates with increasing en-

tr, r. (p', p; E) = UL, L, (p', p)
OO

q dq

(E —q')

x U«(p', q)tir, (q, p; E). (2 2)

For positive energies, the way the singularity in Eq.
(2.2) is handled determines the boundary conditions of
the solution of the Lippmann-Schwinger equation in co-
ordinate space. If one performs a complex-plane con-
tour deformation, then Eq. (2.2) yields the standard
outgoing transition matrix (the t matrix) if the singu-
larity is passed from below (or equivalently if the pole is
slightly moved in the upper half-plane by the substitu-
tion E —+ E + ie). If the principal value of the singular
integral is considered, then the same equation yields the
stationary reactance matrix (the K matrix).

It is also possible to offset that singularity by defining a
suitably modified inhomogeneous integral equation which
is nonsingular. This equation defines the real, nonsingu-
lar W-matrix solution whose form for each NN channel
(JST) is

W«(p', p;E)

= UI.I. (p', p)
2dq (V«(p', q) —U«(p', I ))

q
+). q

l

x Wit, (q, p; E) (2.3)

ergy [20] and the method is pathological whenever the
associated (on-shell) scattering phase shift in an uncou-
pled channel vanishes. For coupled channels, a pathology
occurs whenever the determinant of the on-shell W ma-
trix is zero; a condition for which the physical observables
satisfy [29]

tan 2e
tan (bJ+1 + bJ 1) —tan (bj+i —bJ i)

1+ tan2(by+i —bg i)
(2 1)

where the label J refers to the total angular momentum,
e is the mixing coefficient, and the Stapp representation
is assumed.

But recently, Haberzettl [21] has shown how the re-
mainder matrices in the lowest rank WM approach can
in turn be expressed by successive separable expansions.
Thereby one can define a rank-N W-matrix theory. He
also proposed that expansion to higher rank will "cure"
the pathologies. How high a rank one must use in that
prescription is then critical for the utility of the R'-matrix
method. Herein we extend the HM to coupled channels.
We begin with a brief review of the basic rank-1 (rank-2
for coupled channels) WM theory [18, 20], not only to
define the relevant quantities but also because we have
found it convenient to vary the definition of the basic W
matrix.

Two-nucleon t matrices are solutions of coupled chan-
nel Lippmann-Schwinger equations, viz. , for each angular
momentum quantum number set (JST)
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differing from the previous specification [18,20] wherein
momentum scaled forms of the interaction were used.
Here, k(= ~E) is the on-shell momentum for positive
energies (assuming +, ——1) and, as noted previously, for
negative energies k can be taken as a variational param-
eter against which W-matrix equations can be solved to
minimize the remainder terms to a separable expansion
of the t matrices.

For uncoupled channels (L = L') these are scalar equa-
tions while for coupled channels all entities are compo-
nents of 2x2 matrices. Whichever, straightforward nu-
merical solutions are feasible for the W-matrix equations
because the potential terms regularize the pole in the
propagator.

Half off the energy shell, the solutions of Eqs. (2.2)
and (2.3) are related by

Az, z, (E) = ) bz, )(E)6)(E)bz, )(E),
l

so that

(2.11)

tzzi(p', p; E) = ) tz&(p', k; E)A&(E)&Lif(p) k) E),

This real remainder matrix vanishes identically if either
p or p' equals the on-shell momentum value (k) where at
half-off shell we have an exact separable representation
of the t matrices, t~, given by Eqs. (2.8) and (2.9). Note
that Eq. (2.8) yields equivalently the separable represen-
tation of either the standard t matrix or the K matrix,
according to whether we interpret F~i-(E) in Eq. ( 2.9)
as the complete Jost matrix or just its real part.

It is also worth noting that, although Eq. (2.8) ap-
pears to be rank 4, it can be simplified into rank 2 via
diagonalization of 6, redefining it in Eq. (2.9) as

tzz, (p', k;E) = ) W )z(p', k;E) {F (E)j,z, ,

where

F (E) = b' — W (q, k;E)
q2

(2.4)

(2.5)

where, with b,~(E) a diagonal 2x2 matrix,

i;z,z, (p', k; E) = ) Wz, )(p', k; E)b(z, (E).

(2.12)

(2.13)

and wherein the brackets ( ) and the bold face nota-
tion serve to remind one that, for coupled channels, the
inverses are of 2 x 2 matrices.

Since in Eq. ( 2.4) tz, z, (p', k; E) represents the stan-
dard i; matrix, the singular integral in Eq. (2.5) has to
be handled by the corresponding contour deformation
method. In such a case, the matrix Ejl,.(E) is the Jost ma
trix of the associated two-body problem. If in Eq. (2.4)
we consider the reactance matrix Kz,z (p', k; E), then the
principal value of the singular integral has to be consid-
ered in Eq. (2.5), and the matrix Ej~ (E) will represent
only the rea/ part of the associated Jost matrix, namely

Kz, z, (p, k; E) = ) Wz, )(p, k; E)Re[{F (E)), ,].

(2.6)

Fully off the energy shell, the t matrices may be rep-
resented in terms of these W-matrix solutions by

If one retains only the first term on the right-hand side
of Eq. (2.7) and neglects the remainder Xzz„a separable
representation of rank 1 for uncoupled channels and of
rank 2 for the coupled channels is obtained, both having
the nice feature of being exact on and half off the energy
shell. Fully off shell the real quantity Xz z, is in fact the
corresponding absolute error.

In the following we will make use of the interesting
property that the remainder Xz(zl, (p', p; E) may be ex-
pressed in the same form (2.10) whether in terms of the
W, t, and K solutions. Therefore besides Eq. (2.10),
we can also write two other relations for the same Xzz„
namely

X..(p', »;E) = ~- (p', p;E)(o)

—) tz,)(p', k; E)
ll'

t«(p', p; E) = tzz, (p', p; E) + Xz z, (p, p) E),
where the first term has the separable form

(2.7) x {t (k, k; E)))), g) z, (k, p; E),
(2.14)

X.'. (p', »;E) = K«(p', p;E)(o)

—) Kz)(p', k; E)

x {K (k, k;E) jii, Ki z (k, p;E).
(2.15)

Equation (2.14) can be easily obtained by noting that
Xz z, ——tz, z; —

Czz „and by using Eq. (2.4) in Eq. (2.8).(0} (s}
One can verify the equivalence between Eqs. (2.14) and
(2.15) by the use of the Heitler relation

&z,z: (p', p; E) = Kz, z, (S ', p; E)
i k—) Kz) (p', k; E)t)—z (k, p; E).

8z,z,.(p', p; E) = ) Wz~(»i', k; E)Ag (E)Wz, ~~ (p, k; E),
(2 8)

with

6)) (E) = ) {W (k, k;E))))„{F (E))),,„, (2 9)

while the second term is the nonseparable remainder de-
fined by

Xii, (p', p; E) = W«(p', p; E)(0}

—) Wzi(p', k; E)
Ll'

& {W-'(k, k; E))„,W&.&.(k, p; E).
(2.10) (2.16)
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Starting from the separable representation of the t ma-
trix ts, one may also determine the corresponding poten-
tial that has ts as an exact solution of the I ippmann-
Schwinger equation. The resulting potential has a sep-
arable (rank 2 in the coupled-channel case) and energy-
dependent form. It has the form

V~~~, (p', p; E) = ) Wr, t (p', k; E)A(i. (E)WL, g (p, k; E),
Lll

(2.17)

where

(~-'(E))„,= (~-'(E))„,

+) 2 WiL(q, k;E)
q2

x W(L, ~ (q, k j E).

Half-off the energy shell the separable expansion of the
t matrix is exact and reduces to Eq. (2.4). Fully off of
the energy shell, however, it is an approximation that
varies in quality with energy. Indeed, in proximity of any
energy where the quantity WL, I,(k, k; E) [or equivalently
KI,L, (k, k; E)] passes through zero, the separable repre-
sentation acquires a pathology. For uncoupled channels,
this simply coincides with the energy at which the phase
shift in the relevant NN channel is zero. In coupled
channels, such a pathology occurs when the determinant
of WI, L, (k, k; E) [KI,L, ~ (k, k; E)] passes through zero, and
Eq. (2.1) specifies the appropriate circumstance in terms
of the phase shifts.

For uncoupled channels, Haberzettl [21] has extended
the WM to higher rank. Starting with the basic W-
matrix method, he succeeded in expanding the remain-
der matrix as a separable term plus a new remainder.
The components of that separable term can be defined
by a recursion formula on the original W matrices and
the process is iterative. Most important, as stressed by
Haberzettl [21], the expansion method conserves the real-
ity of the successive remainder matrices and ensures that
they all vanish identically half off of the energy shell on
an order by order basis. Furthermore, the representation

x Wi~, (q, p; E). (2.20)

Their use in Eq. (2.5) gives first order Jost functions

F&&,(E), in terms of which the t matrices are specified.
The procedure generalizes to any rank (i) with separa-

tion achieved if we can specify X'('& in terms of X('
We have found that by extending the HM prescription
[21] to coupled channels,

XII, (p, p;E) = t~gI (p ~pj E) + Xrl~(p tpj E)(Ol 6 . s(il (&)

(2.21)

where t ( & is of separable form. Thus we define it as

t~~, (p, p; E) = ) Dr, (p, k; E)7)i, (E)D~, (p, k) E),

where
(2.22)

allows avoidance of a pathology (at one order below) since
[21] "the potentially dangerous denominator has been
modified. " The procedure, in coupled channels form, is
to define the (now rank 2) potentials, W matrices, and
separable representations of the potential and t matrices
as the zeroth order quantities Vzz, (p', p), Wz~z~, (p', p; E),
Vzz, (p, p; E), and tI&, (p, p; E), respectively. Once thes(o), s(o)

quantity VL L, (p, p; E) is determined via Eq. (2.17), the
s(o)

first order potential is defined to be the difFerence be-
tween the original input interaction, Vzz, (p', p), and the
zeroth order separable interaction

ViL, (p', p; E) = VI,L,, (p', p) —Vr, L,, (p', p; E). (2.19)
When this first order potential is used as input to the
original W-matrix equation Eq. (2.3), first order W' ma-
trices result as the solutions of

WI r,, (p', p; E) = Vr, L,, (p', pj E)(1) I (1) /

OO 2

D,",', (p k E) = ) W'"(p' k E) W('l-'(k k E) —W" (p' k E) m('&-'(k k E)lLI ILI
(2.23)

and

Tii, =) 6r, &

—(d (E)j Wip (L, ):;E)(F (E)) (2.24)

where

d~~ (E) = 6gg —) Wg (k, k E) (F~ ~ '(E)) F,'„(E)(W{'~ '(6, L E)
Ell lll Ltl tll LI (2.25)

With the prescriptions of Eqs. (2.23) and (2.24), we have not reinserted a pathological condition with the inverse
of the zeroth order on-shell W matrix, as the contribution then is offset by a term in the lower-rank contribution to
the t matrix. But there is now the possibility of a pathology if the Qrst order on-shell R' matrix passes through zero.
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In the sum then, the rank-N (2N for coupled channels) separable expansions of the t matrices are given by

tL, r, '(p ~ p~ E) —) ~L t (p ~ k~ E)ziti (E)WI i~r (p~ k~ E)
Lt,

'

N —1

+ ) ) DL i (p k' E)T~lp (E)DL g~p (p~ k' E) + Xl I (p p' E)
i=1 jV

(2.26)

where again, the summations can be simplified if we di-
agonalize E and w.

Clearly all first order quantities are now of rank 2 for
uncoupled and rank 4 for coupled channels and they are
defined ance the zeroth order matrices are known.

The rank-N separable t matrix is then such that the
real rank-N remainder is

$1„,(p, E), we can define a set of functions

«,.(p'E) =).
t

q'dqV«(»', q)4i,.(q; E), (3.3)

which allow the following energy-dependent expansion of
the interaction

x&",', (p', p; z) = t„(p',p;z) —t,",", &(p', p; z), (2.27) VI.I. (p', ») = —).Xr„.(p', E) E XI:,.(p E).
i», E

and it is convenient to specify a correction factor by

IXI,I, (p ~p;E)I(N)

I«'(p', p; E) I

III. STURMIAN SPLITTING
IN THE W-MATRIX EXPANSION

(2.28)

Solutions of Eq. (3.1) for positive energy are compli-
cated by virtue of the singularity in the propagator and
it is convenient to transform Eq. (3.1) into a generalized
eigenvalue problem [30). By using a damping term to Eq.
(3.1) so that we have

q'dq&l. t (p, q)A,.(q; E)
Sturmians, or equivalently Weinberg states [31],are so-

lutions of a Schrodinger-like equation in which the energy
is a continuous parameter in the range —oo to +oo, and
the rale of spectral variable is assumed by the strength
of the potential. For the NN system, the Sturmians of
interest are solutions for each JST channel of

v«(p, q)4, , (q; z)

where

~«(p, p;E) =)
l

q'dq Vu(p q)A, .(q E) (3.5)

oo 2d

(E . ,)
V«(», q)ViL, (q»')E+ ie —q2

(3.6)
= ~.(z)4...(p; E) (3 1)

q dq q"~q'4L„. (q E)

In coordinate space these functions have bound-state-like
boundary conditions for E ( 0, while for positive ener-
gies these functions are unnormalizable scattering states.
For scattering energies, Sturmians usually (but not neces-
sarily) have outgoing boundary conditions. If this is the
case, in momentum space the singularity in Pl, , (p, E)
[see Eq. ( 3.1)] has to be eventually integrated over with
the E + ie prescription.

With the label 8 denoting a specific element of the
Sturmian expansion, these states form an orthogonal set
in the sense that

the singularity problem can be overcome before the Stur-
mian states are found.

It may also be convenient to use Eq. (3.5) to calculate
Sturmians if one wants boundary conditions that difFer
from the usual outgoing type. Indeed we have obtained
stationary type Sturrnians by retaining only the principal
value integral in the expression Eq. (3.6). With normal-
ization as given by Eq. (3.2), these principal value Stur-
mians [32] are then real and relevant to the specification
of the A matrices that we use in the Heitler equation,
Eq. (2.16), to give the complete set of t matrices.

To distinguish the stationary Sturmians from the out-
going ones, we specify them with a superscript (P). Then
the K matrices are

xVI, I. (q, q')Pl;, (q';E) = q, (E)6„, (3.2)— '

where the above equations specify also the normalization
that is assumed throughout the paper.

A particularly important result from the Sturmian
expansion theory is that, starting from the states

~& &(E)[1-~.' '(z)]

xXI, , (p; E)(&) (3 7)

eKecting a separable expansion in momentum space.
In practice no more than 20 uncoupled and 40 coupled

eigenvalues have to be considered in order to obtain the
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.?,."""' .!"(E)[1—.!"(E)]

xyL, , (P; E)(&) (3 9)

expansion of the K matrices as specified by Eq. (3.7).
It is now possible to group these Sturmian expansions

in such a way that the representation, which remains
exact half aff the energy shell, avoids the fully off-shell
singular behavior of the original W-matrix method aris-
ing under the condition of Eq. (2.1) (or equivalently the
6 = 0' condition in the uncoupled channels). That sin-
gularity condition Eq. (2.1) corresponds to a zero of the
determinant of the on-shell K matrix KLL (k, k; E) and,
by virtue of Eq. (2.15), the generalized remainder ac-
quires an off-shell pathology. To avoid this, we start with
the representation given by Eq. (3.7) and split the exact
K matrix as

KLL (p' p E) = KLL (&' » E) + KLL (p' » E)
(3 8)

The matrix K+ is defined as

KLL~r(p ~ p)

within the subspace

s e (+) if r/( )(E)[1—r/( (E)] ) 0. (3.10)

The matrix K is then represented in a similar man-
ner, containing the remaining Sturmian elements, s 6
(—) if r/(P)(E) [1 —r/(P)(E)] & 0. These component K
matrices, K+ and K, are the exact reactance matrix
solutions with the potentials V+ and U = (V —V+),
wltll

(~)
VLL, (p, p;E) = —? &L, (p; ) (p) )(L, , (p; ),

„(~} n (E)

(3.11)

and the additivity of the two K matrices is a special case
of the Gell-Mann —Goldberger two potential formula [30].

We may now apply the WM separately to both the
terms K+ and K, thereby obtaining a separable repre-
sentation for each term K(s)+ and K(s) and two asso-
ciated remainders Ã(o)+ and Ã(o), where

XPi, (p', pE) = Ki+i(p', pE) —) JCi+i(p', k;Z) (K+ (kkE)) Ed+i (kpZ),
ll'

(3.12)

and similarly for X(o)
Now det(K+) may be written as

(&) (&) (&) (&)
+ + (p) ( ) Xo' Xg~ X2~ Xp~

'{ / g Oi j (P) (P) (1 )(1 )/i /j /i 7i

(&) (&) (&) (&) 2
[Xo, Xz, -Xz, Xo, ]

(P) (P)(1 (P))(1 (P))'e(+} r/' 7/' 7J' r/'

(s.is)

where )(L(,)[—= )(Li)(k, E)] is the on-shell form factor.
Since both summation indices in Eq. (3.13) span the
subspace (+), and the stationary states in the numera-
tor are all normalized as real functions, all the elements
in the summation are positive. This is always true if the
stationary Sturmian eigenvalues are all real. For pos-
itive energy however, complex conjugated pairs (CCP)
may occur; bringing into question the use of the method.
But we find that if such CCP's are coupled correctly,
their summation in determining the reactance matrices
may be always recast into a form which involves purely
real quantities, since all the imaginary components cancel
[33].

Further since the elements (of K+) are all positive, the
determinant is non-null, unless all the elements of the
summation are individually zero. The same reasoning
applies with det(K ). If we assume at least three states
in both subspaces (otherwise K+, or K, or both, are

already of rank 2 or less and this SSM is inappropriate),
a zero in the determinants occur only if the ratios

(~)
2'5

(~)&
~oi

(S.i4)

This representation, which is exact on and half off the

are independent with respect to i belonging to a specific
subset ((+) or (—)). Although, in principle, we cannot
exclude this extreme situation, realistic NN interactions
have a local component and, therefore, the number of
Sturmians is infinite. Therefore, if we use a suitable large
number of Sturmians as a basis set, the problem of the
independence of R, may be resolved.

Thus, we may use the Sturmian splitting method to
separate the K matrix into two pieces K+ and K, both
of which are amenable to a W-matrix representation.
The ensuing t matrix is free of any pathology arising
fully ofF shell when det(K) vanishes. Finally, the total K
matrix can be approximated in a separable form K(s),

KLL~ (p & pi E) = KLLI (p r pi @)+ KLLI (p ) pi E))(S) p (S)+ (S)

(3.15)

with a global error given by

+LL'(p ) pi E) = XLL' (p ) pi E) + ~LL' (p I pi E)(o) / . (o)+ (o)-

(s.i6)
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energy shell, is specified when K~s&+ is obtained through
the type of representation given by Eq. (2.12). But these
must refer to potentials, V+, defined via Eq. (3.11).
Each partial reactance matrix, K~~~+, may also be recast
in the form

K~~~~, (p', p;E) =) K~, (p', k;E)(K~ (k, k;E))
Ll'

xKi, ~, (k) p; E), (3.17)

which exhibits the regularity of the representation since
K&z„on shell, are always invertible even if their sum,
KL,L, , is not. Finally, from the separable approxima-
tion for the K matrix, one can obtain (via the Heitler
equation) a representation of same rank for the t ma-
trix. Also, because of the half-ofF-shell exactness of the
approximation, Eq. (3.16) also represents the error with
this separable representation of the t matrix.

This Sturmian split representation has all the advan-
tages of the original WM scheme. It gives an exact rep-
resentation for both the K and t matrices half ofF of the
energy shell, with the imaginary component of the t ma-
trix being exact also fully ofF shell. With respect to the
original WM scheme, the Sturmian split W matrix rep-
resentation avoids pathologies that exist in the original
WM representation.

IV. RESULTS
To investigate the accuracy of the HM, SSM, and WM

separable representations of t matrices, we have calcu-
lated the correction factors for each. Those factors are
displayed as contour plots, with the contour lines giving
differences between exact and a given separable result of
5%, 10'%%uo, 15%, and 25%%uo. We use the Paris interaction
[ll] in the Lippmann-Schwinger equations to generate
the exact t matrices for each method.

The correction factors CL,I, for the singlet Se channel
are displayed in Figs. 1—3. The on-shell point is given by
the dots in each panel. Clearly, in all cases, the correc-
tion factor is zero half off shell. Those correction factors
obtained using the original, rank-1 WM [18] have been
displayed previously (Fig. 2 of Ref. [20]) while those ob-
tained with the rank-2 HM formalism [21] at six energies
are shown here as Fig. l. It is evident from Ref. [20]
that the original WM gives a very good description of
the exact t matrices for energies up to 100 MeV. Also
comparison with the corresponding results for E ( 100
MeV in Fig. 1, show that generally they are better than
the factors obtained using the rank-2 HM. This is due to
the occurrence of a new pathology within the So chan-
nel at first order (rank 2). At 9 MeV, the on-shell rank-
2 W matrices [Wz~z)(k, k; E)] pass through zero for the
Paris interaction, so creating a new pathology. At higher
rank, this new pathology disappears. It is found that
this rank-2 pathology is interaction dependent, occurring
also for the Bonn@ [12] but not for the Reid interaction
[29]. Therefore since one cannot exclude the possible oc-
currence of new pathologies when dealing with realistic
nucleon-nucleon potentials, the method proposed in Ref.
[21] (HM) seems to have some serious limitations.

1.0 1.5

0.5— 1.0

1.0

E

0.5

1.5

'].0

1.0 1.5—

0.5 1.0—

0.5 1.0

p(fm j

1.0 1.5

FIG. 1. Contour plots of the correction factor to the rank-
2 R'-matrix separable approximation of Haberzettl for the
(Paris interaction) Se t matrices at a variety of lab energies.
The contours shown are 5'%%uo, 10%, 15%, and 25%.

The So phase shift passes through zero at an en-
ergy of about 232 MeV, and consequently the ofF-shell
description given by the original WM scheme becomes
quite inadequate [30]. Around this energy, the modified
HM avoids the zero-phase pathology, and so improves the
fully-ofF-shell description of the t matrices.

Although we are mainly interested in loto-rank sepa-
rable approximations, nevertheless we studied for com-
pleteness the HM behavior at higher orders. The results
displayed in Fig. 2 were obtained for the So channel at
200 MeV. From this it is evident that the HM separa-
ble approximation to the exact t matrix improves with
rank. However, the improvements obtained going from
zeroth to second order (namely, from rank 1 to rank 3)
are not impressive, but, by increasing one order further,
the result improves markedly. Indeed, the rank-4 result
gives an excellent description of the exact t matrix at 200
MeV, while the representations with rank higher than 6
are practically indistinguishable from the exact t matri-
ces.

In Fig. 3, we show the results obtained using the SSM
(rank 2) for the iSe channel. Comparisons with the re-
sults given in Fig. 1 and those of Ref. [20] again show
that, for energies below 100 MeV, the original WM still
gives the best description, although the results of the
SSM are only slightly inferior. At energies above 100
MeV the SSM has better accuracy than the other pre-
scriptions. At 150 MeV, it should be noted, the large
percentage error for momenta above the on-shell value
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S, 200 MeV
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FIG. 2. Contour plots of the correction factor to the sep-
arable approximation for the Haberzettl method at ranks 1,
2, 3, 4, 6, and 10 for the (Paris interaction) Sp t matrices at
a lab energy of 200 MeV.

FIG. 4. Same as Fig. 1 but for the rank-4 W-matrix sep-
arable approximation of Haberzettl for the Sq channel.3
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FIG. 3. Same as Fig. 1 but for the SSM separable approx-
imation of rank 2.

FIG. 5. Same as Fig. 4 but for the SSM separable approx-
imation of rank 4.
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1.5

1.0

it is seen that the original WM (rank 2) gives a better de-
scription off shell than does the corresponding rank-4 HM
result at 200 MeV. However, by going to the next order
(rank 6), an improvement in the comparison is readily
seen. An increase of a further order (to rank 8) gives
an ofF-shell description of the 200 MeV t matrix which is
virtually exact over the momentum range considered.

V. CONCLUSION

].5

1.0

1.5 1.0 1.5

FIG. 6. Contour plots of the correction factor to the sep-
arable approximation for the Haberzettl method at ranks 2,
4, 6, and 8 for the (Paris interaction) Si t matrices at a lab
energy of 200 MeV.

is really an anomaly with the correction factors. In this
region, the full ofF-shell t matrices become small ( approx-
imately 1% of the on-shell results), with the real compo-
nent of the t matrices passing through zero. Therefore
the denominator in Eq. (2.28) is small in this region.
Thus, even though the difFerences between the exact and
separable representation values are very small, any such
difFerence is magnified greatly by the ratio. This is not
unlike the problem encountered by others [34] when com-
paring K and t matrices and using the Kowalski —Noyes f
ratios [24, 35]. The results between 200 and 250 MeV re-
veal that the SSM gives a much better approximation to
the iSO t matrices than the method of Ref. [21] (Fig. 1).

The Si WM (Fig. 5, Ref. [20]) and HM (Fig. 4, this
work) results are compared with the equivalent, rank-4,
SSM calculations shown in Fig. 5. The result of the com-
parison of the three methods in the sSi channel is more
complex than those of the iSe channel. In the range
1:100MeV both HM and SSM improve the WM results.
Around 1 MeV, HM and SSM are similar, at 50 MeV the
SSM has the most observable improvement, and at 100
MeV, the HM (SSM) is more accurate for lower (higher)
momenta. In the range 150:250 MeV the WM and HM
are similar (the WM being slightly better), while the
SSM has high accuracy in a larger region centered on the
on-shell point, but the SSM accuracy deteriorates much
faster going far from the on-shell point, especially for low
momenta.

For completeness, we show in Fig. 6 the higher-order
HM properties for the triplet channel. Here, at 200 MeV,

The original WM has been shown, both here and pre-
viously [20], to give an extremely good approximation to
the fully-ofF-shell NN t matrices and as rank-1 (uncou-
pled) and rank-2 (coupled) separable forms at low ener-
gies, while being exact on and half off of the energy shell.
But the method is inherently flawed, in that if the phase
(or on-shell determinant) pass through zero, a pathology
exists.

Herein, we considered two methods, both of which
are able to alleviate the problems of such pathologies.
The first is the HM prescription which we have extended
to coupled channels. Although it is impossible in this
scheme to eliminate completely all the sources of patholo-
gies, since a singularity occurs at any rank N when
W( i)(k, k; E) = 0 [for coupled channels, at any rank
2N when detW'(+ i)(k, k; E) = 0], our numerical study
within a realistic NN force shows that with increasing
rank (up to 8 for the S states) this method gives an ex-
cellent description of the exact fully-off-shell results in
both coupled and uncoupled channels. If any new off-
shell singularity arises at a given rank, by increasing the
rank by 1 the problem may be possibly overcome. But
of concern is the onset of new pathologies of this method
which are interaction dependent.

The second method the SSM was based upon selective
summations of components of a Sturmian expansion of
the reactance matrices. The selection was made so that
the attractive Sturmians (positive components in the sep-
arable expansion) and the repulsive Sturmians (negative
components in the separable expansion) separate. The
original W-matrix procedure was then applied indepen-
dently to each term. The advantage of the method with
respect to the previous ones is that no pathology occurs as
these two separated t matrices are always nonzero on the
energy shell, even when their summations produce null
on-shell t matrices. This scheme leads to rank-2 (rank-4)
separable approximation of the t matrices for uncoupled
(coupled) channels, which nevertheless remain e~act on
and half off of the energy shell. The method describes
remarkably well the fully-oE-shell properties of the t ma-
trices up to quite high energies (at least 250) MeV, while
keeping the rank of the separation as low as possible in
order to be used in three- or more-body calculations.
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