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Towards model independent single-particle wave functions

M. Casas, '* A. Plastino, and A. Puente
Physics Department, National University La Plata, CC67, 1900 La Plata, Argentina

Departament de Ezsica, Universitat de les Ilies Balears, 07072 Palma de Mallorca, Spain
(Received 11 January 1993)

We report some results for light nuclei that strongly suggest that it is possible to construct good
nuclear single-particle wave functions on the basis of recently available, shell related experimental
information, by recourse to an information theory based inference approach.

PACS number(s): 21.60.Jz, 03.65.—w, 89.70.+c

The density dependent Hartree-Fock (DDHF) ap-
proach (using zero-range interactions) provides us with
a rather accurate description of the ground state (g.s.)
properties of both spherical and deformed nuclei [1,2].

Although several zero-range interactions are available,
they yield rather similar results for the density [1] and the
momentum distribution [3] of the g.s. In what respects
to single-particle (sp) energies one may find significant
difrerences, however, according to the value of the ef-
fective mass that characterizes the particular interaction
one employs. This has thus far caused no undue worries,
as the only experimental information available until re-
cently, was that referring to a few sp energies and radii
around the Fermi surface [4].

Using (e, e'p) reactions it is possible to investigate
properties of valence orbits and gain reliable information
about deeper-lying orbits. By recourse to this technique,
the experimental values corresponding to the expectation
value of r, for each proton shell of some spherical nuclei,
have become recently available [5]. In some cases these
(r2) values are adjusted by selecting a different Saxon-
Woods well for each shell, a practical and convenient
procedure [6]. It may be desirable, however, to have a
unified theoretical description that encompasses all shells
within the framework of a single theoretical construction.
The aim of the present work is to present some prelimi-
nary results of an inference approach that may help one
to achieve this goal.

To this end, we will try to infer single particle wave
functions from those experimental (r ) values, by re-
course to a suitably modified (in order to describe pure
states) version of the well-known maximum entropy prin-
ciple (MEP) that has been recently advanced [7]. The
method has been shown to provide a reasonable descrip-
tion of the properties of the g.s. (or of the excited states)
of a quantum system on the basis of the knowledge of a
few relevant expectation values. It has been successfully
applied to exactly solvable models of the Lipkin type and
to simple one-dimensional problems. One can use it to
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infer the radial part of the pertinent wave function (wf)
either in the r or in the k space.

For closed-shell nuclei the sp levels are described by
wf of the form P i~ (r) = r u~i(r) Ji,~~(O, cr) with the
constraints lim u(r) = 0 and u(0) = 0. The idea of the

present effort is that of inferring the radial wf u(r) on the
basis of the knowledge of appropriate expectation values
of suitable operators. For the sp levels with n = 1 ac-
cording to MEP prescriptions, we can write the pertinent
(to be inferred) wf in the fashion

N

u„i(r)= r'+'exp ——( A, + ) A, G;(r) ) .
i=1

(G;(r)) = g, (2)

that represent our a priori knowledge (see Ref. [7] for
a detailed discussion), that is, one assumes that experi-

TABLE I. Overlaps between HF and inferred wave func-
tions corresponding to all proton levels of He, 0, and Ca
using Gi(r) = r and Gq(r) = r

4He
16O

40C

Shell

1S~)g
1SI)2
1P3/2
1P~yg

1Sgf 2

1P3(2
1P~f 2

1D~(2
2Sg(2
1D3

r space

0.9991
0.9998
0.9993
0.9991
0.9998
0.9997
0.9999
0.9995
0.9917
0.9993

p space

0.9991
0.9997
0.9989
0.9996
0.9986
0.9987
0.9994
0.9981
0.9887
0.9995

The (I + 1) factor incorporates, according to Bayesian
strictures [8], our knowledge concerning the behavior of
the radial wf near the origin. The exponential form is
the canonical MEP one of Jaynes [9], suitably modified
to accommodate the description of quantum (pure) states
as described in [7]. The A's are Lagrange multipliers that
guarantee both normalization and the fulfillment of the
N constraints
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TABLE II. Comparison between HF and inferred values

(r ) and (k ) for each single particle proton level of He, 0
and Ca using Gi(r) = r and G2(r) = r .
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He
160

40C

Shell

1Sg/2
1Sg/g
1PS/2
1'/g
1Si/2
1P3/2
1'/2
1D5/2
2Si/~
1D3/2

Quantal
(r')

21.65
33.69
79.66
97.44
67.30
131.62
126.81
215.70
293.47
235.18

Inferred
(r')

20.82
33.90
78.65
95.31
67.93
132.23
126.84
214.86
284.13
232.52

Quantal
(k')

0.739
0.413
0.988
0.870
0.198
0.556
0.583
1.138
1.245
1.085

Inferred
(k )

0.720
0.409
0.986
0.866
0.197
0.558
0.586
1.140
1.247
1.091

E
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0.3
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0.0
0 3
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mental information concerning the expectation values (2)
is available.

For the sp levels with n ) 1 the expression (1) must
be multiplied by a factor r

N

u. , (.) =.'+'+" exp ——(x. + ) x, G.(.) )

and the set of functions with the factors r +, r +, r +,
is orthogonalized according to the Gramm-Schmidt

procedure. In this way, approximate values of the nodes
of the sp wf are obtained [10,11] thus allowing for the pos-
terior inference of the I agrange multipliers correspond-
ing to these sp states. If one performs the appropriate
Fourier transformation, similar recipes hold (if spherical
symmetry is assumed) in k space. This is an interesting
facet of our approach, in view of the fart that the sp mo-
mentum distribution can also be obtained by analyzing
the results of (e, e'p) experiments [5].

As this is an introductory study undertaken with a
view to test the possibilities that this MEP inference ap-
proach ofFers, we shall take the input values g; of Eq. (2)
to be those obtained in a DDHF calculation, performed
with the SIII, Skyrme-like interaction [12]. We shall work
with two operators (N = 2) and select Gz(r) = r and
G2(r) = r in r space, and a similar choice in k space.
These are, obviously, the simplest possible functions G(r)
[or G(k)].

In the present work, we have applied this MEP-based
inference approach in order to infer sp wf correspond-

FIG. 1. Comparison between HF (continuous line) and in-
ferred (dashed line) probability densities for the 1Pqi2 proton
level of 0 in r space using Gi(r) = r and Gq(r) = r

ing to all the (proton) levels of some light, doubly-closed
shell nuclei: He, 0, and Ca. As previously stated,
the corresponding input information is that of the appro-
priate expectation values (r) and (r2) ( or (k) and (k ))
evaluated with HF Slater determinants obtained with the
SIII interaction [12]. The overlaps between our inferred
wf and the pertinent HF ones are displayed in Table I.
Our results can be regarded as fairly good ones, as these
overlaps are all of the order of a 99%.

Table II lists our predicted values for (r ) and (k ),
which are compared to the pertinent HF figures. The
agreement between the corresponding figures is rather
good, the discrepancies being of the order of 3% at the
most. Some typical quantum probability densities are
depicted in Figs. 1—3. The corresponding MEP densities
are compared to the HF ones. At first glance, the fact is
appreciated that the agreement is also of a rather good
quality.

Making the choice Gi(r) = r and G2(r) = r the wave
function described by Eq. (3) does not guarantee the cor-
rect asymptotic behavior in r space. This behavior can
be introduced by replacing the second operator by a dif-
ferent one, namely, setting G2(r) = r exp( —nr ). To
show this we display in Table III the predicted values of
(r2), (r ), and (r ) with n = 0.04 and the HF results
for i O. The discrepancies are lower than 0.1%, 2%, and
10%, respectively.

Our main conclusion is that experimental measure-

TABLE III. Comparison between HF and inferred values (r ), (r ), and (r ) for each sin-
gle-particle proton level of 0 using Gi(v ) = r and G2(r) = r exp( —nr ) (n = 0.04).

Shell

1Sg/2
1P3/2
1P] /g

Quantal
(r')

4.553
7.565
8.164

Inferred
(r')

4.552
7.561
8.155

Quautal
(r')

33.69
79.66
97.44

Inferred
(r')

33.84
78.66
95.37

Quantal
(r')

345.31
1120.0
1640.7

Inferred
(r )

349.68
1051.6
1483.9
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FIG. 2. Same as Fig. 1 in A: space. FIG. 3. Same as Fig. 1 for the 2Sqy2 proton level of Ca
in r space.

ments of expectation values of a few selected nuclear
observables for each shell may become of great signi6-
cance, as these experimental values would allow for the
possibility of inferring sp wave functions of good qual-
ity, independent in principle, of any theoretical many-
body interaction, assuming, of course, that one employs
a model-independent experimental input. If the experi-
mental information about the deepest states is not of a
good quality or not available in some cases, the results
obtained using the experimental values of states around

the Fermi sea can be used to choose the best mean field
and one can apply this theoretical result to the deeper-
lying orbits.
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