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6-excited nuclear matter in the derivative scalar coupling model
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The equation of state of the baryonic matter containing nucleons and delta particles using the deriva-
tive scalar coupling model is studied. Comparison of the results with those obtained in a nonlinear o.-~
model yields the same equilibrium value of the e6'ective mass and the compressibility constant.

PACS number(s): 21.65.+f

I. INTRODUCTION

The relativistic mean-field study of the hot and dense
baryonic matter using the Walecka model has received
wide attention in recent years due to its remarkable suc-
cess in predicting many properties of nuclear matter and
finite nuclei [1]. The model is simple, renormalizable,
and uses explicit mesonic degrees of freedom. Moreover,
two undesirable features of the model, viz. , large decrease
of the nuclear effective mass m *(Qo ) value at the equilib-
rium density Qo and the high value of the compressibility
constant K(Qo) can be eliminated by adding a nonlinear
cubic and quartic scalar meson interaction in the La-
grangian [2], which requires two additional parameters in
the model. Recently Zimanyi and Moszkowski (ZM)
have introduced a model of nuclear matter containing the
scalar meson, vector meson, and nucleon as in the Walec-
ka model except with a linear coupling between the scalar
meson and the nucleon [3]. The model of Zimanyi and
Moszkowski [3] yields not only the correct binding ener-
gy of —16.0 MeV at the saturation density Qo (=0.16
fm ), but also a high value of the effective nucleon mass
m *(Qo)=—0.85m& and an acceptable value for the
compressibility constant II (Qo) =225 MeV at the above
saturation density Qo. The derivative scalar coupling
model (DSC) of Zimanyi and Moszkowski has been suc-
cessfully applied to the study of multilambda matter [4]
and to the construction of the equation of state of the
neutron star [5]. The relativistic Thomas Fermi calcula-
tions of the compression properties of the finite nuclear
system show that near the saturation, the derivative sca-
lar coupling model of ZM exhibits a behavior close to
that in the standard Skyrme interaction SKM* but at
high densities the trend departs away from that in SKM'
[6]. Again, a comparative study of the nuclear properties
using the DSC model of ZM and nonlinear o.-co model of
Walecka shows that while the former model reproduces
the correct nuclear effective mass m *(Qo) and the
compressibility constant K(QO), the latter yields correct
spin-orbit splitting [7].

In this work, we report our studies of the properties of
delta-excited nuclear matter using the derivative scalar

coupling model of Zimanyi and Moszkowski [3]. Previ-
ous studies of delta-excited nuclear matter using the non-
linear o.-co model of Walecka have shown that if universal
couplings for the scalar meson with two baryons (N, b )

are chosen, the nuclear effective mass m'(Q) becomes
negative at high densities. However, when scalar meson-
baryon couplings are chosen in the ratio of SU(6) symme-
try breaking of the baryon masses, the nuclear effective
mass m'(Q) becomes positive at all densities. Also, the
matter becomes highly delta dominated at a small value
of total baryon density (p~ —=2000 MeV) in the Walecka
model under this choice of the scalar meson-baryon cou-
pling [8]. In the present work, we have shown that the
properties of 6-excited nuclear matter in the DSC model
are extremely insensitive to the above two different
choices of the scalar meson-baryon couplings. Further-
more, in order to establish a meaningful comparison we
have also shown the results of our calculations of the
baryonic matter using the nonlinear o.-co model of Walec-
ka, which yields nearly the same value of the nucleon
eff'ective mass m *(Qo ) ( —=0.85m&) and the compressibil-
ity constant E(QO) ( —=210 MeV) at saturation density, as
obtained in the DSC model. This comparative study
brings out the fact that the two nonlinear meson field
theoretical models with two different types of nonlineari-
ty, reproduce almost identical equations of state at zero
temperature at all densities of pure nuclear matter (with
no 5 present), due to nearly the same values of the
effective mass m*(Qo) and the compressibility constant
K(Qo). We mention here that the mean-field approxima-
tion used in the present calculations does not provide an
adequate description of the baryonic matter at high tem-
peratures (T= 100 MeV). H—ence, important corrections
due to the contributions from vacuum polarization effect
and nucleon correlations might have appreciable
inAuence. One should also expect that the internal struc-
tures of the nucleons and mesons, i.e., quarks and gluons,
exhibit the proper degree of freedom for discussion of the
baryonic matter at these high temperatures. However,
when 5-excited nuclear matter at high temperature is
studied, two models predict quite different behavior.

II. THEORY
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For the calculation, we consider the following La-
grangian obtained after rescaling the fermion wave func-
tions as prescribed in the work of Zimanyi and
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Moszkowski [3]: g = ( mii /mii ) (8b)

& =+~(jy„5 —m~ g—~y„co )/tv ,'—I'„—+—,'m co„co"

'b o' -'co—4-. .
3 4 (2)

The delta contribution in Eq. (1) has been added in a
self-explanatory way and we have used the baryon
effective masses

+ —,'(5„cr5~cr —m o )

+0&(iy„5" m—~ g.—~y„~"W~ .

In the case of the nonlinear Walecka model, the Lagrang-
ian is

for the Lagrangian (1) of the ZM model. p,~ and p,~ in
Eqs. (5) and (6) are the vector and the scalar densities, re-
spectively.

Now, after taking the ensemble average of the meson
fields cr and co„ in the standard way [1], the following
self-consistent equation for the determination of the di-
mensionless nucleon effective mass xN,

3

2 4 N g& m& 3xx Cs xnns (J +p)+ XNX gag
mN

X(8,+p) b(—1 —x~) —C(1—x~) =0,

mg=m~/(I+g ~o. /m~); mq =mt, /(I+g t, cr/mt, )

for the Lagrangian (1) corresponding to the work of
Zimanyi and Moszkowski and

~ )fc

mN ™N—g~No. ; m z ™z
—gonzo.

for the Lagrangian (2) corresponding to the nonlinear
Walecka model. Thus, the baryon effective masses are re-
lated as

can be obtained. The scalar densities nz and the vector
densities n (8 =N, b, ) in Eq. (9) are related to the
Fermi-distribution function nF (8+@~) at the tempera-
ture 8 and with the chemical potential pB in the follow-
ing way:

B ~B d tXB
ns =

g i 2, /~ [nF(a, p)+nt;(a, —p)], (10)
(2n) (t +xi')'

g g mN mN
m~ =m~ 1+ —1

goN my mN

for definition (3a) and

(4a)

with B=N, b,

n~= fd3t[nF(8, p) n~(t't, —p—)] .
(2m. )

g~g mN mN
m& =m& 1+ —1

ggN my mN
(4b)

for definition (3b). g ~ and g ~ in the expression for the
Lagrangian are the meson-baryon coupling s with B
standing for the nucleon and the delta. It should be not-
ed here that the spin- —,

' delta particles are treated as an
effective particle and the reservation expressed regarding
its inclusion in the original renormalizable Walecka o.-co

nuclear model due to nonrenormalizability of the spin- —,
'

field [9] does not arise in this nonrenormalizable DSC
model.

For the syrnrnetric infinite nuclear matter, the above
Lagrangian in the meson-field approximation [1] yields
the following Beld equations:

(b, —m„) Wo = — g g„~p„~,
B =N, b,

(5 m,') r =c—0— g g,~gp, ~+5 .
B =N, h,

The quantities 5 and g are defined as

In Eq. (9) we have used the dimensionless coupling con-
stants

2 2
goNmN

C, =
m S

b= B C
mNgS g N

(12)

and we also define C, =g &mg. /m to obtain the total
baryon density Q~ and the chemical potential p~ as

g njv+ g cod

g coN

p, =v+C„Q~ .

The total baryon energy density of the baryonic matter
can be calculated from xB using the relation

2
CU

E — (1 x~) + ng
2C,

+ g f (t + x)'~ d t[nF(8, p)

(13)

5=ho.o+co.o, (7a)

(7b)
III. RESULTS AND DISCUSSION

and

5=0, (8a)

for the Lagrangian (2) of the nonlinear Walecka model
Results of our calculations, shown in Figs. 1 —4, are

based on the phenomenological law of universal vector
coupling, g„&=g N. Regarding the scalar meson-baryon
couplings, different choices and their consequences have
been discussed before in detail in Ref. [8]. We have car-
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FIG. 1. Binding energy per nucleon (E/B, E/B =c./B —M)
against normalized density Qs /Qo (Qo =0.16 fm ) in the two
models at zero temperature.
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ried out calculations using two different choices: (i)

g &=g &, and (ii) g ~=ma/m&g &. The value of
the other coupling constants utilized in this work to
fit the normal nuclear matter are (i) the DSC
model —C, = 143.0, C, =46.6; (ii) the nonlinear
model� —C, = 183.683, C, =64.545, b =0.17788e —1,
C =0.396674e —1. In Fig. 1, the equation of state of or-
dinary nuclear matter at zero temperature (T=O) is
drawn using the derivative scalar coupling model and the
nonlinear cr-co model, which predicts almost identical
equations of state over a wide range of densities. It is
found that both the nonlinear models predict the same
values for the nucleon effective mass m (Qo) ( —=0.85m+ )

and the bulk modulus IC( Qo ) ( —=210 MeV) at the satura-
tion density Qo ( —=0. 16 fm ). Similarly, the nucleon
effective mass m'(Q) in the two nonlinear models is
found to be almost equal over a large region of densities.
This behavior is consistent with the earlier observation

FIG. 3. Energy density of the baryonic matter at various nor-
malized density values Qg /Qp.

[2] that the equation of state of the nuclear matter in the
relativistic mean-field theory depends chieAy upon the
equilibrium value of the effective mass m*(QO) and the
compressibility constant K(QO ) of the model.

However, m '(Q) of the delta-excited nuclear matter at
a temperature of T=100 MeV in the above two models
as drawn in Fig. 2 shows that the effective mass in the
two nonlinear models diverges widely with the increase of
the total baryon density. The two curves in Fig. 2 have
been drawn using the relation g a = ( m a /m~ )g ~ to
yield positive values of the effective mass over a large re-
gion of density. However, choosing the universal cou-
pling constant g &=g &, we have not obtained a nega-

870
upling

Alo4 el

0.7

670

E

o 470

C3

0.5

0.3
QC

ART

RT

270

70
0

I I I

2000 4000 6000
Chemi ca l potent ia l ~Me»

0.1

fx)0

Derivative Scalar
Coupling model

Nonlinear G-~ model
I I

2 x lO 4x'lp 6x&0

Total Density Q&(fry )

FICx. 2. Nucleon effective mass against total chemical poten-
tial value of the baryonic matter at a temperature of 100 MeV.

FICx. 4. Relative abundances (p~/Qs, p~/Qs) of the two
baryons (5 and W) at various densities.
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tive value of the effective mass m'(Q) in the DSC model
up to a density of 24Q&. In fact, it decreases very little
( —=0.8m~) from the vacuum value at the above density.
The two choices of the scalar meson-baryon coupling
constant yield practically the same curve for the e6'ective
mass in the DSC model, showing its insensitiveness to the
difTerent choices of coupling constants. On the other
hand, the nonlinear o.-co model yields an effective mass
m'(Q) which falls off at a faster rate, reaching about
0. 15m& at a density of 24Qo. Whenever the universal
coupling constant g z =g & is used, we obtain a negative
value of m *(Q) equal to —0.05m& at a chemical poten-
tial of 30000 MeV. The curves corresponding to the
universal scalar meson-baryon coupling are not shown in
the figure to avoid awkwardness.

It may be noted that the behavior of the 5-excited nu-
clear matter in the linear Walecka model with two
di8'erent choices of the coupling constants g & is qualita-
tively similar to that in the nonlinear o.-~ model. Only
the rate of decrease of m*(Q) with Q is much higher in
the linear Walecka model and m*(Q) becomes negative
at quite small values of the density (@~=1800 MeV)
when g a =g z is used [8].

In Fig. 3 we have drawn the equation of state of the
baryonic matter in the two models. The higher value of
the effective baryon mass m*(Q) at any Q in the DSC
model introduces an upward shift. In this case also, the
curves corresponding to g & =g & are not shown because
in the scale they are practically inseparable from those
curves in the figure.

Finally, Fig. 4 shows the relative abundances of the nu-
cleon and the delta particle in the two models. It is ob-
served that in both models, the nucleon part dominates at
smaller densities and as density increases the delta part
dominates. While the density of the transition (Q, =—0.72
fm ) from the nuclear matter is nearly equal, the rate of
decrease of the nucleon and the increase in the delta part
is much smaller in the model of Zimanyi and
Moszkowski. Again, the transition from nuclear matter
to delta matter in the present model [3] occurs at a much
larger density in comparison to the Walecka model [8]
characterized by a much sma11er nucleon e6'ective mass
at the equilibrium. Heide and Ellis [10] have obtained
similar result, which shows the inhuence of the bulk con-
stants at equilibrium on the di6'erent types of phase tran-
sitions in the baryonic matter.
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