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Quantum-deformation algebra studied as an analytical equivalent of the s, d interacting
boson model: Energy spectra
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For a complex q-deformation parameter, the analytical energy expression of SOq(6) symmetry is

shown to give all the three limiting symmetries of the U(6) group as well as all the intermediate results of
mixed symmetries; i.e., it works equivalently as the numerically solvable general Hamiltonian of the s, d

interacting boson model {IBM).Also, a symmetry triangle, equivalent to Casten s symbolic symmetry tri-

angle for the IBM, is obtained. The q-deformation parameter is found to behave as the symmetry mixing

parameter, similar to one in the IBM. Applications are made to a range of nuclei, covering all the possi-

ble cases.

PACS number(s): 21.60.Fw, 03.65.Fd

Quantum-deformation algebra (q-DA) of the one-
dimensional Lie algebra SU(2) group [1—3] as well as the
two-dimensional SU(3) group, with SU(2) as its subalge-
bra [4], have been studied recently [5,6] for looking at the
q-deformation parameter in this algebra as the dynamical
symmetry breaking (symmetry mixing) parameter in the
interacting boson model (IBM) [7]. The complex values
for the q-deformation parameter were also introduced
there [5] for the first time.

Very recently, the q-DA of the O(6) limiting symmetry
of the s, d interacting boson model was constructed by
Wang and Yang [8]. In this paper, we show that this q-
deformed Hamiltonian of the O(6) symmetry gives also

the energy spectra of the other two limiting symmetries
[U(5) and SU(3)] of the U(6) group as well as all the possi-
ble intermediate transitional situations. In other words,

we show that the Hamiltonian of SO (6) symmetry
represents the general Hamiltonian of the U(6) group of
the IBM. Also, Casten's symmetry triangle [7] [Fig. 1(a)]
is obtained for complex q deformation.

For the three subgroup chains (dynamical symmetries)
of the U(6) group,

U(5) &O(5) DO (3)&O(2), (I)

U(6)~SU(3) DO(3) DO(2), (II)
[&] ~(& p)y ~ M )

O(6) DO(5) DO(3) DO(2), (III)
[o v, a J M)

the general Hamiltonian, in terms of Casimir operators
up to quadratic terms, is [7]

H =ac+a, C,(U(6))+a2C2(U(6))+a3C2(O(6))+a4Cz(O(5))

+as C2(O(3))+a6C2{SU(3))+a7C i(U(5))+a8C z{U(5)) . (2)

This Hamiltonian, represented symbolically in Fig. 1(a),
contains the three limiting symmetries, all possible inter-
mediate situations of mixed symmetries, and can be
solved only numerically. The basis states, which diago-
nalize H in each chain, are also shown in Eq. (1).

Wang and Yang [g] have used the quantum groups
SU~(1,1) and SU (2) for q-deforming the O(6) chain [III
in (1)]. This is possible because for the s, d boson system,
the algebra of SU(1,1)SO(6) has the chain of subalge-
bras

SU'"(1, 1) SO(6) &SU"(1,1) SO(5) DO(3) DO(2),

with SU(1,1) sharing the same quantum numbers as in the
O(6) chain. Here, SU'"(l, l) and SU (1,1) are the corre-
sponding algebras generated by paired s, d and d opera-
tors, respectively, along with the total boson number X.
Equation (3) means that, instead of using the first six
terms of Eq. (2) for the q-deformed Hamiltonian of the
O(6) chain, we can write the same as [SO(3)=SU(2)]

H ' =H + AC~(SU'"(l, l))

+BC2(SU (1,1))+C~(SU (2)) . (4)
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The first three terms of Eq. (2) are all included in Ho.
The three generators of SU'"(l, l), which satisfy the

commutation relations of SU ( 1, 1), namely,
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FIG. 4. The calculated q-DA and IBM spectra compared with experimental data for "Sm. The spectra are normalized to 2+
state and for q-DA the parameters (a, b}=(0,0.25}for an overall best fit.

values of both a and b parameters, however, get extended
if the parameter r is taken to be complex (r=a +ib)

Figure 3 shows the constant-value energy ratios
EJ+/E2+ ( =Rz 2) for a pure vibrational, RJ 2 —,

' J, and a
pure rotational, R+2= —'J(J+1), spectrum in the com-
plex (a, b) plane. Each ratio is shown to have two well-
separated wings (evident in contour plots), marked by a
single prime and double prime (with U and r, respectively,
for vibrational and rotational cases). We concentrate
only on single primed wings (solid lines) since double
primed wings (dashed lines) represent the oscillating parts
of the energies. We notice that for each limit the lines
can be made to go through a point by relaxing the exact
vibrational (or rotational) limit within less than S%%uo. This
is illustrated for the case of the vibrational R4z=2. 0
line. Taking R 4 2 =2. 1, instead of 2, gives the dot-dashed
line which coincides exactly with other constant-value
lines. Also, it is important to note that the pure vibra-
tional R 4 2 =2 line never meets the other low-lying vibra-
tional states. This means that only an anharmonic vibra-
tional SU(5) limit can be realized in these calculations,
which is apparently achievable for b =0.41 and a =0 to
0.06 ( marked, line CD). On the other hand, the axially
symmetric rotational SU(3) limit is nicely realized since
here 2+, 4+, and 6+ states already meet in a point
(marked 8) and 8+ to 12+ states can be made to go
through B by varying their values slightly. Thus, the q
deformation of the O(6) symmetry in Fig. 3 gives both the
anharmonic vibrational SU(5) and axially symmetric ro-
tational SU(3) limits, which together with the unde-
formed O(6) symmetry at the origin A are shown in Fig.

1(b) at the vertices. Hence, admitting different orders of
anharmonicity in the SU(5) limit, the symmetry triangle
in this model oscillates in between the triangles ABC and
ABD. Furthermore, the sides and the area of the symme-
try triangle, i.e., the region between the vibrational and
rotational limits in Fig. 3, can also be determined by ac-
tual calculations, which give the transitions between the
limiting symmetries. We illustrate this below, in terms of
our 6tting the model to real nuclei.

We have fitted a number of nuclei whose determined
(a, b) values are shown in Fig. 1(b). Interestingly enough,
they all lie within the proposed symmetry triangle. Fig-
ure 4 illustrates the nature of the comparisons between
our work (the q-DA), the IBM [10], and the experiments
for ' Sm. Apparently, the q-DA is shown to compare
equally well with experiments.

Finally, the labeling of the q-DA symmetry triangle in
terms of generalized barycentric coordinates [11] is con-
venient and seems realistic. For a triangle with vertices I,
II, and III, one can uniquely assign to any point P(a, b)
in the plane of triangle a set of three numbers
(A,» A, ,» A,»,), satisfying v~ =QA, ,v, +QA, »v«
+QA, »,v»„with A,,+A,»+ A,»,= 1. Here, the vectors
give the positions of the corresponding points. These
coordinates have the property that if P belongs to the
side opposite to vertex I then X,=O and if P is the vertex
I then A,» =I,»& =0. Thus, the vertices are given as
(X„O,O)(O, A.», 0)(O, O, A, »~), the sides as
(At~A» 0)(0 A»~l«r)~ and (Ai~O~km) and any point P
within the triangle as (k„A,», A,»,). Any point lying in the
exterior of the triangle must have at least one negative
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value. From a geometrical viewpoint the coordinates A, ,
are proportional to the lengths of segments joining the
point P (a, b) with their projections on the lines opposite
to i, and can be easily related to the (a, b) coordinates of P
and the three vertices. Thus, the state vector of general
Hamiltonian (2) is

+U(s) V 4+U(5)++~II+SU(3)+V ~III+o(6) ~

which shows that the X's are mixing coefficients, similar
to ones used in the IBM [7].

Concluding, we have studied the q deformation of the
O(6) limiting symmetry of the s, d interacting boson mod-
el. The q-deformation parameter, for complex values, is
found to work as a dynamical symmetry-breaking param-
eter of giving the energy spectra of all the three limiting
symmetries of the U(6) group and also all the possible

transitions among them. In other words, the q-deformed
Hamiltonian of the O(6) symmetry gives all the results of
the general Hamiltonian of the IBM. Thus, an equivalent
of a large numerical problem is obtained in terms of a
simple analytical expression. Furthermore, a representa-
tion, similar to the symbolic symmetry triangle of Casten
for the IBM, is found to emerge in a natural way, which
is shown to be conveniently expressible in barycentric
coordinates. This allowed an interpretation of the com-
plex q-deformation parameter as a symmetry mixing pa-
rameter. A similar study of the q-DA of other two limit-
ing symmetries will be interesting, but is not expected to
modify the present picture.
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