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g-matrix calculations have been performed for &He, AO, and z'Ca by solving the A-X coupled chan-
nels Bethe-Goldstone equation. The potentials employed were the Nijmegen model D and Nijmegen soft
core. Calculations were performed with various choices for the Pauli-forbidden space and the energy
denominator. The Nijmegen model D does a reasonable job of reproducing most experimental single-

particle energies, but the calculated ground-state binding energies vary smoothly from being underbound

in the AHe to overbound in A'Ca. The Nijmegen soft core underbinds all single A states, but gives level

spacings which agree with experimental values.

PACS number(s): 21.80.+a

I. INTRODUCTION

Earlier calculations [1,2] have developed eff'ective po-
tentials for the AN and XN interactions from realistic
two-baryon potentials [3—5]. These calculations were
based on solutions for the hyperon single-particle ener-
gies in nuclear matter via first-order Brueckner calcula-
tions. An effective interaction was extracted from
momentum-averaged solutions to the Bethe-Goldstone
equation. This effective interaction is a function of nu-
clear density. At first, predictions for lambda single-
particle energies in finite nuclei were made by selecting
an appropriate density and solving the Hartree equations
with the resulting AN interaction. Later, density depen-
dent Hartree calculations were performed [6].

In this paper we omit the intermediate step of a nu-
clear matter ca1culation and perform the Brueckner cal-
culation for finite A hypernuclei as was done in the origi-
nal work of Bando [7]. This procedure eliminates the
need to choose a density for each single-particle state,
and, therefore, should provide a more direct means of
determining whether a specified two-baryon interaction,
fit to two-body data, can reproduce observed A single-
particle energies.

The calculation employs the reference spectrum
method to produce g-matrix elements for the Nijmegen
model D [3,4] and Nijmegen soft core (NSC) [5] poten-
tials. Pauli corrections were performed in a jj-coupled
basis. Use of a Briieckner Q and kinetic energy propaga-
tor produced reasonable agreement with the lambda
single-particle energies for model D. Exceptions were the
~He and ~'Ca ground states. Agreement for ~He was
poor because the calculations ignored the center-of-mass
(c.m. ) kinetic energy and Hartree self-consistency for the
A single-particle wave functions. These two effects were
investigated by fitting an effective interaction to Pauli-
corrected relative g-matrix elements at a specified start-
ing energy. The Hartree self-consistency could then be
sought in the A-nucleus center-of-mass coordinate sys-
tem. The final results indicate that AO and ~'Ca Op and
1s-Od calculated levels were in reasonable agreement with
experimental results; however, ~He is underbound by ap-

proximately 1.1 MeV and the z'Ca ground state over-
bound by 5 MeV. The same procedure for the NSC leads
to reasonable spacings between single-particle energies,
but a consistent underbinding of them all.

II. PROCEDURE

The particle-hole single-particle potential will be defined
as

&A~U~A, &=/ &AN~g(CO=6 +6 )~AN&, (2)

thereby canceling the second-order diagrams in Fig. 1.
This also includes the possibility of a sigma as an excited
lambda state, and the AX sing1e-particle coupling poten-
tial becomes

&A~U~r&=y &AN~g(CO EA+E~) XN—& (3)

Therefore, the three-body diagram in Fig. 2(a) is in-

cluded in those canceled by the single-particle potential

——X—U

——X—U

FIG. 1. Second-order diagrams canceled by the definition of
the single-particle potential.

We follow Ref. [7] to extend Briieckner-Goldstone
theory from finite nuclei to finite hypernuclei and obtain
a diagonal lambda single-particle potential for hole states
of Hartree form,

&A~USA&=g &AN~g(CO=EA+E„)~AN& .
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FIG. 2. (a) A three-body diagram. (b) A dispersive diagram.

prescription. The particle-particle single-particle poten-
tial is defined in analogy with the Hartree definition of
the hole-hole potential:

&A~UK&=g &AN~g(co=a +E )~AN) . (4)

% =4+—U%,
e

Since the AN interaction has approximately one-half
the strength of the NN interaction and with the cancella-
tion of the second-order diagrams, one would expect the
first-order Goldstone diagram in Fig. 3(a) to provide a
reasonably good approximation to the lambda ground-
state energy. This diagram, when expanded to show one
of its contributions as in Fig. 3(b), contains intermediate
X states. Therefore, the corresponding Bethe-Goldstone
eqo ation,

where hm =mz —m~, and T is the kinetic energy of the
intermediate pair.

In this work it is assumed that oscillator wave func-
tions approximate the nuclear wave functions, and the os-
cillator constant, b =Pi/m&Q, is chosen to reproduce the
nuclear core size. Values of b =1.394, 1.791, and 1.970
fm were used for He, ' O, and Ca, respectively. It is
also assumed that these orbits and the nuclear binding
energies are not affected by the presence of the lambda.
Tests were made which demonstrated that 5% changes in
the nuclear radius produced relatively small changes in
the calculated single-particle energies.

Initially, the lambda Hartree orbits will be taken to be
oscillators with the same A. Calculation of the Is-
coupled YN matrix elements proceeds in the usual
fashion by performing an unequal-mass Talmi transfor-
mation [8] to the AN relative and c.m. coordinates,
P„~(r)/~I (R)(X)sS(J)). Recoupling the spin to the

relative wave function, one can define an uncorrelated
wave function, 4= P„&sj(r)sp&z (R)(J)). The correlat-
ed wave function is defined in terms of the relative corre-
lated wave function, 4 =

~ P(r) P~L (R )(J) ) . Operating
on the left of Eq. (5) with &P&L(R)~ and assuming that
T, = —[A' /2(mz+m~)]V+ is diagonal in the P&L(R)
basis, one obtains the relative Bethe-Goldstone equation

p(r )=p„,sj (r)+ vP(r), (6)
co —

( T„+e~L /2+ b,mc 5 r~ )

whe~e T„=—(A'/2pr)V'„and pr mr~+/(~r+mN)
Operating on the left with co —(T„+E&r /2+hmc 5rz)
and setting Q = l, one obtains a differential equation for
the reference spectrum correlated wave function,

contains a correlated wave function with lambda and sig-
ma components,

co —(e~l. /2+ T„)

co (a~I /2+T„+b,—mc )

For the present the energy denominator,

0
e=

0 e~

will be taken to be

0
co T Emc

0 +v

0
For sigma starting states 0 is replaced by

X

where Pz is chosen to have the same b„& =A'/@~A rela-
tive oscillator constant. For l Wj,

ur(r) wr(r)
YI, i)+

For I =q,

ur(r) mr(r)
YtO1 + Y111r

A ~N A"

FIG. 3. (a) The first-order Goldstone diagram. (b) A contri-
butor to the first-order Goldstone diagram.

since the antisymmetric spin-orbit force couples S =0
and S = 1 channels. Four coupled second-order
differential equations are obtained from Eq. (8) by multi-
plying from the left by ( Y&+, 0), ( Y&+, . 0), (0 Y&+, ), and

(0 YI, ), integrating over the angular variables, and tak-

ing the expectations of the spin variables. Four coupled,
second-order differential equations are also obtained from
Eq. (9) by the corresponding operations. The four cou-
pled equations are solved by applying the boundary con-
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ditions that $~0 at the core radius and that as r ~ ~
each component of f approaches the solution obtained
when v is set equal to zero. The large component of P
will then heal to the uncorrelated relative wave function.

Once the correlated relative wave functions are avail-
able, reference spectrum relative g-matrix elements are
constructed by integrating from the core radius to
infinity:

«n is, (1')
&P,isl(&)lglg, isj(1"))= f f P„+~sj(1')vg„is (r')r dr do„— u„'&z (1')

dT a
(10)

where zis u or w.
Matrix elements in the jj-coupling scheme,

& 4.,i,),(ry)k.„i„,~(riv)(~) lg, l P„, , (rr )P„, , (riv)(~) &

are then reconstructed. The Pauli operator, Q, is now reinstated by solving the correction equation by matrix opera-
tion,

1
8 =R, +8,

e e

in the jj-coupled basis. A Briieckner Q is employed so that both intermediate particles must be above the Fermi sea to
make Q = 1. Even though the Os, &2 ( A ) state is only half filled, the lambda Fermi energy is taken to be
EFA=2nA+lA =0. The choice eF„(0,as employed in Ref. [6], decreases the calculated lambda single-particle energies
by —, to 1 MeV. The correction operation converges very rapidly with total principle quantum number and a value of

=2n~+l~+2n&+I& (6 is adequate for all calculations with model D. The NSC required N =8 for ~'Ca. Final-
ly, the lambda single-particle energies are expressed in terms of the jj-coupled matrix elements,

(2J + 1)
~A 4'n&IAj+ ~ T~dn&l&jA + P g2 ~ + 1) 4'nAl+j &4'n&l&j& ~ ~g ~ ~A+~N ~4'n~l~JA4'n&l&j& J

'"x'n4 '

(12)

V= V, + V o, o 2+ VTS,2+ V„L.S+ Vg Q, 2

+ V„,—,'(o. , o2) L, —

where

(13)

Si2=3(cri r)( pro) —(oi o2),

Q,2= —,'[(o,.L)(o~ L)+(ir~.L)(o, L)] .

III. RESULTS

We begin with model D. The effect of Pauli correc-
tions for this potential are shown in Fig. 4 for AO. The
dashed lines are the results of including only the lambda
sector for the matrix operations in Eq. (11), and the solid

The nucleon single-particle energies in this equation are
taken from experiment and are listed in Table I.

The baryon-baryon potentials employed in Eq. (5) are
the Nijmegen model D as given in Ref. [3] and the NSC
as given in Ref. [5]. The interaction is made to be charge
symmetric by setting the neutron mass equal to the pro-
ton mass. The potential is in the form

lines are the results when both the lambda and sigma sec-
tors are included. The first column shows the Q =1 re-
sults, the second when eF~=ez&=0, the third when
E'y A =0, Ep~ = 1, the fourth when @~~=0, e~~ =2.
Column three would be the correct choice for ~O. The
Pauli corrections are one source of nucleus dependence
(or density dependence in the case of an effective interac-
tion) for the g-matrix elements, and this figure demon-
strates that the effect is not large for model D.

In Fig. 5 are the results of five calculations for the
lambda single-particle energies in AHe (dot-dashed lines),

A 0 (dashed lines), and ~'Ca (solid lines). The first column
shows the energies when only the AN interaction is used
and when the AN reduced mass is replaced with the NN
reduced mass in the Bethe-Goldstone equation. The
second column is the same as the first except that the AN
reduced mass is reinstated. This produces an approxi-
mately 5 MeV reduction in the single-particle energies.
The third column is the same as the second except that
an oscillator potential was added to the energy denomina-
tor, er ~co—(H„,+hmc 5rx). This produces a 1 to 2
MeV increase in the energies and demonstrates the effect

TABLE I. Table I. Nucleon single-particle energies (MeV).

4He
160
"Ca

Os 1 /2

—19.8
—38.0
—56.7

—21.8
—48.5

Op 1 /2

—15.7
—36.5

Od 5/2

—22.6

1S1/2

—18.2

Od 3/~

—15.6
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FIG. 4. Calculated single-particle energies for z 0 with mod-
el D. The dashed lines correspond to Pauli corrections per-
formed only in the lambda space; the solid lines correspond to
Pauli corrections performed in the full lambda plus sigma space.

of the choice of a particle-particle, single-particle spec-
trum. The fourth column is the same as the second ex-
cept that coupling to the sigma channels is now included.
The coupling produces a 4 to 6 MeV drop in the energies.
The fifth column is the same as the fourth except that the
contribution of an individual nucleon orbit is multiplied
by its partial occupation probability (POP) as determined
in Ref. [9]. This gives the prescription

&&I&l&&~ & &&Nlg(~=~A+~~)IAN»~ (14)

for the lambda single-particle energies. This calculation
was included to demonstrate that the inclusion of partial
occupation probabilities, at least in this approximation,
shifts the energies up, but, like the change to an oscillator
denominator, does not change the relative spacings
significantly.

The fourth column represents the final prediction of
the procedure described above. To this point the present
calculation gives the same result as Ref. [6]. Small
differences are due to the choice of oscillator constants
and Pauli-forbidden space for the A. (Reference [6] al-
lows the A to rescatter into the Os state. ) Experimental
values, as extracted from the curve in Fig. 7 of Ref. [10],
are included in this figure as boxes which have heights
approximately equal to estimated error bars. Agreement
with the experimental points is generally good. Excep-
tions are the ~He and ~'Ca ground states. A possible
source of discrepancy is the use of Eq. (12). This
prescription for the single-particle energies is certainly in
error in that it does not include corrections for the c.m.
kinetic energy. Another possible source is the failure to
apply the Hartree condition to the lambda single-particle
orbits. Both of these effects are expected to be large for
~5He.

In order to incorporate both the Hartree condition and

FIG. 5. Calculated single-particle energies. The dot-dashed
line is for AHe, the dashed lines for AO, and the solid lines for
A'Ca. The first column shows the energies when only the AN in-
teraction is used and when the AN reduced mass is replaced
with the NN reduced mass in the Bethe-Goldstone equation.
The second column is the same as the first except that the AN
reduced mass is reinstated. The third column is the same as the
second except that an oscillator potential was added to the ener-

gy denominator. The fourth column is the same as the second
except that coupling to the sigma channels is now included.
The fifth column is the same as the fourth except that the con-
tribution of an individual nucleon orbit is multiplied by its par-
tial occupation probability.

c.m. corrections into the calculation it will be necessary
to eliminate the dependence of the g-matrix elements on
the c.m. coordinate of the two interacting particles.
Therefore, an effective interaction has been constructed.
Several steps are necessary to develop this interaction.
They are demonstrated in Table II.

First, a test is made to determine the adequacy of an
"average-angle Q." Here one makes Pauli corrections in
the space of relative g-matrix elements with the condition
that Q =1 for 2nr+Ir+2Nr+Lr ~N, „and then con-
structs the jj-coupled matrix elements. A comparison of
the first column of Table II, which is the same as column
four in Fig. 5, and the second column of Table II, which
employs the average-angle Q, demonstrates that the
average-angle Q does a reasonable job of reproducing the
original calculations. For this column N „=X „=2
for AHe and z 0, and N,„=N,„=3for z'Ca.

Second, the average-angle calculation is repeated, but
with all values of ~xL set equal to —,'A~ for ~He, and —,'R~
for AO and A'Ca. Column three of Table II shows that
the effect of a constant c.m. energy is small. However,
the third step consists of evaluating all relative matrix
elements at a constant starting energy. Values of
co= —33 and —40 MeV were used for ~O and z'Ca, re-
spectively. Column four of Table II shows that this pro-
duced a spreading of the single-particle energies within
an individual hypernucleus. It is this starting energy
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TABLE II. Lambda single-particle energies (MeV).

AHe(0~1/2 )

A O(Os1/2)
Op 3/2 )

P1/2 )

A'Ca(Os1/2 )

P3/2 )

(Op 1/2)
(Od5/2 )

(1s, )

(Od5/2 )

5.3
—13.2
—1.4
—0.5

—22.7
—12.3
—11.7
—2.3
—1.9
—1.3

6.1
—13.4
—1.6
—0.7

—23.2
—12.7
—12.0
—3.0
—2.7
—2.0

6.1
—13.5
—1.8
—0.9

—22.9
—12.6
—11.9
—2.8
—2.3
—1.7

6.1
—14.4
—1.2
—0.2

—25.9
—13.5
—12.7
—2.2
—1.9
—1.1

6.9
—13.8
—1.1
—0.1

—27.0
—14.7
—13.9
—3.3
—3.2
—2.2

—1.1
—14.8
—2.7
—1.9

—27.9
—15.0
—14.2
—4.0
—4.5
—2.9

—1.1
—14.9
—2.8
—1.8

—27.8
—15.1
—14.1
—4.1
—4.5
—2.8

dependence, and to a lesser extent the Pauli corrections,
that prevents one effective interaction from reproducing
the results of the complete calculation for the heavier sys-
tems with model D. No such difhculty occurs in ~He,
since there is only one starting energy.

A set of relative g-matrix elements, free of e&L and
starting energy dependence, is now available for deter-
mining an effective interaction for each nucleus. The &0
matrix elements were fit to a sum of three Yukawa poten-
tials,

3
V"= g V,"exp( —x, )/x, ,

where x;=r/r, . The ranges are r, =0.3, r2=0. 4, and

r3 =0.6 fm. A limit of
~

V;"~ ~ 10000 MeV was invoked to
ease the numerical accuracy requirements. This restric-
tion did cause some difhculty in simultaneously fitting
both s and d waves of the central interaction. The pa-
rameters of the fit are shown in Table III.

The results for the single-particle energies, calculated

with the effective interaction, are shown in column five of
Table II and agree well with column four for ~O. They
also agree reasonably well for ~He and ~'Ca, again
demonstrating that the Pauli corrections were not strong-
ly nucleus dependent for model D. The effective interac-
tion should, therefore, be quite good throughout the p
shell. The effective interaction results do, of course, pro-
duce similar spreading of the single-particle energies as
was found for the constant starting energy calculation.

The effective interaction can now be used in a calcula-
tion that eliminates the c.rn. kinetic energy and satisfies
the Hartree self-consistency. The method employed is
that of Ref. [11] and involves a transformation to the
coordinate that locates that lambda relative to the c.m. of
the nuclear core. A comparison of columns five and six
indicates that the Hartree condition and proper treat-
ment of the center of mass produces a lowering of the A 0
Os, /2 state by 0.9 MeV. Including this change in the
fourth column of Fig. 5, one obtains a final, calculated
value of 13.9 MeV, slightly below the experimental re-
sults. Continuing in a similar manner, one obtains a final,

TABLE III. Effective interaction parameters (MeV).

V3

Triplet even
Triplet odd
Singlet even
Singlet odd
Spin-orbit even
Spin-orbit odd
Tensor even
Tensor odd
Antisymmetric

spin-orbit even
Antisymmetric

spin-orbit odd
Triplet quadratic

spin-orbit even
Triplet quadratic

spin-orbit odd
Singlet quadratic

spin-orbit even
Singlet quadratic

spin-orbit odd

9999.977
9999.971

10000.003
6545.115

—597.176
—623.715
2152.507

—144.196
460.514

460.514

—299.589

—42.538

299.589

42.538

—4969.260
—3753.200
—4248.739
—3270.224
—271.174
—502.359

—1225.345
—40.400
—9.999

—9.999

36.007

52.542

—36.007

—52.542

86.035
71.729

—149.542
96.832
21.824
40.280
63.625
33.600
0.0

0.0

0.0

—4.721

0.0

4.721
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