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g-matrix calculations have been performed for 3He, YO, and 4!Ca by solving the A-3 coupled chan-
nels Bethe-Goldstone equation. The potentials employed were the Nijmegen model D and Nijmegen soft
core. Calculations were performed with various choices for the Pauli-forbidden space and the energy
denominator. The Nijmegen model D does a reasonable job of reproducing most experimental single-
particle energies, but the calculated ground-state binding energies vary smoothly from being underbound
in the 3He to overbound in 4!Ca. The Nijmegen soft core underbinds all single A states, but gives level

spacings which agree with experimental values.

PACS number(s): 21.80.+a

I. INTRODUCTION

Earlier calculations [1,2] have developed effective po-
tentials for the AN and =N interactions from realistic
two-baryon potentials [3-5]. These calculations were
based on solutions for the hyperon single-particle ener-
gies in nuclear matter via first-order Briieckner calcula-
tions. An effective interaction was extracted from
momentum-averaged solutions to the Bethe-Goldstone
equation. This effective interaction is a function of nu-
clear density. At first, predictions for lambda single-
particle energies in finite nuclei were made by selecting
an appropriate density and solving the Hartree equations
with the resulting AN interaction. Later, density depen-
dent Hartree calculations were performed [6].

In this paper we omit the intermediate step of a nu-
clear matter calculation and perform the Briieckner cal-
culation for finite A hypernuclei as was done in the origi-
nal work of Bando [7]. This procedure eliminates the
need to choose a density for each single-particle state,
and, therefore, should provide a more direct means of
determining whether a specified two-baryon interaction,
fit to two-body data, can reproduce observed A single-
particle energies.

The calculation employs the reference spectrum
method to produce g-matrix elements for the Nijmegen
model D [3,4] and Nijmegen soft core (NSC) [5] poten-
tials. Pauli corrections were performed in a jj-coupled
basis. Use of a Briieckner Q and kinetic energy propaga-
tor produced reasonable agreement with the lambda
single-particle energies for model D. Exceptions were the
3He and 4!Ca ground states. Agreement for 3He was
poor because the calculations ignored the center-of-mass
(c.m.) kinetic energy and Hartree self-consistency for the
A single-particle wave functions. These two effects were
investigated by fitting an effective interaction to Pauli-
corrected relative g-matrix elements at a specified start-
ing energy. The Hartree self-consistency could then be
sought in the A-nucleus center-of-mass coordinate sys-
tem. The final results indicate that YO and 4!Ca Op and
15-0d calculated levels were in reasonable agreement with
experimental results; however, 3He is underbound by ap-
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proximately 1.1 MeV and the }'Ca ground state over-
bound by 5 MeV. The same procedure for the NSC leads
to reasonable spacings between single-particle energies,
but a consistent underbinding of them all.

II. PROCEDURE

We follow Ref. [7] to extend Briieckner-Goldstone
theory from finite nuclei to finite hypernuclei and obtain
a diagonal lambda single-particle potential for hole states
of Hartree form,

(AIUIAY= (AN|g(o=€,+e€y)|AN) . 1)
N

The particle-hole single-particle potential will be defined
as

(AlUIA)=Z (AN|g(w=€,+ey)|AN) , )
N

thereby canceling the second-order diagrams in Fig. 1.
This also includes the possibility of a sigma as an excited
lambda state, and the AX single-particle coupling poten-
tial becomes

(AlUIZ)= (AN|g(w=€,+ey)|EN) . (3)
N

Therefore, the three-body diagram in Fig. 2(a) is in-
cluded in those canceled by the single-particle potential
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FIG. 1. Second-order diagrams canceled by the definition of
the single-particle potential.
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FIG. 2. (a) A three-body diagram. (b) A dispersive diagram.

prescription. The particle-particle single-particle poten-
tial is defined in analogy with the Hartree definition of
the hole-hole potential:

(MUIAMY =3 (AN|g(0=6;,+ey)|AN ) . 4)
N

Since the AN interaction has approximately one-half
the strength of the NN interaction and with the cancella-
tion of the second-order diagrams, one would expect the
first-order Goldstone diagram in Fig. 3(a) to provide a
reasonably good approximation to the lambda ground-
state energy. This diagram, when expanded to show one
of its contributions as in Fig. 3(b), contains intermediate
3 states. Therefore, the corresponding Bethe-Goldstone
equation,

Y=+ % vy, (5)
contains a correlated wave function with lambda and sig-
ma components,

W
Y= vy
For the present the energy denominator,
ex O
€~ lo es |’

will be taken to be
o—T 0
0 w—T—Amc? |’

o--
AOVWON A@ON
A

a) b)

FIG. 3. (a) The first-order Goldstone diagram. (b) A contri-
butor to the first-order Goldstone diagram.

where Am =mys—m,, and T is the kinetic energy of the
intermediate pair.

In this work it is assumed that oscillator wave func-
tions approximate the nuclear wave functions, and the os-
cillator constant, b>=%/myQ, is chosen to reproduce the
nuclear core size. Values of b =1.394, 1.791, and 1.970
fm were used for “He, 10, and *°Ca, respectively. It is
also assumed that these orbits and the nuclear binding
energies are not affected by the presence of the lambda.
Tests were made which demonstrated that 5% changes in
the nuclear radius produced relatively small changes in
the calculated single-particle energies.

Initially, the lambda Hartree orbits will be taken to be
oscillators with the same . Calculation of the Is-
coupled YN matrix elements proceeds in the usual
fashion by performing an unequal-mass Talmi transfor-
mation [8] to the AN relative and c.m. coordinates,
[¢,1 (@b (RNL)®S(J)). Recoupling the spin to the
relative wave function, one can define an uncorrelated
wave function, ®= |¢nls,-(r)®¢NL(R)(J)). The correlat-
ed wave function is defined in terms of the relative corre-
lated wave function, ¥=|¢(r)® ¢y, (R)(J)). Operating
on the left of Eq. (5) with {¢,;(R)| and assuming that
T, =—[#/2(my+m,)]V% is diagonal in the ¢,; (R)
basis, one obtains the relative Bethe-Goldstone equation

U=y (1) + 0

, (6
w—(T,+eNL/2+Amc25YE)v¢(r) ©

where T,=—(#/2uy)V? and uy=mymy/(my+my).
Operating on the left with o —(T,+e€y; /2+Amc8ys)
and setting Q =1, one obtains a differential equation for
the reference spectrum correlated wave function,

wo—(ex, /2+T,) 0 U
0 o— ey 72+ T,+Amc?) | |¥s
N YA
o | TV s (7)
b

For sigma starting states

0
0 is replaced by bs |’
s

where @5 is chosen to have the same b%,=#%/u,Q rela-
tive oscillator constant. For /5%j,

uy(r) wy(r)
Yy= ; I<1j+_r Y, 4 - (8)
For [ =},
(r) wy(r)
Y Y
Yy= Yior + Y 9)

since the antisymmetric spin-orbit force couples S =0
and S =1 channels. Four coupled second-order
differential equations are obtained from Eq. (8) by multi-
plying from the left by (Y"1, 0), (Yf: 1;0), (0 Y1+< 1), and
(0 Y,+> 1j), integrating over the angular variables, and tak-

ing the expectations of the spin variables. Four coupled,
second-order differential equations are also obtained from
Eq. (9) by the corresponding operations. The four cou-
pled equations are solved by applying the boundary con-
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ditions that ¥—0 at the core radius and that as r — o

each component of 3 approaches the solution obtained
when v is set equal to zero. The large component of ¥

will then heal to the uncorrelated relative wave function.

Once the correlated relative wave functions are avail-
able, reference spectrum relative g-matrix elements are
constructed by integrating from the core radius to
infinity:

2
#i osc

- dz, s (Y)
(Gusj(Dlelprs (YN = [ [ bilisj (V05 (¥ Irdr dQ,— - w s (V) —o

dr a ’ (10)

where z is u or w.
Matrix elements in the jj-coupling scheme,

<¢"YIYjY(rY)¢"NINjN(rN)(J)|gr‘¢n;,l;,j;,(ry')¢n1'vl;vj;v(r1v)(J))

are then reconstructed. The Pauli operator, Q, is now reinstated by solving the correction equation by matrix opera-
tion,

Q

e

g=8,tg, g, (11)

in the jj-coupled basis. A Briieckner Q is employed so that both intermediate particles must be above the Fermi sea to
make Q=1. Even though the Os;,,(A) state is only half filled, the lambda Fermi energy is taken to be
eppa=2n,+1,=0. The choice €, <0, as employed in Ref. [6], decreases the calculated lambda single-particle energies
by 1 to 1 MeV. The correction operation converges very rapidly with total principle quantum number and a value of
N,,=2n,+1,+2ny+1y <6 is adequate for all calculations with model D. The NSC required N,, =8 for 4{/Ca. Final-

ly, the lambda single-particle energies are expressed in terms of the jj-coupled matrix elements,

(2J+1)
GA:(¢nAlAjAITl¢nAIAjA)+ 2

Jy(anNjN)

(2j,+1)

The nucleon single-particle energies in this equation are
taken from experiment and are listed in Table I.

The baryon-baryon potentials employed in Eq. (5) are
the Nijmegen model D as given in Ref. [3] and the NSC
as given in Ref. [5]. The interaction is made to be charge
symmetric by setting the neutron mass equal to the pro-
ton mass. The potential is in the form

V=V, +V,0,0,+VS,+V,L-S+V,0,,
tViazloy—03)-L, (13)
where
S, =30 PNoy?)—(o0,),
Q,,=1i(o," LYoy L)+ (0, L)oy-L)] .

III. RESULTS

We begin with model D. The effect of Pauli correc-
tions for this potential are shown in Fig. 4 for }O. The
dashed lines are the results of including only the lambda
sector for the matrix operations in Eq. (11), and the solid

2 1 Byt iy DI (0=€rten) by 15, bur i (I - (12)

f

lines are the results when both the lambda and sigma sec-
tors are included. The first column shows the Q =1 re-
sults, the second when €p,=¢€py =0, the third when
€ra=0, €py=1, the fourth when €z,=0,
Column three would be the correct choice for }O. The
Pauli corrections are one source of nucleus dependence
(or density dependence in the case of an effective interac-
tion) for the g-matrix elements, and this figure demon-
strates that the effect is not large for model D.

In Fig. 5 are the results of five calculations for the
lambda single-particle energies in 3He (dot-dashed lines),
170 (dashed lines), and 4!Ca (solid lines). The first column
shows the energies when only the AN interaction is used
and when the AN reduced mass is replaced with the NN
reduced mass in the Bethe-Goldstone equation. The
second column is the same as the first except that the AN
reduced mass is reinstated. This produces an approxi-
mately 5 MeV reduction in the single-particle energies.
The third column is the same as the second except that
an oscillator potential was added to the energy denomina-
tor, ey —>w— (H o, +Amc?8ys). This produces a 1 to 2
MeV increase in the energies and demonstrates the effect

eFN=2‘

TABLE I. Table I. Nucleon single-particle energies (MeV).

Osy, 0ps 0pi,2 0ds , sy, 0d;
‘He —19.8
150 —38.0 —21.8 —15.7
40Ca —56.7 —48.5 —36.5 —22.6 —18.2 —15.6
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Model D

—10}—

FIG. 4. Calculated single-particle energies for YO with mod-
el D. The dashed lines correspond to Pauli corrections per-
formed only in the lambda space; the solid lines correspond to
Pauli corrections performed in the full lambda plus sigma space.

E,(MeV)

of the choice of a particle-particle, single-particle spec-
trum. The fourth column is the same as the second ex-
cept that coupling to the sigma channels is now included.
The coupling produces a 4 to 6 MeV drop in the energies.
The fifth column is the same as the fourth except that the
contribution of an individual nucleon orbit is multiplied
by its partial occupation probability (POP) as determined
in Ref. [9]. This gives the prescription

(A|UIA)— 3 (AN|g(w=€,+ey)|AN)IPy  (14)
N

for the lambda single-particle energies. This calculation
was included to demonstrate that the inclusion of partial
occupation probabilities, at least in this approximation,
shifts the energies up, but, like the change to an oscillator
denominator, does not change the relative spacings
significantly.

The fourth column represents the final prediction of
the procedure described above. To this point the present
calculation gives the same result as Ref. [6]. Small
differences are due to the choice of oscillator constants
and Pauli-forbidden space for the A. (Reference [6] al-
lows the A to rescatter into the Os state.) Experimental
values, as extracted from the curve in Fig. 7 of Ref. [10],
are included in this figure as boxes which have heights
approximately equal to estimated error bars. Agreement
with the experimental points is generally good. Excep-
tions are the 3He and 4!Ca ground states. A possible
source of discrepancy is the use of Eq. (12). This
prescription for the single-particle energies is certainly in
error in that it does not include corrections for the c.m.
kinetic energy. Another possible source is the failure to
apply the Hartree condition to the lambda single-particle
orbits. Both of these effects are expected to be large for
2He.

In order to incorporate both the Hartree condition and

E,(MeV)

FIG. 5. Calculated single-particle energies. The dot-dashed
line is for 3He, the dashed lines for ,IJO, and the solid lines for
4lCa. The first column shows the energies when only the AN in-
teraction is used and when the AN reduced mass is replaced
with the NN reduced mass in the Bethe-Goldstone equation.
The second column is the same as the first except that the AN
reduced mass is reinstated. The third column is the same as the
second except that an oscillator potential was added to the ener-
gy denominator. The fourth column is the same as the second
except that coupling to the sigma channels is now included.
The fifth column is the same as the fourth except that the con-
tribution of an individual nucleon orbit is multiplied by its par-
tial occupation probability.

c.m. corrections into the calculation it will be necessary
to eliminate the dependence of the g-matrix elements on
the c.m. coordinate of the two interacting particles.
Therefore, an effective interaction has been constructed.
Several steps are necessary to develop this interaction.
They are demonstrated in Table II.

First, a test is made to determine the adequacy of an
“average-angle Q.” Here one makes Pauli corrections in
the space of relative g-matrix elements with the condition
that Q =1 for 2ny+1y+2Ny+Ly >N}  and then con-
structs the jj-coupled matrix elements. A comparison of
the first column of Table II, which is the same as column
four in Fig. 5, and the second column of Table II, which
employs the average-angle Q, demonstrates that the
average-angle Q does a reasonable job of reproducing the
original calculations. For this column N2 =N2Z =2
for 3He and YO, and N3,,=N2Z =3 for {Ca.

Second, the average-angle calculation is repeated, but
with all values of ey, set equal to 3% for He, and 3o
for ¥’O and 4!Ca. Column three of Table II shows that
the effect of a constant c.m. energy is small. However,
the third step consists of evaluating all relative matrix
elements at a constant starting energy. Values of
©=—33 and —40 MeV were used for YO and 4!Ca, re-
spectively. Column four of Table II shows that this pro-
duced a spreading of the single-particle energies within
an individual hypernucleus. It is this starting energy
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TABLE II. Lambda single-particle energies (MeV).

1 2 3 4 5 6 7
$He(0s, ;) 5.3 6.1 6.1 6.1 6.9 —1.1 —1.1
Y70(0s, /3 —132 —13.4 —135 —14.4 —13.8 —14.8 —14.9
0p3,2) —1.4 —1.6 —1.8 —1.2 ~1.1 —2.7 —2.8
0p1,2) -0.5 —0.7 —0.9 —0.2 —-0.1 —1.9 —1.8
41Ca(0s, ) —22.7 —232 —22.9 —25.9 —27.0 —27.9 —27.8
(0ps,5) —12.3 —12.7 —12.6 —135 —14.7 —15.0 —15.1
(0p1,2) —11.7 —12.0 —11.9 —12.7 —139 —142 —14.1
(0ds,,) —23 —3.0 —2.8 —22 —33 —4.0 —4.1
(1s1,2) —1.9 —27 —23 -1.9 —32 —45 —4.5
(0ds,,) —13 —2.0 —1.7 —1.1 —22 —2.9 —2.8

dependence, and to a lesser extent the Pauli corrections,
that prevents one effective interaction from reproducing
the results of the complete calculation for the heavier sys-
tems with model D. No such difficulty occurs in f\He,
since there is only one starting energy.

A set of relative g-matrix elements, free of €y; and
starting energy dependence, is now available for deter-
mining an effective interaction for each nucleus. The O
matrix elements were fit to a sum of three Yukawa poten-
tials,

3
vk= > VEexp(—x;)/x; ,
i=1

(15)

where x;=r/r;. The ranges are r;=0.3, r,=0.4, and
r3=0.6 fm. A limit of |V}| < 10000 MeV was invoked to
ease the numerical accuracy requirements. This restric-
tion did cause some difficulty in simultaneously fitting
both s and d waves of the central interaction. The pa-
rameters of the fit are shown in Table III.

The results for the single-particle energies, calculated

with the effective interaction, are shown in column five of
Table II and agree well with column four for YO. They
also agree reasonably well for 3He and 4/Ca, again
demonstrating that the Pauli corrections were not strong-
ly nucleus dependent for model D. The effective interac-
tion should, therefore, be quite good throughout the p
shell. The effective interaction results do, of course, pro-
duce similar spreading of the single-particle energies as
was found for the constant starting energy calculation.
The effective interaction can now be used in a calcula-
tion that eliminates the c.m. kinetic energy and satisfies
the Hartree self-consistency. The method employed is
that of Ref. [11] and involves a transformation to the
coordinate that locates that lambda relative to the c.m. of
the nuclear core. A comparison of columns five and six
indicates that the Hartree condition and proper treat-
ment of the center of mass produces a lowering of the }’O
Os,,, state by 0.9 MeV. Including this change in the
fourth column of Fig. 5, one obtains a final, calculated
value of 13.9 MeV, slightly below the experimental re-
sults. Continuing in a similar manner, one obtains a final,

TABLE III. Effective interaction parameters (MeV).

Vl V2 V3
Triplet even 9999.977 —4969.260 86.035
Triplet odd 9999.971 —3753.200 71.729
Singlet even 10 000.003 —4248.739 —149.542
Singlet odd 6545.115 —3270.224 96.832
Spin-orbit even —597.176 —271.174 21.824
Spin-orbit odd —623.715 —502.359 40.280
Tensor even 2152.507 —1225.345 63.625
Tensor odd —144.196 —40.400 33.600
Antisymmetric 460.514 —9.999 0.0
spin-orbit even
Antisymmetric 460.514 —9.999 0.0
spin-orbit odd
Triplet quadratic —299.589 36.007 0.0
spin-orbit even
Triplet quadratic —42.538 52.542 —4.721
spin-orbit odd
Singlet quadratic 299.589 —36.007 0.0
spin-orbit even
Singlet quadratic 42.538 —52.542 4.721

spin-orbit odd
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calculated value for the 'O Op states in agreement with
experiment, final, calculated values for the 4!Ca 0d and Op
states approximately 1 MeV below the experimental
values, and a final, calculated value for the ‘,‘X‘Ca Os state
approximately 5 MeV below the experimental value. A
similar result was obtained in Ref. [7] using a density
dependent Hartree procedure. However the conclusion
that model D overbinds the 4!Ca ground state differs
from the conclusion in Ref. [6]. With POP and improved
single-particle wave functions the final 4!Ca single-
particle energies agree with experimental values. The
source of the discrepancy is the method employed to im-
prove the single-particle wave function. Both methods
rely on expanding the wave function in terms of oscillator
wave functions, but the method employed in the present
paper removes the c.m. excitations from the wave func-
tions.

The center-of-mass correction is so large for 3He that
one needs to iterate the single-particle energy calculation
and effective interaction fit instead of making the simple
adjustment of the last paragraph. When this is done, one
obtains a final result of —2.0£0.2 MeV, with the uncer-
tainty due to the effective interaction fit. This value is 1.1
MeV above the experimental result of —3.14 MeV.

Also included in Table II are the results from the hype-
ron Nijmegen Gaussian (YNG) effective interaction from
Ref. [1]. Column seven shows the results with the choice
kp=1.12 fm ™! and y=0. These values demonstrate that
it is possible to select one Fermi momentum for the YNG
interaction that closely approximates the results from the
present effective interaction. It also demonstrates the un-
certainty involved in choosing a Fermi momentum. In
Ref. [1] the 3He calculation was performed at kr=0.9
fm~! to yield a value of —3.07 MeV. This would lead
one to assume that the Nijmegen model D correctly binds
AHe, whereas it underbinds the system when one employs
the kinetic energy propagator.

The same techniques were then applied to the NSC.
Although the phase shift fits in Ref. [5] did not include
the antisymmetric spin-orbit interaction, it is included
here with the form factor A27+85' This produces an an-

tisymmetric spin-orbit interaction of size similar to model
D. A comparison equivalent to column four of Fig. 5 is
shown for model D and the NSC in the first two columns
of Fig. 6. The NSC underbinds all levels, but gives level
spacings, both within a nucleus and between nuclei, that
agree with experimental spacings. In fact, if one makes
the c.m. and Hartree consistency corrections to the
single-particle energies, they are all approximately 4 MeV
high, as shown in the third column of Fig. 6. The means
by which the NSC accomplished this feat is through the
AZX coupling.

In Fig. 7 is shown the equivalent of Fig. 1 for the NSC.
Here one sees that the Pauli corrections are very large
when the appropriate EN states are eliminated from the
forbidden space. The corrections are large because the
AZ coupling for the NSC is very large—about twice that
for model D. This strong coupling was demonstrated in
Ref. [2] where the NSC produced a large width for the =
in nuclear matter. In finite nuclei the two-body matrix
elements become very Fermi-energy, and hence nucleus,

E,(MeV)

FIG. 6. Calculated single-particle energies. The dot-dashed
line is for 3He, the dashed lines for YO, and the solid lines for
4Ca. The first column is for model D, the second for the soft
core, and the third includes c.m. and Hartree condition correc-
tions to the wave functions for the soft core.

dependent. The |0s (A)Os (N),S =1) diagonal matrix ele-
ment, for instance, weakens very rapidly as the forbidden
space is enlarged. Hence, the Pauli corrections to the
dispersive diagrams, shown in Fig. 2(b), give rise to much
of the density dependence of an equivalent effective in-
teraction for the NSC.

In Ref. [2] it was demonstrated that a change in the en-
ergy denominator could produce better binding energies
for the NSC. The kinetic energy propagator was re-
placed with one that included the single-particle poten-
tial, o —T—>w—(T +U). We have attempted a similar
substitution for finite nuclei. This raises the question of
how one chooses a particle spectrum for the nucleons and

FIG. 7. Same as Fig. 4 for the soft core.
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FIG. 8. Soft core results for 4!Ca with shifted oscillator
denominator as a function of the shift. Boxes represent approxi-
mate experimental results.

hyperons. There is no Hartree-Fock condition for a
definition of the particle spectrum. Clearly, from Fig. 5,
a change to a harmonic oscillator U moves the NSC re-
sults in the wrong direction. One could reason that since
the hole spectrum is shifted downward from the oscilla-
tor spectrum with the Hartree-Fock condition, then U
should be chosen so as to shift the particle spectrum
downward. This particle spectrum shift was employed in
early Briieckner calculations [12]. Therefore, a shift &
was subtracted from the harmonic oscillator Hamiltonian
to give a propagator, 1/[w—(T+U,,—8)]. The 4Ca
results, with the addition of the same c.m. and Hartree
corrections used for Fig. 6, are plotted as a function of 8§
in Fig. 8. A value of §=50 MeV yields the experimental
ground-state energy, and the level spacings are not un-
reasonable. However, we favor the §=0 calculations
with the kinetic energy denominator for the following

reason. A variational calculation [13] and a calculation
with the Yakubovsky equations [14] gave *He binding en-
ergies of 22.910.5 MeV and 20.5 MeV, respectively, with
the Reid potential, while a g-matrix calculation that in-
cludes — U insertions in particle lines (approximated by
our kinetic energy denominator) gave 19.5+2.0 MeV
[15]. A similar result of —20.08 MeV was obtained in
Ref. [16] when — U insertions were included in the e for-
malism.

Therefore, the NSC, although not producing the
correct binding energies with the kinetic energy propaga-
tor, has demonstrated a mechanism for obtaining reason-
able single-particle energy spacings. One did not need to
introduce a three-body interaction to obtain these level
spacings.

IV. CONCLUSIONS

The lambda single-particle energies have been obtained
for 3He, 10, and 4!Ca by solving the A-Z coupled chan-
nels Bethe-Goldstone equation with the Nijmegen model
D and soft core potentials. The final results for model D
indicate that O calculated levels and {'Ca Op and 15-0d
calculated levels were in reasonable agreement with ex-
perimental results. However, a trend of disagreement be-
tween the calculated and the experimental results is ap-
parent in the ground-state binding energies. The
ground-state energies go smoothly from underbound in
the light system to overbound in the heavy system.

The soft core underbinds all levels, but produces
reasonable level spacings both within a nucleus and be-
tween nuclei. The level spacing results are due to the
strong AZ coupling, primarily in the triplet even channel.
Because this mechanism can reproduce the experimental
level spacing, it appears very likely that a two-body YN
potential can be constructed that fits not only scattering
data, but also the experimental single-particle energies.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under Grant No. PHYS-9202938.
Thanks are also due to the Institute for Nuclear Theory
at the University of Washington for its hospitality during
the completion of this manuscript and to Th. A. Rijken
for providing the soft core coordinate space code.

[1]1Y. Yamamoto and H. Bandd, Prog. Theor. Phys. Suppl.
81, 9 (1985).

[2]1 Y. Yamamoto and H. BandG, Prog. Theor. Phys. Suppl.
83, 254 (1990).

[3] M. M. Nagels, T. A. Rijken, and J. J. deSwart, Phys. Rev.
D 12, 744 (1975); 15, 2547 (1977).

[4] M. M. Nagels, Ph.D. thesis, University of Nijmegen, 1975.

[5] P. M. M. Maessen, T. A. Rijken, and J. J. deSwart, Phys.
Rev. C 40, 2226 (1989).

[6] Y. Yamamoto, A. Reuber, H. Himeno, S. Nagata, and T.
Mutoba, submitted to Czech. J. Phys.

[7] H. Bando, Prog. Theor. Phys. 66, 1349 (1981).

[8] L. Trlifaj, Phys. Rev. C 5, 1534 (1972).

[9] R. L. Becker, Phys. Rev. Lett. 24, 400 (1970).

[10] R. E. Chrien and C. B. Dover, Annu. Rev. Nucl. Part. Sci.
39, 113 (1989).

[11] D. Halderson, Phys. Rev. C 30, 941 (1984).

[12] H. S. Kdhler and R. J. McCarthy, Nucl. Phys. A106, 313
(1967).

[13]J. Lomnitz-Adler, V. R. Pandharipande, and R. A. Smith,
Nucl. Phys. A361, 399 (1981).

[14]J. A. Tjon, Phys. Rev. Lett. 40, 1239 (1978).

[15] D. W. Halderson and P. Goldhammer, Phys. Rev. C 15,
394 (1977).

[16] J. G. Zabolitzky, Nucl. Phys. A228, 285 (1974).



