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We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model
using the "quark Born diagram" formalism. This approach describes the scattering as a single inter-
action, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with
external nonrelativistic baryon wave functions attached to the scattering diagrams to incorporate
higher-twist wave-function effects. The short-range repulsive core in the NN interaction has previ-
ously been attributed to this spin-spin interaction in the literature; we find that these perturbative
constituent-interchange diagrams do indeed predict repulsive interactions in all I, S channels of the
nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the
core potentials found by other authors using nonperturbative methods. We also apply our pertur-
bative techniques to the NA and AA systems: Some AA channels are found to have attractive
core potentials and may accommodate "molecular" bound states near threshold. Finally we use our
Born formalism to calculate the NN differential cross section, which we compare with experimental
results for unpolarized proton-proton elastic scattering. We Gnd that several familiar features of the
experimental differential cross section are reproduced by our Born-order result.
PACS number(s): 21.30.+y, 24.10.—i

I. INTRODUCTION

The nucleon-nucleon interaction exhibits a strongly re-
pulsive short-distance core and a longer-ranged but much
weaker attraction. Although there has been evidence of
the general features of this interaction for over 50 years
[1], the physical mechanisms proposed as the origin of
the interaction have changed as our understanding of the
strong interaction has progressed. In 1935 Yukawa [2]
suggested that the finite-ranged nuclear attraction was
due to the exchange of a massive, strongly interacting
meson, by analogy with electron sharing as the origin
of chemical forces. This hypothetical meson was identi-
fied with the pion after its discovery, and as the light-
est hadron it certainly contributes the longest-ranged
component of the nucleon-nucleon strong force. The re-
pulsive short-range core of the nucleon-nucleon interac-

tion was similarly attributed to the exchange of heavier
mesons such as the u after their discovery. These meson-
exchange models have been elaborated considerably since
these original suggestions, and the most accurate phe-
nomenological descriptions of the nucleon-nucleon inter-
action at present are meson-exchange models [3], with
parameters such as meson-nucleon couplings fitted to ex-
periment.

A literal attribution of the short-range repulsive core
to vector meson exchange, as opposed to a phenomeno-
logical parametrization, of course involves a nonsequitur
[4, 5]: Since the nucleons have radii of = 0.8 fm, and the
range of the vector-exchange force is 1/m 0.2 fm, one
would have to superimpose the nucleon wave functions
to reach the appropriate internucleon separations. The
picture of distinct nucleons exchanging a physical u me-
son at such a small separation is clearly a Action, and
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a realistic description of the short-range core interaction
requires a treatment of the quark wave functions of the
interacting nucleons and a Hamiltonian which involves
quark and gluon degrees of freedom.

Since the development of @CD as the theory of the
strong interaction, there have been many studies of the
NN interaction in terms of quarks and gluons. Most have
employed the nonrelativistic quark potential model, al-
though some early work used the MIT bag model [6].
Many studies of this and other multiquark systems were
fundamentally Qawed due to an inadequate treatment of
the color degree of freed. om, or due to assumptions that
imposed confinement on the entire multiquark system;
a discussion of these problems is given by Isgur [4]. It
now appears that a pairwise A A color interaction [7—9]
together with a suKciently general spatial wave function
that allows dissociation into color singlets provides a suf-
ficiently realistic d.escription of color forces in a multi-
quark system. The NN references summarized here all
assume the A - A form, and it has also become standard
to employ a quadratic or linear confinement potential.
Finally, the spin-spin hyperfine term is incorporated in
all these references, as it apparently makes a dominant
contribution to the NN core interaction. Several groups
have included other terms &om the Breit-Fermi interac-
tion such as the hyperfine-tensor and spin-orbit interac-
tions.

Attempts to describe the NN interaction using quark
potential models date from the work of Liberman in 1977
[10], who calculated the adiabatic response of the six
quark system to variations in the interbaryon coordinate.
The resulting effective potential had a repulsive core with
a weak intermediate-range attraction. Liberman con-
cluded that the repulsive core was predominantly due to
a combination of the Pauli principle and the contact hy-
perfine term. The same conclusion was reached by Neu-
datchin and collaborators [11],also within the adiabatic
approximation. Harvey [12] continued this adiabatic ap-
proach in a generalized calculation of the effective NN
potential; he noted that SU(4) spin-isospin symmetry re-
quired that XN, ZA, and "hidden color" (qqq)s (qqq)s
states be included in the calculation. On incorporating
these states, he found that the repulsive core was strongly
suppressed. It is now widely believed that the absence of
the repulsive core in improved calculations is an artifact
of the adiabatic approximation [13,14].

The usual method for improving on the adiabatic ap-
proximation in the q system is to employ the resonating-
group method. This involves expanding the wave func-
tion of the system in a basis which describes system sub-
clusters multiplied by unknown functions of the inter-
cluster coordinates. One then solves the resulting cou-
pled integro-differential equations using various numer-
ical techniques. Baryon subcluster wave functions are
usually taken to be simple Gaussians, and the coupled
system is truncated at the NN, NN + LL, or NN +
LL + hidden color levels. The first applications of the
resonating-group method to the NN system were given
by Warke and Shanker [15], Oka and Yazaki [16], and
Ribeiro [17]. All groups found a repulsive core, which
was dominantly due to the Pauli principle and the color

hyperfine term. The LA and hidden color channels were
found to make only small contributions to the hard-
core S-wave phase shifts. These studies found that sev-
eral contributions including the Coulomb and confine-
ment kernels approximately canceled, leaving the spin-
spin OGE hyperfine term as the dominant interaction.
The resonating-group approach has been extended to in-
clude more channels, strange quarks, effective one-boson-
exchange long-range potentials, and. virtual excitations
of the quark wave functions. In particular, Koike [18]
has applied these techniques to the "flip-flop" model [19]
(which eliminates long-range color van der Waals forces),
supplemented by an effective meson-exchange potential,
and Cao and Kisslinger [20] have developed a relativistic
resonating-group formalism and applied it to the deter-
mination of equivalent potentials and low-L phase shifts
in a model which incorporates OGE and meson-exchange
forces. Both these references find reasonably good agree-
ment with experimental low-energy NN phase shifts. A
summary of work in this field to 1989 has been given by
Shimizu [21].

Maltman and Isgur [22] have performed a detailed
variational calculation of the ground-state properties
of the deuteron using a A.A quark-quark interaction
with the full 0GE color Breit-Fermi interaction, a
quadratic confinement term, and a phenomenological
one-pion-exchange potential. In contrast to typical
resonating-group calculations, they allowed spatial ex-
citations within the clusters. They found a repulsive
core, and noted that the admixture of P-wave color octet
clusters significantly increased the range and depth of
the intermediate-range attraction. Their results for the
deuteron binding energy, rms radius, quadrupole mo-
ment, and magnetic moment all agreed well with exper-
iment. Further work on the NN and AA systems may
be found in Ref. [23].

Although the origin of the short-range nucleon-nucleon
force is now reasonably well understood at the @CD level,
the resonating-group and variational techniques which
have been employed in this work are rather intricate and
require considerable theoretical effort, and lead to numer-
ical rather than analytical results. As these techniques
are best suited to the determination of ground. -state prop-
erties, topics such as resonance production and scattering
cross sections at higher energies have received little at-
tention in these quark model studies.

In recent work we have investigated the possibility that
these low-energy nonresonant hadronic scattering ampli-
tudes may actually be dominated by simple perturba-
tive processes; if so, it may be possible to derive use-
ful estimates of these amplitudes using a much simpler
approach. A complementary possibility of perturbative
dominance of hadronic scattering processes at high en-
ergies through constituent-interchange mechanisms has
been investigated by theorists almost since the develop-
ment of @CD [24]. Results for elastic hadron-hadron
scattering amplitudes, in particular the asymptotic Q
dependence of fixed-angle scattering, have recently been
presented by Botts and Sterman [25].

Concerns regarding the range of validity of the high-
energy perturbative @CD studies have been expressed



48 IVY CORE INTERACTIONS AND DIFFERENTIAL CROSS. . . 541

by Isgur and Llewellyn Smith [26], who suggest that
higher-twist hadron wave-function effects may actually
dominate perturbative QCD contributions at experimen-
tally accessible energies. We have explicitly incorporated
these wave-function effects in our study of a constituent-
interchange scattering mechanism in the nonrelativistic
quark potential model. We calculate the hadron-hadron
scattering amplitudes which follow &om one gluon ex-
change followed by constituent interchange (CI) (quark
line interchange is required at lowest order in o., to re-
store color singlet anal states), with nonrelativistic quark
model wave functions attached to the external lines. This
OGE+CI mechanism may be dominant in processes in
which qq annihilation is forbidden for the valence wave
functions. We have applied this description of scattering
to elastic I = 2 neer [27] and I =

2 Kn [28] reactions and
found excellent agreement with the experimental S-wave
phase shifts given standard quark model parameters.

Related approaches to calculating meson-meson scat-
tering amplitud. es which iterate this quark-gluon mech-
anism have been discussed in the literature [29]. These
Born-order techniques have also been applied to vector-
vector meson systems [30], and lead to interesting predic-
tions of vector-vector molecule bound states in certain
channels [31]. In the vector-vector system the hyper-
fi.ne interaction apparently does not dominate the scat-
tering amplitude, unlike the pseudoscalar-pseudoscalar
and NN systems. More recently we applied the quark
Born formalism to KK scattering [32], which is also free
of qq annihilation at the valence quark level. We found
satisfactory agreement with the experimental S-wave
KN scattering lengths, although I = 0 is not yet very
well determined experimentally. The KN S-wave phase
shifts at higher energies, however, are not well described;
they require stronger high-momentum components in the
nucleon wave function than are present in the single
Gaussian forms we assumed. The higher-L KN partial
waves, especially the P waves, show evidence of a spin-
orbit interaction which does not arise in single-channel
spin-spin scattering, which has not yet been adequately
explained in the literature.

The next level of complexity in Hilbert space is the q
baryon-baryon sector. Since this system is free of anni-
hilation at the valence level, and the spin-spin hyperfine
term has already been established as the dominant inter-
action underlying the core repulsion, derivation of the NN
core interaction is an important test of the quark Born
formalism. Here we derive the nucleon-nucleon interac-
tion predicted by the OGE spin-spin term using quark
Born diagrams, and show that the predicted core inter-
action is indeed strongly repulsive in all four spin and
isospin channels. Low energy Born-equivalent NN core
potentials are also derived and compared to previous re-
sults. We then consider other nonstrange baryons and
derive the NL and AA short-range interactions; some of
these are found to be attractive, and we investigate the
possibility that these channels might support dibaryon
molecule bound states. Some of our results for attractive
LL channels are consistent with the previous conclu-
sions of Maltman [33]. Finally we derive the elastic XX
differential cross section predicted by our quark Born for-

malism and find that some familiar experimental features
of the high-energy elastic proton-proton differential cross
section are evident in our results.

II. DERIVATION OF SCATTERING
AMPLITUDES

The method we employ involves calculating the am-
plitude for a given process using a Born approxima-
tion to the resonating-group equation, converting this
into an effective potential, and integrating the effective
Schrodinger equation to obtain nonperturbative predic-
tions. There are several advantages to adopting this ap-
proach. One is its simplicity: Integrating a multichan-
nel resonating-group system involves considerable eft'ort,
whereas we need only evaluate the individual entries in
the effective potential matrix and then numerically inte-
grate the simpler Schrodinger system. Furthermore, the
method can provide analytic expressions for Born-order
differential cross sections, scattering lengths, and other
observables.

The validity of the method requires that information
on the dominant physics be contained. in the Born am-
plitudes. This is expected to be the case for reactions
which do not involve meson exchange at low energy and
do not allow significant quark annihilation. A compari-
son of the hadronic scattering amplitudes obtained from
the conventional single channel resonating-group method
and from integrating effective potentials (as is done here)
has been made for several cases in Ref. [30] and the agree-
ment is remarkably good.

A. Hamiltonian and hadron states

The scattering amplitude is defined by factoring out
the overall momentum conserving delta function

Since the hadron state normalizations we will introd. uce
are identical to those used. in our previous study of I = 2
msgr scattering [27], we can use the relations between the
scattering matrix element hy, . and the phase shifts and
cross sections given there. The details of our diagram-
matic procedure for determining hy, are described else-
where [27, 28, 32]. For baryon-baryon scattering we shall
follow previous studies [4, 10—19, 21, 22] and assume that
the dominant part of the core interaction derives from
the spin-spin color hyperfine term,

Hscat = )
a,i(j

h(r;, ) S;.S,
2 2

(2)

where X, is the color matrix A /2 for quark i. The
baryon color wave functions are the usual color singlets,

baryon) = ) e,i I,
l

ijk) .
6i,j,k=1,3

Our spin-fIavor states for the meson and baryon are the
usual SU(6) states, but as explained in Ref. [32] we find
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it convenient to write these states using field theory con-
ventions rather than in the usual quark model form. The
quark model conventions show explicit exchange symme-
try by assigning a fixed location in the state vector to
each quark. The field theoretic convention greatly re-
duces the number of terms encountered in our scattering
matrix elements; for example, the proton state in field
theory conventions has only 2 terms instead of the usual
9 for quark model states, so PP + PP elastic scattering
involves only 16 terms, far fewer than the 6561 we would
encounter with the usual quark model conventions. As
examples, the orthonormal S, = — lA+&2) and S, =—
lPlg2) states in field theory conventions are

l&i)2) = 'LL+ xL+ d
lu+u d+) . (5)

C baryon(Pl & P2 & P3 & Ptot)

The other baryon states considered in this paper can be
derived from these by application of spin and isospin rais-
ing and lowering operators.

We shall quote general results for baryon-baryon scat-
tering amplitudes with arbitrary spatial wave functions
attached to the external lines and then specialize to sin-
gle Gaussian forms to derive representative closed-form
results. The general spatial baryon wave function we as-
sume is of the form

1
I&3+&2) = lu+u+d+)

2
(4) —(baryon(pl& P2& Ps) ~(Ptot Pl P2 P3)

with a normalization given by

(@baryon (Ptot ) i@baryon (P tot ) )

dp1dp2dp3dp1 p2 ~p3 @bogy.„p1 )p2 )p3 jpt.t @baryon p1)p2)p3jptot

= ~(ptot Ptot) .

The standard quark model single Gaussian baryon wave function we shall use for illustration is

33/4 (Pl +P2 +Ps Pl 'P2 P2 Ps Ps'pl)
4 baryon(Pl & P2 & P3) —

3 &2 3 eXP
vr ~ o. 30!

Oscillator parameter values of 0.25 GeV & o. & 0.42 GeV
have been used in the quark model literature on baryon
spectroscopy, as we will discuss subsequently.

B. Baryon-baryon scattering amplitudes

By analogy with our study of KN scattering [32] (see
especially Sec. II B) we first write a generic scatter-
ing diagram with initial and final baryon-baryon states.
We then connect the initial and final quark lines in all
ways consistent with fIavor conservation; for example,
4++A++ elastic scattering has 6!=720 quark line dia-
grams. These may be grouped into four sets in which

the number of qq pairs which cross in the t channel is
0,1,2, or 3. We then generate scattering diagrams by in-
serting one-gluon-exchange interactions between all pairs
of initial quarks in different initial baryons; this gives
nine times as many scattering diagrams as we had quark
line diagrams. Many of these diagrams are trivially zero;
these include the zero-pair-interchange and three-pair-
interchange diagrams, which vanish due to color. The
nonzero scattering diagrams may be related to a small
"reduced set" of diagrams by permutation of external
lines, which leaves a diagram invariant. In baryon-baryon
scattering this reduced set contains eight independent di-
agrams, which are shown below:
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(i6)

In a given baryon-baryon scattering process the matrix
element hy; in (1) is a weighted sum of the eight spatial
overlap integrals represented by the diagrams D1- D8,

we will just give results for the weights of D1 ~ D4 and
indicate the relative phase of the set for D5 Ds after
a vertical bar. Thus for (I, i, (D )) above we write

hy, = ) u)„I„(D„). (17)
+ -„—-„—-„+-, (+)4 2 2 1 (19)

The weight of each diagram (introduced in [32]) is the
product of a color factor, a fermion permutation phase
called the "signature" of the diagram (which is —1 for
Di . .D4 and +1 for Ds .Ds), the overall (—) in HI
(2), and a reaction-dependent spin-Aavor factor. The
derivation of these factors and the spatial overlap inte-
grals they multiply is discussed in detail elsewhere [27,
32], so here we will simply present results with minimal
discussion. There is a minor change in the convention
for diagram weights relative to our earlier reference. In
our KN study [32] we incorporated the (—) phase of HI
and the signature phase in the spatial overlap integral;
here we include them in the diagram weight. This overall
factor was (+1) for all KN diagrams, so the KN weights
are unchanged by our new convention. Similarly, in our
first paper [27] we incorporated the (—) phase of HI in
the spatial overlap integral. Our new convention is use-
ful because it makes all the NN spatial overlap integrals
considered here positive, so the overall amplitude phases
are clear Rom the weights alone.

The color factors of the diagrams D1 ~ .Ds are

I.oi.,([Di . Ds])

+ — —— —— +— + — —— —— +— . (18)4 2 2 1 4 2 2 1
9') 9) 9) 9) 9) 91 9) 9

D is related to D +4 by t ++ u crossing; for this reason
the weights to and m +4 are closely related in many
reactions. To simplify our presentation, when possible

The spin-flavor weights (incorporating the signature
phases) are just matrix elements of the operator S, S~.
between two initial quarks for the given process. As an
example, for 4++A++ S = 3, S = 3 scattering there
are four ~u+u+u+)/v 6 external baryons, and only the
S; S'- terms contribute. On summing over all scattering
diagrams in this channel we find

Ispin —flavor Isignature
b, &,I=3,S=3

+ —,', +-'„+-'„+& (—), (20)

which is I and S, independent. Combining these we find
the I = 3, S = 3 LL diagram weights,

(io„(KA, I=3,S=3)) = +1,—1, —1, +1 (—)

Since the spatial overlap integrals Is(Ds) .Is(Ds) are
equal to the integrals Ii(Di) . I4(D4) after t ++ u cross-
ing, the relative (—) phase in the diagram weights (21)
ensures that the I = 3, S = 3 AL scattering amplitude
h.f, is spatially antisymmetric, as required for a totally
antisymmetric fermion-fermion scattering amplitude that
is symmetric in the remaining degrees of freedom (I and
S). This antisymmetry is a nontrivial check of our spin-
Bavor combinatorics, since it is only evident after the
sum over individual quark-gluon scattering diagrams is
completed.
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The diagram weights for all I, S channels of NN, NL,
and AL elastic scattering are tabulated at the end of
the paper; these and the overlap integrals constitute our
central results.

The spatial overlap integrals associated with the dia-
grams may be determined using the simple diagrammatic
techniques presented in Appendix C of Ref. [27]. In these
integrals all momenta are implicitly three dimensional,

I

and have an overall spin-spin coeKcient K„of

ass = Smo, , 1
3m2 (2vr)3

(22)

This is (—1) times the K of [27], since we have chosen to
include the (—) phase of Hy (2) in the diagram weight
factor, as discussed above. The integrals are

Iy ——Kss da] da2 e~ ay) a2, A —ay —a2 e~ ay) a2) C —ay —a2

x d62d63 4& A 62 63) 62) 63 4~ C 62 63) 62) 63 j (23)

I2 ——~„daqda3db2de3 C'~ aq, A —aq —a3) a3 4C' » + ~ » ~3

x 4~ (C —A + a3, b2, —C —a3 —b2) C'~ (a3, b2, —C —a3 —b2), (24)

I3 ——e„dc~da2d63ddq C ~ a~, a2) A —aq —a2 C & a~, a2, C —aq —a2

x@z(C —a, —a2, —A —C+ a& + a2 —b3, b3)4~(d„—C —b3 dg b3), (25)

I4 ——K„daqda3dbqdb3 4~ aq) A —& a» +3 @c

x@~(bg, —A —bq —b3, b3)4~(a3, —C —a3 b3 b3) . (26)

~-+4(/) = ~-(—v) . (27)

A simplification follows if all baryons have the same
spatial wave functions, as we assume here; in this case
I2 ——I3 and hence I6 ——I~.

The overlap integrals may be carried out in closed form
given single Gaussian wave functions (8), and each gives
a result of the form

We evaluate these in the c.m. frame, so the t ~ u crossed
integrals I5 ~ Is can be obtained by exchanging C and
D = —C, or in terms of the cosine of the c.m. scattering
angle p, = cos(0, ),

I2 ——I3

( ) 3/2

= &ss

) 3/2

=K„
(ll) exp — exp

exp — 2P'

exp — 20 —12p P1 2

330!

I~ = ~ss g„exp —A„—B„p P (28) (
(s —4M )) (3i)

where P is the magnitude of the c.m. three-momentum
of each baryon, P2 = A = B = C = D . The results
are

1 2
Iq ——K„exp —

2
A —C

1 2=e„exp — 2 1 —p P
30!

= Kss exp )

In the 6nal expression for each integral we have substi-
tuted for P and p in terms of the Mandelstam variables
3 and t using relativistic kinematics, 3 = 4(P +M ) and
t = —2(1 —p)P2.

Near threshold the overlap integrals are comparable in

magnitude, but at higher energies their behaviors dif-

fer markedly. All but I~ and its crossing-symmetric
partner I5 are strongly suppressed in 8; diagrams Dq
and D5 therefore dominate at high energies, for forward
and backward scatterings, respectively. This behavior is

due to the mechanism of "minimum spectator suppres-
sion, " as was discussed in detail in Sec. II E of Ref. [32].
To summarize the arguments for this case: (1) for for-
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TABLE I. Diagram weights for NN elastic scattering.

I = l, S=l
Cd 1

'~

59
81

17
81

17
81

10
81

Rel. phase u5. . . cu8

S=O

I=o, S=l

31
27
19
27

7
27
7

27

7
27
7

27
2

27

(+)
(+)

1
9

ward scatterings, A = C, diagram Dq (9) requires no
spectator to cross into an opposite-momentum hadron,
which would carry considerable suppression due to a
small wave-function overlap; only the hard-scattered con-
stituents are required to reverse momentum. (2) Ds (13)
requires all spectators that were initially in a baryon with
momentum A to reside Gnally in a baryon with momen-
tum D. Clearly the suppression due to wave-function
overlaps of the spectators will be less important if the
6nal baryon D has the same momentum as the initial
baryon A, D = A. This corresponds to backscatter,
C = —A, since C = —D in the c.m. frame. As in Di,
only the hard-scattered quarks are then required to recoil
into a baryon with three-momentum opposite to that of
their initial baryon. These two explanations are actually
equivalent because Dz and D5 are related by crossing.

III. NN CORE POTENTIALS
AND PHASE SHIFTS

The Hamiltonian matrix elements
8

hf; ——) w„I„
n=1

(32)

for the four I, S channels accessible in NN scattering are
summarized by the diagram weights in Table I. Special-
izing to the even-L channels I, S=0,1 and 1,0, for which
a repulsive core in S wave is a well-known feature, we see
that all eight coeKcients (toq . u)s) are positive or zero
in both cases, corresponding to a repulsive interaction.
For a more quantitative evaluation we can relate this
hf; matrix element to an NN potential near threshold,
which is defined to give the same low-energy scattering
amplitude near threshold in Born approximation. (See
Appendix E of Ref. [27] for a detailed discussion. ) For
an hf, of the form

4

hy; = ' ) Ie„p„exp (
—(A„—S„II)P )3l2':

1000 I I I )
I I I

)
I I I

)
I I I

(
I I I

)
I I I

)
I

v
NN

(~=0)
NN

800

(Mev)
600

400

The t ~ u crossed diagrams D5 ~ ~ D8 are not included
in this sum because they will automatically be generated
by the crossed diagram in NN+NN potential scattering
through V~~(r).

The numerical potentials predicted for S-wave I = 0
and I = 1 NN systems are shown in Fig. 1 for our "ref-
erence" set of quark model parameters [32], n, = 0.6,
m&

——0.33 GeV, and o. = 0.4 GeV. A discussion of the pa-
rameters used in previous work is given in the Appendix.
Actually only the two parameters n, /m2 = 5.51 GeV
and n = 0.4 GeV are involved in our VN~(r). These
potentials are consistent with expectations for NN core
interactions; they are repulsive and have ranges of about

2 fm and peak values comparable to +1 GeV, which is
essentially infinite &om a nuclear physics viewpoint. It
may be interesting in future work to parametrize the am-
plitudes associated with each diagram (the weights in Ta-
ble I) as a two-nucleon spin and isospin interaction of the
form A I+BSq . S2+ 0 Ty T2+ D Sy S2 Ty .T2, which
will allow a more direct comparison with meson-exchange
models [34].

I.ow-energy equivalent NN core potentials have been
presented as the results of some of the NN resonating-
group and variational calculations we discussed in the
Introduction. In their Figs. 1 and 2 Suzuki and Hecht
[35] show. numerical results for the %%core potentials of
Harvey [12], Faessler, Fernandez, Liibeck, and Shimizu

[13], and Oka and Yazaki [16]. The Faessler et at. and
Oka-Yazaki potentials are quite similar to our potentials
in Fig. 1, with values at the origin between 0.6 and 1.0

the Born-equivalent potential is

Viv~ (r)
4 28O's ~ ~n'gn

3~IIIIII ~-, (A„+B„)I&I (A„+S ) ) '

(34)

200

0.2 0.4 0.6 0.8
r (fm)

1.2 1.4

FIG. l. NN core potentials from quark Born diagrams.
Parameter set n /m = 0.6/(0. 33) GeV and cx = 0.4 GeV.
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GeV and comparable ranges. Harvey finds potentials
with somewhat longer ranges, which Suzuki and Hecht
attribute to his choice of a larger nucleon width param-
eter, b~ = 1/n = 0.8 fm; the Faessler et aL and Oka-
Yazaki values are 0.475 fm and 0.6 fm, respectively, and
we use a comparable 1/o. = 0.493 fm.

The NN core potentials found by Maltman and Isgur,
in Fig. 1 of Ref. [22], also have similar ranges but are
somewhat larger in magnitude, V(0)=1.2 GeV for I = 0
and 2.3 GeV for I = 1. Our difference in the contact
values is due in part to the choice of parameters; in our
calculations the potentials are proportional to n, o. /m,
which is 0.353 GeV with our parameters and 0.489 GeV
for Maltman and Isgur (see the Appendix). Note, how-
ever, that no other reference finds the large Maltman-
Isgur I = 1/I = 0 ratio at contact. The value chosen
for n, o. /m2 by itself does not explain the differences
between potentials; those reviewed by Suzuki and Hecht
use n, n /m 0.55 GeV, so-we would naively expect
our potentials to be 0.6 times as large as theirs. Of
course the values near the origin have little physical rele-
vance due to their small Jacobean weight, and in any case
we are comparing potentials derived using three different
methods which may preclude a more accurate compari-
son of results.

Note in Fig. 1 that the intermediate-range attractions
which are responsible for the deuteron in I = 0 and
its almost-bound I = 1 partner are absent &om our
quark Born potentials. This is as we anticipated, given
that these attractions arise mainly from a spatial distor-
tion of interacting-nucleon wave functions [4, 22]; in our
leading-order Born calculation we assume axed nucleon
spatial wave functions. The attraction presumably arises
at higher order in the Born series, and may be accessible
through leading-order Born calculations of off-diagonal
matrix elements.

Oka and Yazaki (Fig. 2 of [16]) and Koike (Fig. 3 of
[18]) also show the 8-wave phase shifts which result from
their NN core interactions. In Fig. 2 we show the S-
wave phase shifts we find on numerically integrating the
Schrodinger equation with the potentials of Fig. 1. Our
phase shifts are very similar to the results of these ear-
lier resonating-group studies. Although we would like
to compare our phase shifts to experiment directly, the
experimental phase shifts [36] are unfortunately compli-
cated by the presence of the deuteron and its I = 1 part-
ner near threshold. These states will have to be incor-
porated in our calculation before we can make a useful
comparison between our theoretical core phase shifts and
experiment.

The Born-order approximate phase shifts (propor-
tional to hy;) can be determined analytically using Eq.
(6) of [28] and dividing by 2 for identical particles,

7r2 1

PEI hf; (—p)—P& (p)2 —1

The momentum, energy, and p, = cos(0, ) are for one
nucleon in the c.m. kame. From our general result for
hf; (17) and the Gaussian wave-function integrals (28),
we And an 8th Born-order partial-wave phase shift of
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FIG. 2. NN core S-wave phase shifts from the quark Born
V~~(r). Parameter set o., /m~ = 0.6/(0. 33) Gev and a =
0.4 GeV.

(36)

The spin dependence of this result is implicit in the
weights (ur„}. Note that these phase shifts are func-
tions of 8 and spins only, so there is no spin-orbit force
in our effective NN interaction. This is as expected given
that our only interaction at the quark level is the spin-
spin hyperfine term. A more realistic model will require
a generalization to include the OGE spin-orbit term and
perhaps coupled channel effects, as we discussed in our
study of KN scattering.

The analytic Born-order result (36) for the phase shifts
is unfortunately of little utility for NN S waves given re-
alistic quark-model parameters; the equivalent potential
V~~(r) is nonperturbatively large in this case, and must
be iterated coherently to determine phase shifts, as we
have done in Fig. 2 using the NN Schrodinger equation.
In contrast to this result, we previously found nonpertur-
bative effects in the S-wave phase shifts of urer, KK, and
KN systems to be much less important, due to somewhat
shorter-ranged forces and the smaller reduced mass. The
NXBorn-approximation phase shifts (36) are presumably
more useful for higher partial waves and higher energies,
since multiple scattering effects are expected to be largest
in S wave near threshold.

IV. OTHER NONSTRANGE BB' CHANNELS:
NL AND b Lh

The core potentials predicted by the quark Born for-
malism for other nonstrange baryon-baryon channels
should allow tests of the assumed hyperfine dominance
in systems other than the familiar S-wave NN cases.
The short-range interactions in the NL and LL chan-
nels may be observable experimentally as Anal-state in-
teractions or, if the interaction is suFiciently strong to
support bound states, as dibaryon molecules not far be-
low threshold. The possibility of nonstrange resonances
in the q sector has been considered by many authors,
the earliest reference apparently being a group-theoretic
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TABLE II. Diagram weights for NA elastic scattering.

I = 2, S=2 5
9

1
3

S=1
I=1, S=2

37
27
13
27

7
27

1
27
1

27

4
27

2
27

4
27
4

27

1
27

S=1 7
81

49
81

29
81

28
81

2
81

2
81

4
81

1
81

study by Dyson and Xuong [37]. These qs systems have
also been studied using the bag model (which is unfortu-
nately known to give unphysical predictions of a host of
multiquark resonances), one-boson-exchange models and
the nonrelativistic quark model; references before 1985
are summarized by Maltman [33].

Our results for KL and LA are summarized by the di-
agram weights in Tables II and III. After completing their
derivation we found that some of these matrix elements
had previously been tabulated by Suzuki and Hecht [35];
our NN and LL weights mq, m2, m3, m4 are equivalent to
the coeKcients t s&, —CST, —CST, CsT in their Table II,
which provides an independent check of our results in
these cases. As these weights multiply comparable spa-
tial overlap integrals which give positive contributions to

the low-energy equivalent baryon-baryon potential (34),
negative weights imply attractive potential contributions.

Referring to Table II we see that the NA system has a
strongly repulsive core in the channels I, S=2,1 and 1,2
and weak core interactions in 2,2 and 1,1. Unlike the
AA system (to be discussed subsequently) our NA core
interactions do not lead to bound states in any channel.
Since the lightest reported dibaryons have masses very
close to the NA threshold [36, 38, 39], the experiments
may be seeing threshold effects due to the opening of the
NL channel, or perhaps weakly bound NL molecules.
Our calculation does not support the existence of such
bound states, although the NN system is similarly pre-
dicted to have a purely repulsive core, but the I, S = 0, 1
deuteron is nonetheless bound by an intermediate-range

TABLE III. Diagram weights for AA elastic scattering.

I=3, S=3
Rel. phase ~5. . . ~8

1
3

S=1 19
9

1
9

S=O

I=2, S=3 1
3

(+)
(+)

1
9

1
9

1
3

19
27

1
27

1
27

1
27 (+)

S=O

I=1, S=3

5
27

1
27

1
27 (+)

19
81

1
81

1
81

1
81

S=O

I=O, S=3

7
27

1
3

1
27

1
27

1
9
1
3

(+)
(+)

S=1 19
27

1
27

1
27

1
27 (+)

1
9

1
9
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attraction which is absent Rom our leading-order Born
calculation. Similar weakly bound states may exist in
NL and LL as well, despite repulsive cores.

Next we consider the LL system. For LA some gen-
eral rules follow &om the assumption of a single A - A in-
teraction; since the initial three-quark clusters are trans-
formed into color octets by the interaction, line diagrams
with zero or three pairs of quarks exchanged are forbid-
den. Thus the amplitude for A++A elastic scattering
must be zero. This implies relations between LL ampli-
tudes with different isospins,

hy;(AA; I = 0, S) = —hy;(Ab„, I = 2, S)

and

ht;(Ab„I = 1, S) = —s~ hg;(AK; I = 3, S) . (38)

Specializing to the (+)-symmetry (even-L) cases in Ta-
ble III, which include the S-wave channels that are a
@mori the most likely to support bound states, it is evi-
dent that two LL channels have strongly attractive core
potentials, I, S = 1, 0 and 0,1. Of these 0,1 has the
strongest attraction. We search for bound states by solv-
ing the Schrodinger equation in the LL system using the
low-energy potential (34). With our reference parameter
set n, /m = 5.51 GeV and n = 0.4 GeV the attrac-
tive core is too weak to induce binding. Note, however,
that previous studies of baryons using single Gaussian
wave functions have generally assumed a much stronger
hyperfine term (see Sec. III). If we use a typical pararn-
eter set from these references, n, /m2 = 14.9 GeV 2 and
n = 0.32 GeV (Maltman and Isgur [22]), we find a single
S-wave LL bound state in the 0,1 channel, with E~ ——40
MeV. Of course this channel has a fall-apart coupling to
NN, so a coupled-channel treatment including the NN
system may be required to search for resonant effects.
None of the other LL channels have su%ciently strong
attractive cores to form bound states in our formalism
with the Maltman-Isgur parameters.

Our result for the I, S = 0, 1 AL channel is remarkably
similar to the conclusion of Maltman [33], who found that
the 0,1 channel has the strongest diagonal attraction in
the LL Hilbert space, and that these diagonal forces led
to a LL bound state with E~ ——30 MeV. Maltman con-
cluded, however, that off-diagonal effects due to the exci-
tation of hidden-color states eliminated this bound state
and led to binding in I, S = 3, 0 (E~ = 30 MeV) and 0,3
(E~ = 260 MeV) instead. The 3,0 and 0,3 channels had
previously been suggested as possibilities for LL bound
states [16,40, 41]. In contrast we find strong repulsion in
the 3,0 channel and a weak core in 0,3.

In view of the parameter and approximation depen-
dence of predictions of LA bound states and the theo-
retical uncertainties in treating hidden-color basis states,
the possibility of nonstrange dibaryon molecules should
be regard. ed as an open question for experimental inves-
tigation. The channels which appear of greatest interest
at present are the attractive-core systems I, S = 0, 1 and
1,0 and. the 3,0 and 0,3 channels, which previous stud. ies
suggested as possibilities for binding.

V. NN DIFFERENTIAL CROSS SECTIONS

We can use Eq. (28) of Ref. [27],

da. 4vr s
dt (s —4M2)

(39)

to determine the nucleon-nucleon differential cross sec-
tion in leading Born approximation, given the NN h, y;
matrix element (17). For the experimentally well-
determined case of unpolarized PP elastic scattering, we
have a weighted sum of the S = 0 and S = 1 d.ifferential
cross sections,

do' 1 do 3 dO

dt . 4 dt 4 dtPP, unp olar ized I=j,s=o I=1,s=j
(40)

To obtain the S = 0 and S =1 cross sections one simply
substitutes the appropriate I = 1 diagram weights (uy

from Table I and the integrals (I J from (29)—(31).
Before we discuss our prediction for this differential

cross section we briefly recall the experimental unpolar-
ized PP result. This is shown for a range of P~ b in Fig. 3,
adapted from Ryan et al. [42], Ankenbrandt et aL [43],
Clyde et al. [44], Allaby et al. [45], and from the ISR data
of Nagy et at. [46] and Breakstone et al. [47]. The data
in the figure were obtained from the Durham-Rutherford
HEP data archive. Near threshold the angular distribu-
tion is approximately isotropic, but as P~ b increases the
scattering at large angles falls rapidly, and at high en-
ergies the differential cross section is dominated by an
asymptotic "diffractive peak, "

expt
bt= ae

dt
(41)lim

s-+~, I~I/8&&

For the purely hadronic part (as distinct from the diver-
gent forward Coulomb peak) one finds

and

a' P' = 70 mb GeV (42)

6' p —11 —12 GeV (43)

for the asymptotic form [47].
On evaluating (40) for NN scattering using (17), (39),

and Table I we find that several features of the experi-
mental differential cross section at moderate energy are
successfully reproduced by our Born-order calculation.
The theoretical Born-order cross section (40) which fol-
lows from our "reference" parameter set n, /m = 5.51
GeV and o; = 0.4 GeV is shown in Fig. 4 for P~ b ——

1.05, 1.75, 3 and 10 GeV, selected for comparison with
Fig. 3. Although P~ b

——10 GeV superficially appears to
be very relativistic, in the c.m. frame it actually corre-
sponds to P, = 2.07 GeV, which for nucleon-nucleon
scattering is only quasirelativistic. As will be discussed
below, our quark exchange diagrams are probably irrele-
vant to diffractive scattering at very high energies.

First note that the smooth evolution from an isotropic
angular distribution to an asymptotic forward-peaked
one with increasing 8 is a simple consequence of the sup-
pression in s of all diagrams at small ~t~ except Di In.
our calculation the contributions of the other diagrams
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FIG. 4. Theoretical unpolarized PP differential cross sec-
tion. Parameter set o.,m~ = 0.6/(0. 33) GeV and o. = 0.4
GeV.

fall exponentially with 8. The experimental large-angle
scattering does not faH this rapidly, and the discrepancy
may be due to our use of single Gaussian forms; the ac-
tual proton wave function has short-distance quark-quark
correlations, which presumably lead to power-law contri-
butions at large s and ~t~.

Second, the forward-peaked form of Eq. (41) is pre-
dicted by our single Gaussian Born calculation. The
overall normalization a and slope parameter b for this
process are predicted to be

= 13.3 GeV (48)

corresponding to mq ——0.21 GeV if we leave o., = 0.6,
and

o. = 0.246 GeV (49)

If we use typical intercept and slope values of a = 70
mb GeV and b = 11 GeV as input to fix our two
parameters we obtain

4~o' 1 r=i, s=o 2 3 r=i, s=i 2
2

(~i +
/

6364 pro. ~

19683 m4 (44)

2b=
30,'

(45)

and

(46)

The theoretical result (44) for the magnitude of the for-
ward peak is actually independent of the spatial wave
function, since the defining integral (23) is just the prod-
uct of two normalization integrals in the limit A = C.

With our reference parameter set we predict a some-.
what smaller, broader peak than is observed experimen-
tally at high energy, with

which are in the range of the values discussed in Sec. III.
Although we can fit the magnitude and. t dependence

of the small-~t~ difFerential cross section at high energies
reasonably well with our quark Born results, we empha-
size that this is not a realistic description of difFractive
scattering. The Born amplitude is purely real whereas
the experimental small-~t~ amplitude is known to be close
to imaginary [46, 48]. This implies that the first Born
approximation is inadequate for small-~t] difFractive scat-
tering, and that the coupling to inelastic channels is an
essential component of a description of the diffractive
amplitude, even for elastic processes [49]. Another ar-
gument against this mechanism is the similarity of pp
and pp scattering at very high energy which argues in
favor of multigluon exchange diagrams as the origin of
diffractive scattering. Such processes appear at higher
order in the Born series. Thus it would be interesting to
iterate diagram Di [50] to examine the possibility that
this simple model may explain the observed t dependence
of the diffractive peak.

b = 4.2 GeV (47)

Both a and b, however, are sensitive to the choice of quark
model parameters, and vary by factors of about 10 and
3, respectively, when n, /m and n are varied through a
plausible range, which we shall discuss below.

VI. SUMMARY AND CONCLUSIONS

We have applied the quark-Born-d. iagram formalism to
nonstrange baryon-baryon elastic scattering. In this ap-
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proach the hadron-hadron scattering amplitude is taken
to be the sum of all single quark-pair interactions fol-
lowed by all allowed quark interchanges, with nonrela-
tivistic quark model wave functions attached to the ex-
ternal lines. This may be a useful description of reactions
which are free of qq annihilation. The model has few pa-
rameters (here only two, the baryon oscillator parameter
n and the hyperfine strength n, /m, since we incorporate
only the OGE spin-spin hyperfine term in this study),
and with Gaussian wave functions and a contact inter-
action the scattering amplitudes can be derived analyti-
cally. The model was previously applied to I = 2 mm and
I = 3/2 K7r scattering with good results, and also gives
reasonable results for low-energy S-wave KN scattering,
although there are discrepancies at higher energies and
in higher partial waves.

NN scattering is an important test of this approach
because it is also annihilation &ee (at the valence quark
level), and the baryon wave function and the dominance
of the spin-spin OGE hyperfine interaction in NN are al-
ready reasonably well established. We find that the quark
Born diagrams predict repulsive core interactions in both
S-wave NN channels, and the equivalent low-energy po-
tentials we extract &om the scattering amplitudes are
very similar to the results of previous resonating-group
and variational calculations. In view of the complexity of
the baryon-baryon scattering problem, which involves a
sum of thousands of diagrams and the evaluation of 36-
dimensional overlap integrals, we find our approximate
agreement with experiment encouraging.

We also give results for the NL and LL core inter-
actions induced by the OGE spin-spin term, and find
that certain AL channels have attractive cores and may
possess bound states. Finally we determine the NN dif-
ferential cross section predicted by our Born amplitude,
and compare the results with the experimental unpolar-
ized PP diH'erential cross section. We find that several
well-known features of experimental PP scattering at in-
termediate energies are evident in our Born results, in-
cluding the development of a forward peak with a quali-
tatively correct width and magnitude.
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APPENDIX: DISCUSSION OF NUCLEON
WAVE-FUNCTION PARAMETERS

Examples of previous values of n, /m (in chronolog-
ical order) are n, /m = 15.5 GeV (Oka and Yazaki,
1980 [16]); 37.8 GeV 2 (Harvey, 1981 [12]; this value
now appears exceptionally large); 7.7 GeV 2 (Faessler et
at. , 1982 [13]); 14.9 GeV 2 (Maltman and Isgur, 1984
[22]); and 14.4 GeV (Koike, 1986 [18]). Large values
were required to fit the N-6 mass splitting given sin-

gle Gaussian wave functions; since this is proportional to
(n, /m ) ~g(0) ~, an underestimated wave function at con-

tact must be compensated for by a large (n, /m ). If one
instead uses the actual Coulomb plus linear wave func-
tions &om the nonrelativistic Schrodinger equation with
mz 0.3 GeV, the larger value of ~@(0)~

leads to a much
smaller n, /m 5 GeV . Since our scattering calcula-
tion uses Gaussian wave functions one could argue which
parameter value is most appropriate; an improved calcu-
lation with more realistic wave functions will probably
be required to eliminate these parameter uncertainties.

The baryon width parameter a has also been assigned
a rather large range of values in previous work. Repre-
sentative values in chronological order are n = 0.41 GeV
(Copley, Karl, and Obryk, baryon photocouplings, 1969
[51]); 0.32 GeV (Isgur and Karl, baryon spectroscopy,
1979 [52]); 0.41 GeV (Koniuk and Isgur, baryon photo-
couplings, 1980 [53]); 0.33 GeV (Oka and Yazaki, NN
interactions, 1980 [16]); 0.25 GeV (Harvey, NN interac-
tions, 1981 [12]); 0.42 GeV (Faessler et aL, NN interac-
tions, 1982 [13]);0.25 GeV (Hayne and Isgur relativized
quark model, 1982 [54]); 0.32 GeV (Maltman and Isgur,
NN interactions, 1984 [22]); 0.34 GeV (Koike, NN inter-
actions, 1986 [18]); 0.3 and 0.42 GeV, with the smaller
value preferred (Li and Close, baryon electroproduction,
1990 [55]).

Most potential models assume a value of mq near 0.3
GeV, although the relativized models of Hayne and Is-
gur [54], Godfrey and Isgur (mesons) [56], and Capstick
and Isgur (baryons) [57] use a lower value of 0.22 GeV.
Although these relativized models also use a small value
of n, (Q = 0) = 0.6 for the infrared limit of an efFective
running n, (Q ), the hyperfine strength n, (0)/m2 = 12.2
GeV is again large because of the smaller mq. Its ef-
fects are reduced, however, by the use of a "smeared"
contact interaction.

We note that the smaller value of n, we use is now

generally preferred because recent spectroscopy studies
using improved wave functions have considerably lowered
the value required to fit hadron spectroscopy. The NN
references we compare with predate the improved spec-
troscopy studies and thus used a rather large value of n„
which was required to give a realistic NL splitting given
single Gaussian wave functions. We also prefer to use
our fixed parameter set because these values were found
to give reasonable results for low-energy S-wave urer, Kvr,
and KN scattering in our previous studies [27, 28, 32].
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