Simple model for deriving sdg interacting boson model Hamiltonians: 150 Nd example

Y. D. Devi and V. K. B.Kota Physical Research Laboratory, Ahmedabad 380 009, India (Received 15 June 1992)

A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p -n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, $B(E2)$'s, and E4 strength distribution in the example of ¹⁵⁰Nd.

PACS number(s): 21.60 . Fw, $21.10 - k$, $23.20 - g$, $27.70 + q$

In order to make progress in applying the sdg interacting boson model (IBM), which is demonstrated to be useful $[1-10]$ in analyzing hexadecupole $(E4)$ properties of nuclei, it is essential that one derives sdg Hamiltonians with some microscopic input, so that the number of free parameters [3 single-particle energies (SPE's) and 32 two-body matrix elements (TBME's)] will reduce to a minimal number (say 4—6). Broadly speaking, two approaches to this rather complicated problem are available: (i) phenomenological, and (ii) microscopic (based on the shell model and its relatives). The symmetry defined Hamiltonian H_{sym} of Devi et al. [3,4,9,11], the boson surface delta interaction H_{BSD} of Chen et al. [12], and the Hamiltonian H_{com} based on the commutator method given by Kuyucak et al. [5,8] belong to the first class, while the Otsuka-Arima-Iachello (OAI) [13] mapped and IBM-2 to IBM-1 projected Hamiltonian $H_{\text{OAI-proj}}$ proposed by Devi [3], the seniority transformed Dyson boson mapped and IBM-2 to IBM-1 projected Hamiltonian $H_{\text{DYS-proj}}$ of Navratil and Dobes [14], and the single-jshell seniority mapped Hamiltonian $H_{\text{OAI-full}}$ of Yoshinaga [15] belong to the second class. Yoshinaga's $H_{\text{OAI-full}}$ Hamiltonian is not useful in analyzing real nuclei unless it is extended to multi-j-shell cases, and also to protonneutron systems. These extensions render the mapping procedure rather complicated, as there is no unique correspondence between four-fermion and two-boson states. This problem can be circumvented by adopting the model where one assumes that single-boson energies derive from identical particle (pp and nn) interactions and proton and neutron single-particle energies, and the twobody matrix elements for bosons derive from pn interaction and carrying out an IBM-2 to IBM-1 projection of the re-

sulting p -n sdg IBM Hamiltonian. This model [hereafter referred to as $SPE(pp + nn)$ -TBME(pn)-proj] was recently used by Navratil and Dobes [14], together with the similarity transformed Dyson boson mapping in the multi-j-shell case, to give a reasonably good description of the spectroscopic properties (spectra, $E2$, and $E4$) of vibrational 148 Sm, nearly rotational 150 Nd, and γ -unstable 196 Pt nuclei. However, it is not clear whether the agreements obtained by Navratil and Dobes are due to the elaborate multi-j-shell mapping scheme they used or the model $SPE(pp + nn)$ -TBME(pn)-proj employed. In order to conclusively establish the latter, in this report, using a simple single-j-shell OAI mapping in the above model, an IBM-1 Hamiltonian is derived, and the spectra, $B(E2)$ values, and E4 strength distribution are analyzed in the example of 150 Nd.

In order to construct sdg Hamiltonians with a microscopic (shell model) basis, one has to start with protonneutron $(p-n)$ degrees of freedom. Then, using the simple model $SPE(pp + nn)$ -TBME(pn)-proj [3,14] and employing a quadrupole-quadrupole plus hexadecupolehexadecupole form for the $p-n$ force, the $p-n$ sdg IBM Hamiltonian takes the form

$$
H_{pn \text{ sdg IBM}} = \sum_{\rho=\pi,\nu} (\epsilon_{dp} \hat{n}_{dp} + \epsilon_{gp} \hat{n}_{gp}) + \kappa_{\pi\nu}^{(2)} Q_{\pi}^2 \cdot Q_{\nu}^2 + \kappa_{\pi\nu}^{(4)} Q_{\pi}^4 \cdot Q_{\nu}^4.
$$
\n(1)

In (1), $\hat{n}_{d\rho}$ and $\hat{n}_{g\rho}$ are d and g boson number operators for $\rho = \pi$ for proton bosons and v for neutron bosons.
Similarly, $\varepsilon_{d\rho}$, $\varepsilon_{g\rho}$, $\kappa_{\pi\nu}^{(2)}$, and $\kappa_{\pi\nu}^{(4)}$ are free parameters. Us-' are free parameters. Using the OAI correspondence [13],

$$
\begin{aligned}\n& |(j_{\rho})^{2N_{\rho}}, v_{\rho} = 0, J_{\rho} = 0 \rangle \leftrightarrow |n_{s;\rho} = N_{\rho}, L_{\rho} = 0 \rangle , \\
& |(j_{\rho})^{2N_{\rho}}, v_{\rho} = 2, J_{\rho} = 2 \rangle \leftrightarrow |n_{s;\rho} = N_{\rho} - 1, n_{d;\rho} = 1, L_{\rho} = 2 \rangle , \\
& |(j_{\rho})^{2N_{\rho}}, v_{\rho} = 2, J_{\rho} = 4 \rangle \leftrightarrow |n_{s;\rho} = N_{\rho} - 1, n_{g;\rho} = 1, L_{\rho} = 4 \rangle ,\n\end{aligned}
$$

where $2\Omega_{\pi}$ (2 Ω_{ν}) and N_{π} (N_v) are the shell degeneracy and boson numbers for protons (neutrons) respectively

462 BRIEF REPORTS 48

 $[j_\rho=(2\Omega_\rho-1)/2]$, and equating the matrix elements of multipole operators in fermion $[r_\rho^\lambda Y_\mu^\lambda(\theta_\rho,\phi_\rho)]$ and boson $(Q_{\mu;\rho}^\lambda)$ spaces, one obtains the effective charges $e_{ll',\rho}^{(\lambda)}$ that define $Q_{\mu,\rho}^{\lambda}$. They are [10]

$$
e_{l0;\rho}^{(\lambda)} = e_{0l;\rho}^{(\lambda)} = \left(\frac{2(\Omega_{\rho} - N_{\rho})}{\Omega_{\rho}(\Omega_{\rho} - 1)(2\lambda + 1)}\right)^{1/2},
$$

\n
$$
e_{ll';\rho}^{(\lambda)} = e_{l'l;\rho}^{(\lambda)} = \mp \left(\frac{\Omega_{\rho} - 2N_{\rho}}{\Omega_{\rho} - 2}\right) \left[\frac{4(2l + 1)(2l' + 1)}{(2\lambda + 1)}\right]^{1/2} \left\{\begin{array}{cc} l & l' & \lambda \\ j_{\rho} & j_{\rho} & j_{\rho} \end{array}\right\}, l \neq l' \text{ and } \lambda = 2, 4.
$$
\n(2)

The minus sign for $e_{ll',\rho}^{(\lambda)}$ in (2) is for particle bosons [fermion number $N_f \leq \Omega_{\rho}, N_{\rho} = N_f/2$] and the plus sign is for hole bosons [fermion number $N_f \ge \Omega_\rho$, $N_\rho = (2\Omega_\rho - N_f)/2$]. The factors $\langle j_\rho || r_\rho^{\lambda} Y_\mu^{\lambda}(\theta_\rho, \phi_\rho) || j_\rho \rangle$ that appear in the mapping bosons [iermion number $N_f \leq \frac{x}{\rho}$, $N_\rho - \frac{2x}{\rho} - \frac{y_f}{2}$]. The factors $\sqrt{\frac{\rho}{\rho}} \frac{y}{\rho} \frac{y}{\rho} \frac{y}{\rho} \frac{y}{\rho}$ that appear in the inapping are not shown in (2), and they are absorbed in the free parameters \frac $(31/2, 43/2)$ and $(43/2, 57/2)$ for rare earths and actinides respectively. Now, carrying out an IBM-2 to IBM-1 projection [16] by assuming that the low-lying levels belong to the F spin [17] $F = F_{\text{max}} = (N_{\pi} + N_{\nu})/2$, and using the simple result that

$$
\langle FF_Z|e_\pi(b_\pi^{\dagger}\tilde{b}_\pi)+e_\nu(b_\nu^{\dagger}\tilde{b}_\nu)|FF_Z\rangle=[(e_\pi N_\pi+e_\nu N_\nu)/N]\langle FF|b^\dagger\tilde{b}|FF\rangle,
$$

 $F_Z = (N_\pi - N_\nu)/2$ (IBM-1 states correspond to $F = F_Z = N/2$, $N = N_\pi + N_\nu$), which follows from the Wigner-Eckart theorem in F-spin space, the OAI mapped and IBM-2 to IBM-1 projected Hamiltonian $H_{\text{OAI-proj}}$ is

$$
H_{\text{OAI-proj}} = \varepsilon_d \hat{n}_d + \varepsilon_g \hat{n}_g + \kappa_2 (Q_\pi^2 \cdot Q_\nu^2)_{\text{proj}} + \kappa_4 (Q_\pi^4 \cdot Q_\nu^4)_{\text{proj}} ,
$$

\n
$$
\varepsilon_d = \sum_{\rho} \varepsilon_{d\rho} N_{\rho} / N, \quad \varepsilon_g = \sum_{\rho} \varepsilon_{g\rho} N_{\rho} / N, \quad \kappa_r = \frac{N_\pi N_\nu}{N(N-1)} \kappa_{\pi\nu}^{(r)}, \quad r = 2, 4 ,
$$

\n
$$
(Q_\pi^{\lambda} Q_\nu^{\lambda})_{\text{proj}} =: \left[\left\{ \sum_{l_1 l_2} e_{l_1 l_2;\pi}^{(\lambda)} (b_{l_1}^{\dagger} \tilde{b}_{l_2})^{(\lambda)} \right\} \cdot \left\{ \sum_{l_3 l_4} e_{l_3 l_4;\nu}^{(\lambda)} (b_{l_3}^{\dagger} \tilde{b}_{l_4})^{(\lambda)} \right\} \right];, \quad \lambda = 2, 4 .
$$
\n(3)

In (3), :: denotes normal ordering. Assuming ε_d and ε_g to be free parameters (instead of deriving them from pp and nn interactions) the Hamiltonian $H_{\text{OAI-proj}}$ is used to study the spectroscopy of ¹⁵⁰Nd; the boson number $N = 9$ with $N_{\pi} = 5$
interactions) the Hamiltonian $H_{\text{OAI-proj}}$ is used to study the spectroscopy of "⁵⁰Nd; the and $N_v = 4$. Furthermore, based on the success of earlier calculations for Sm isotopes [9] and nuclei in the Os-Pt region and $N_v = 4$. Furthermore, based on the success of earlier calculations for sin isotopes [5] and interest in the ost if each $N_v = n_s$ where $n_s^{\text{min}} = 2$ and $n_s \le n_s^{\text{min}}$ and $n_g \le n_s^{\text{min}} = 2$ and [5,4], the spherical basis defined by n_s , n_d , and n_g with the restrictions $n_s = n_s$ and $n_g = n_g$, where n_s isotopes, the n_g ^{ax} = 2, 3, are adopted. Although calculations with both n_g ^{ax} = 2 and 3 are performed $n_g^{\text{max}} = 2$, s, are adopted. Although calculations with both $n_g = 2$ and 3 are performed (for 5th and 1 c 5s isotopos, i.e.
 $n_g^{\text{max}} = 2$ restriction is used [3,4,9]) for comparison with the results given in [14], where $n_g^{\text{max}} = 2$ restriction is used [3,4,9]) for comparison with the results given in [14], where H DYS-_{proj} is used with n_g 3, 3, only the $n_g^{\text{max}} = 3$ results are discussed. It should be mentioned that the $n_g^{\text{max}} =$ only the $n_g^{\text{max}} = 3$ results are discussed. It should be mentioned that the $n_g = 2$ results are essentially the same as the $n_g^{\text{max}} = 3$ results, the latter being slightly better. With $n_g^{\text{min}} = 2$ and $n_g^{\text{max}} = 3$ r L^2 = 0, 1, 2, 3, 4, 5, and 6 are 65, 90, 203, 208, 286, 260, and 294, respectively.

In order to calculate E2 and E4 properties the consistent Q^2 , Q^4 formalism is adopted, which leads to the following multipole operators ($T^{E\lambda}$):

$$
T_{\mu}^{E\lambda} = \left[\sum_{\rho=\pi,\nu} e_{\rho}^{(\lambda)} Q_{\rho;\mu}^{\lambda}\right]_{\text{proj}} = \sum_{l,l'=0,2,4} \left[\frac{1}{N} \sum_{\rho=\pi,\nu} N_{\rho} e_{\rho}^{(\lambda)} e_{ll';\rho}^{(\lambda)}\right] (b_l^{\dagger} \tilde{b}_{l'})_{\mu}^{\lambda}, \quad \lambda = 2,4 \ . \tag{4}
$$

'Reference [18].

Present calculation.

'Reference [14].

FIG. 1. Experimental and calculated energy levels for ¹⁵⁰Nd. Experimental data are from [18]. The results calculated using $H_{\text{OAI-proj}}$ (present calculations) and $H_{\text{DYS-proj}}$ [14] in sdg space $\mu_{\text{OAI-proj}}$ (present calculations) and $H_{\text{DYS-proj}}$ [14] in sag space
with $n_g^{\text{max}} = 3$ are labeled as sdg-OAI-proj and sdg-DYS-proj, respectively. It is important to note that the simple $H_{\text{OAI-proj}}$ gives results that are in closer agreement to data, compared to those obtained with a more microscopic $H_{\text{DYS-proj}}$, although the number of free parameters are the same in both calculations.

The effective charges $e_{ll';\rho}^{(\lambda)}$ are the same as the ones used in the Hamiltonian (3), and they are defined in (2). The $e_{\pi}^{(\lambda)}, e_{\nu}^{(\lambda)}$ are the two free parameters in T'

The calculated spectrum for 150 Nd is shown in Fig. 1, and it is compared with data, as well as with the calculations of Navratil and Dobes [14]. The rms deviation from experimental energy levels is 37 keV. The description of the data obtained with $H_{\text{OAI-proj}}$ is as good as, if not somewhat better than, the $H_{\rm DYS\text{-}proj}.$ The parameter in the calculations are (in MeV) $\varepsilon_d=0.556$, $\varepsilon_g=1.378$, $\kappa_2 = -0.498$, and $\kappa_4 = -0.859$; the ε_d and ε_g values are from Ref. [14]. The $B(E2)$ values are calculated using
the E2 operator (4) with $e_{\pi}^{(2)} = 1.95 \times 10^2$ e fm² and $e_{v}^{(2)} = -5.04 \times 10^{2}$ e fm², and the results are given in Table I. Once again, the agreements between data and the present calculations are as good as those [14] in which a more elaborate mapping procedure is used. The nucleus 150 Nd is one of the few nuclei in the $100 \le A \le 200$ region where E4 strength distribution $[B(E4; 0_{\text{g},\text{s}}^+ \rightarrow 4_i^+)$ for 4^+ levels up to ~ 3 MeV)] is mea-[$B(E4; 0^+_{g.s.} \rightarrow 4^+_i)$ for 4^+ levels up to \sim 3 MeV)] is measured [1], the other two being ¹¹²Cd [2] and ¹⁵⁶Gd [19]. Therefore, as a further test of the model $SPE(pp + nn)$ -TBME(pn)-Proj, which is used in deriving $H_{\text{OAI-proj}}$, the E4 strength distribution in 150 Nd is constructed using the E4 operator (4) with $e_{\pi}^{(4)} = 7.486 \times 10^4$ e fm⁴ and
 $e_{\nu}^{(4)} = -9.94 \times 10^4$ e fm⁴, and the results are compared with the data in Fig. 2. Shown also are the results obtained with $H_{\text{DYS-proj}}$ [14] and Hartree-Bose plus Tamn-Dancoff approximation $(HB+TDA)$ calculations of Wu et al. [1]. The details of the $HB+TDA$ calculations where a phenomenological Hamiltonian is employed are given in [1]. From Fig. 2 it is seen that (i) the $H_{\text{OAI-proj}}$ calculation, although it reproduces the largest $0_{\text{g.s.}}^+ \rightarrow 4_1^+$ strength, underestimates the strength between 2 and 3

FIG. 2. $E4$ strength distributions in 150 Nd as measured in experiment [1] and the results of sdg IBM calculations. (i) Matrix diagonalization calculations with $H_{\text{OAI-proj}}$ denoted as sdg-OAIproj (present calculation); (ii) matrix diagonalization calculations with $H_{\text{DYS-proj}}$ denoted as sdg-DYS-proj [14]; (iii) $HB+TDA$ calculations denoted as sdg -HB+TDA [1]. Shown in the figure is $B(E4\uparrow)$ strength/MeV with 0.25 MeV bin size; $B(E4\uparrow)=B(E4;0_{\text{g.s.}}^+\rightarrow 4_i^+).$ Note that the strength in the bin (0.25—0.5) MeV must be multiplied by the factors 3, 3, 1.5, and ³ in experiment, sdg-OAI-proj, sdg-DYS-proj, and sdg-HB+TDA calculations respectively.

MeV, (ii) the $H_{\text{DYS-proj}}$ underestimates the overall strength by a factor of 2 , and also the observed fragmentation between 2 and 3 MeV is not properly described, and (iii) the HB+TDA calculation describes the fragmentation of the E4 strength reasonably well, in spite of the fact that it overestimates the strength between ¹ and 2 MeV and predicts none between 2.25 and 3 MeV, although experimentally there is sizeable strength in this domain. From this comparison it is clear that the observed $E4$ strength distribution in 150 Nd is reasonably well described by the sdg IBM, although the calculation $HB+TDA$ overestimates and $H_{\text{OAI-proj}}$ underestimates the strength between 2 and 3 MeV. However, considering the microscopic nature of the model $SPE(pp + nn)$ -TBME(*pn*)-Proj employed in constructing $H_{\text{OAI-proj}}$ and the E4 transition operator, together with the agreements shown in Fig. 2, it can be concluded that it is a viable model for studying E4 properties.

The results given for spectra, $B(E2)$ values, and $E4$ strength distributions for 150 Nd clearly indicate that the simple model $SPE(pp + nn)$ -TBME(pn)-proj should be an essential ingredient of any microscopic procedure for deriving sdg IBM Hamiltonians. In order to conclusively establish this result, it is desirable to have a more systematic set of calculations employing the above model for a variety of nuclei.

- [1]H. C. Wu, A. E. L. Dieperink, O. Scholten, M. N. Harakeh, R. De Leo, M. Pignanelli, and I. Morrison, Phys. Rev. C 38, 1638 (1988).
- [2] R. De Leo, N. Blasi, S. Micheletti, M. Pignanelli, W. T. A. Borghols, J. M. Schippers, S. Y. Vander Werf, G. Maino, and M. N. Harakeh, Nucl. Phys. A504, 109 (1989).
- [3] Y. D. Devi, Ph.D. thesis, Gujarat University, 1991.
- [4] Y. D. Devi and V. K. B. Kota, in Proceedings of the DAE Symposium on Nuclear Physics, Bombay, 1991, edited by S. Kailas and P. Singh (Library & Information Services Division, BARC, Bombay, 1991), Vol. 34B, p. 47.
- [5] S. Kuyucak, V. S. Lac, I. Morrison, and B. R. Barrett, Phys. Lett. B263, 347 (1991).
- [6]J. Wesseling, C. W. De Jager, J. B. Vanderlaan, H. Devries, and M. N. Harakeh, Nucl. Phys. A535, 285 (1991).
- [7] A. Sethi, N. M. Hintz, D. N. Mihailidis, A. M. Mack, M. Gazzaly, K. W. Jones, G. Pauletta, L. Santi, and D. Goutte, Phys. Rev. C 44, 700 (1991).
- [8] S. Kuyucak, I. Morrison, and T. Sebe, Phys. Rev. C 43, 1187 (1991).
- [9] Y. D. Devi and V. K. B. Kota, Phys. Rev. C 45, 2238 (1992).
- [10] Y. D. Devi and V. K. B. Kota, Phys. Rev. C 46, 370 (1992).
- [11] Y. D. Devi, V. K. B. Kota, and J. A. Sheikh, Phys. Rev. C 39, 2057 (1989).
- [12) H. T. Chen, L. L. Kiang, C. C. Yang, L. M. Chen, T. L. Chen, and C. W. Jiang, J. Phys. G 12, L217 (1986); H. T. Chen, R. W. Richardson, L. L. Kiang, Y. Tzeng, P. K. Teng, G. C. Kiang, C. W. Wong, S. F. Tsai, E. K. Lin, and A. Arima, ibid. 14, L205 (1988).
- [13] T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A309, 1 (1978).
- [14] P. Navratil and J. Dobes, Nucl. Phys. A532, 223 (1991).
- [15] N. Yoshinaga, Nucl. Phys. A493, 323 (1989); N. Yoshinaga, Nucl. Phys. A503, 65 (1989).
- [16] W. Frank and P. O. Lipas, J. Phys. G 16, 1653 (1990).
- [17] P. O. Lipas, P. von Brentano, and A. Gelberg, Rep. Prog. Phys. 53, 1355 (1990).
- [18] E. der Mateosian, Nucl. Data Sheets, 48, 345 (1986).
- [19]P. B. Goldhoorn, M. N. Harakeh, Y. Iwasaki, L. W. Put, F. Zwarts, and P. Van Isacker, Phys. Lett. 1038, 291 (1981).