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Simple model for deriving sdg interacting boson model Hamiltonians: ' Nd example
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A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to as-

sume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neu-

tron single-particle energies, and that the two-body matrix elements for bosons derive from pn interac-
tion, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of
this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-
Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately
and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis
of the spectra, 8(E2)'s, and E4 strength distribution in the example of ' Nd.

PACS number(s): 21.60.Fw, 21.10.—k, 23.20.—g, 27.70.+q

In order to make progress in applying the sdg interact-
ing boson model (IBM), which is demonstrated to be use-
ful [1—10] in analyzing hexadecupole (E4) properties of
nuclei, it is essential that one derives sdg Hamiltonians
with some microscopic input, so that the number of free
parameters [3 single-particle energies (SPE's) and 32
two-body matrix elements (TBME's)] will reduce to a
minimal number (say 4—6). Broadly speaking, two ap-
proaches to this rather complicated problem are avail-
able: (i) phenomenological, and (ii) microscopic (based on
the shell model and its relatives). The symmetry defined
Hamiltonian H,„ofDevi et al. [3,4,9,11],the boson sur-
face delta interaction HBsD, of Chen et al. [12], and the
Hamiltonian H„based on the commutator method
given by Kuyucak et al. [5,8] belong to the first class,
while the Otsuka-Arima-Iachello (OAI) [13] mapped and
IBM-2 to IBM-1 projected Hamiltonian HQ~fp j pro-
posed by Devi [3], the seniority transformed Dyson boson
mapped and IBM-2 to IBM-1 projected Hamiltonian
HDYs p„, of Navratil and Dobes [14], and the single-j-
shell seniority mapped Hamiltonian HQ&& f„&& of Yoshina-
ga [15] belong to the second class. Yoshinaga's HQAI f
Hamiltonian is not useful in analyzing real nuclei unless
it is extended to multi-j-shell cases, and also to proton-
neutron systems. These extensions render the mapping
procedure rather complicated, as there is no unique
correspondence between four-fermion and two-boson
states. This problem can be circumvented by adopting
the model where one assumes that single-boson energies
derive from identical particle ('pp and nn) interactions and
proton and neutron single-particle energies, and the tmo-

body matrix elements for bosons derive from pn interaction
and carrying out an IBM 2to IBM Iprojecti-on of the-re

suiting p nsdg -IBM Hamiltonian This .model [hereafter
referred to as SPE(pp +nn)-TBME(pn)-proj] was recent-
ly used by Navratil and Dobes [14], together with the
similarity transformed Dyson boson mapping in the
multi-j-shell case, to give a reasonably good description
of the spectroscopic properties (spectra, E2, and E4) of
vibrational ' Sm, nearly rotational ' Nd, and y-unstable

Pt nuclei. However, it is not clear whether the agree-
ments obtained by Navratil and Dobes are due to the ela-
borate multi-j-shell mapping scheme they used or the
model SPE(pp +nn)-TBME(pn)-proj employed. In order
to conclusively establish the latter, in this report, using a
simple single-j-shell OAI mapping in the above model, an
IBM-1 Hamiltonian is derived, and the spectra, B(E2)
values, and E4 strength distribution are analyzed in the
example of ' Nd.

In order to construct sdg Hamiltonians with a micro-
scopic (shell model) basis, one has to start with proton-
neutron (p-n) degrees of freedom. Then, using the simple
model SPE(pp +nn)-TBME(pn)-proj [3,14] and employ-
ing a quadrupole-quadrupole plus hexadecupole-
hexadecupole form for the p-n force, the p-n sdg IBM
Hamiltonian takes the form

(2) 2 . 2
Hpn sdg IBM g ( Edp~dp+ Egp~gp) ++mvQ m Q v

P='iT, V

+~(4 IQ 4 .Q 4

In (1), lid and it are d and g boson number operators
for p=~ for proton bosons and v for neutron bosons.
Similarly, c,&, c, ~' ', and ~' ' are free parameters. Us-
ing the OAI correspondence [13],

1 (Ip ) vp 0

l(j) P, v =2, J
l(j )

=0)~ln, =N, L =0.),
=2)~ln, . =N —1, nd =1, L =.2),
=4)~ln, =N —1, n .. =1, L =4),

where 20 (2Q ) and N (N ) are the shell degeneracy and boson numbers for protons (neutrons) respectively
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2(Q —N )

Q (0 —1)(2k+ 1)
(A, ) (X)

clop =col;p =
(2)

[J~ =(2& —1)/2], and equating the matrix elements of multipole operators in fermion [r~I'"(Q p )] and boson (Q~ )

spaces, one obtains the effective charges eII~' that define Q~. . They are [1()]
1/2

e(&) —e(&)ell', p el'1;p

0 —2X
0 —2

p

4(2l + 1)(2l'+ 1)
(2A, +1)

I I'
l&l' and A. =2,4 .

Jp Jp Jp

The minus sign for e&& .
' in (2) is for particle bosons [fermion number Nf + 0, N =N /2] and the plus sign is for hole

bosons [fermion number Nf ~Q, N =(2Q —Nf)/2]. The factors (j ~~r I'„(0,$ )~~j ) that appear in the mapping
are not shown in (2), and they are absorbed in the free parameters i~'„ in (1). Note that (j,j ) take the values

(31/2, 43/2) and (43/2, 57/2) for rare earths and actinides respectively. Now, carrying out an IBM-2 to IBM-1 projec-
tion [16] by assuming that the low-lying levels belong to the F spin [17] F =F„„„=(N+N )/2, and using the simple
result that

(FFz~e (bP )+e,(b b )~FFz) =[(e N +e N )/N)(FF~b b~FF),

Ed=+Ed N /N,
p

Fz =(N N)/2 —(IBM-1 states correspond to F =Fz =N/2, N =N +N, ), which follows from the Wigner-Eckart

theorem in F-spin space, the OAI mapped and IBM-2 to IBM-1 projected Hamiltonian Ho~/ p j is

Ho~, p„,= ERd+d'sRs'g+~z(Q Q ) „,+x4(Q Q, ) „, ,

(3)

p

(Q Q )p„j=. y e(&) (btb )(&) . y e(A. ) (btb )(k)11; 1 1 . , 11; 1 1

1) 12 13 14
I

X=2 4

In (3), ::denotes normal ordering. Assuming sd and E to be free parameters (instead of deriving them from pp and nn

interactions) the Hamiltonian Ho~, „,is used to study the spectroscopy of ' Nd; the boson number N =9 with N =5
and N, =4. Furthermore, based on the success of earlier calculations for Sm isotopes [9] and nuclei in the Os-Pt region

[3,4], the spherical basis defined by n„nd, and n with the restrictions n, ~ n, '" and ng
~ n '", where n, '"=2 and

n '"=2,3, are adopted. Although calculations with both n '"=2 and 3 are performed (for Sm and Pt-Os isotopes, the

n '"=2 restriction is used [3,4,9]) for comparison with the results given in [14], where HDYs „, is used with n '"=3,
only the n '"=3 results are discussed. It should be mentioned that the n "=2 results are essentially the same as the

n "=3 results, the latter being slightly better. %'ith n,, '"=2 and n "=3 restrictions, the matrix dimensions for

I. =0, 1, 2, 3, 4, 5, and 6 are 65, 90, 203, 208, 286, 260, and 294, respectively.
In order to calculate E2 and E4 properties the consistent Q, Q formalism is adopted, which leads to the following

multipole operators ( T ):

7 EA. — y (A. )QX
P p p~p

p —77, v

N e' 'eIlf. (bi bi )„, k=2, 4 .1
ll, p

proj 1,1'=0,2, 4 p=a, v

(4)

TABLE I. B(E2) values for" Nd.

L; ~Lf

4 2+

2+ 4+
p

2+ 2+
2+ 0+
2+ 2+
2+ ~0~+

'Reference [18].
Present calculation.

'Reference [14].

Expt. '

0.563+0.002
0.819+0.038
0.980+0.09
0.208+0.009
0.095+0.028
0.036+0.017

0.0024+0.0005
0.034+0.007
0.015+0.0009

B(E2; L;~LI) (10 e fm }
sdg IBM

OAI-proj"

0.537
0.879
0.934
0.227
0.037
0.069
0.001
0.001
0.011

DYS-proj'

0.560
0.810
0.883
0.071
0.033
0.004
0.012
0.073
0.012
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FICx. 1. Experimental and calculated energy levels for "Nd.
Experimental data are from [18]. The results calculated using
Ho~, ~,» (present calculations) and Hovs ~«„[14] in sdg space
with ng "=3are labeled as sdg-OAI-proj and sdg-DYS-proj, re-
spectively. It is important to note that the simple HQA& p„„gives
results that are in closer agreement to data, compared to those
obtained witk a more microscopic H»s p, ;, although the num-
ber of free parameters are the same. in both calculations.
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The effective charges e&'&.
' are the same as the ones used

in the Hamiltonian (3), and they are defined in (2). The
e' ', e' 'are the two free parameters in T

The calculated spectrum for ' Nd is shown in Fig. 1,
and it is compared with data, as well as with the calcula-
tions of Navratil and Dobes [14]. The rms deviation
from experimental energy levels is 37 keV. The descrip-
tion of the data obtained with H&A& prpj is as good as, if
not somewhat better than, the IIDYs proj The parameters
in the calculations are (in MeV) Ed=0. 556, Es=1.378,
K2 ——0.498, and ~4= —0.859; the cd and cg values are
from Ref. [14]. The B(E2) values are calculated using
the E2 operator (4) with e' ' = 1.95 X 10 e fm and
e' '= —5.04X10 e frn, and the results are given in
Table I. Once again, the agreements between data and
the present calculations are as good as those [14] in
which a more elaborate mapping procedure is used. The
nucleus ' Nd is one of the few nuclei in the
100 + A ~ 200 region where E4 strength distribution
[B(E4; 0, ~4,+) for 4+ levels up to -3 MeV)] is mea-
sured [1], the other two being "Cd [2] and ' Cxd [19].
Therefore, as a further test of the model SPE(pp +nn)-
TBME(Pn)-Proj, which is used in deriving HoA, ~„j, the
E4 strength distribution in ' Nd is constructed using the
E4 operator (4) with e~ ' =7.486 X 10 e fm" and
e' '= —9.94X10 e fm, and the results are compared
with the data in Fig. 2. Shown also are the results ob-
tained with HDvs „; [14] and Hartree-Bose plus Tamn-
Dancoff' approximation (HB+TDA) calculations of %'u
et al. [1]. The details of the HB+TDA calculations
where a phenomenological Hamiltonian is employed are
given in [1]. From Fig. 2 it is seen that (i) the Ho~, ~„
calculation, although it reproduces the largest Os+, ~4,
strength, underestimates the strength between 2 and 3

0 1

0.0 0.5 1.0 1,5 ?.0 2.5 5.0

E(Me V)
FIG. 2. E4 strength distributions in "Nd as measured in ex-

periment [1] and the results of sdg IBM calculations. (i) Matrix
diagonalization calculations with HQA$ p j denoted as sdg-OAI-
proj (present calculation); (ii) matrix diagonalization calcula-
tions with HoYs ~„, denoted as sdg-DYS-proj [14]; (iii)
HB+TDA calculations denoted as sdg-HB+TDA [1]. Shown
in the figure is B(E4 t ) strength/MeV with 0.25 MeV bin size;
B (E4 f ) =B (E4;Og+, ~4,+- ). Note that the strength in the bin
(0.25 —0.5) MeV must be multiplied by the factors 3, 3, 1.5, and 3
in experiment, sdg-OAI-proj, sdg-DYS-proj, and sdg-HB+TDA
calculations respectively.

MeV, (ii) the HDvs „„underestimates the overall
strength by a factor of 2, and also the observed fragmen-
tation between 2 and 3 MeV is not properly described,
and (iii) the HB+TDA calculation describes the frag-
mentation of the E4 strength reasonably well, in spite of
the fact that it overestimates the strength between 1 and
2 MeV and predicts none between 2.25 and 3 MeV, al-
though experimentally there is sizeable strength in this
domain. From this comparison it is clear that the ob-
served E4 strength distribution in ' Nd is reasonably
well described by the sdg IBM, although the calculation
HB+TDA overestimates and HoA$ p j underestimates
the strength between 2 and 3 MeV. However, consider-
ing the microscopic nature of the model SPE(pp+nn)-
TBME(Pn)-Proj emPloy~d in constructing Ho«~„, and
the E4 transition operator, together with the agreements
shown in Fig. 2, it can be concluded that it is a viable
model for studying E4 properties.
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The results given for spectra, B(E2) values, and E4
strength distributions for ' Nd clearly indicate that the
simple model SPE(pp +nn)-TBME(pn)-proj should be an
essential ingredient of any microscopic procedure for

deriving sdg IBM Hamiltonians. In order to conclusively
establish this result, it is desirable to have a more sys-
tematic set of calculations employing the above model for
a variety of nuclei.
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