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Simple model for deriving sdg interacting boson model Hamiltonians: *°Nd example
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A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to as-
sume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neu-
tron single-particle energies, and that the two-body matrix elements for bosons derive from prn interac-
tion, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of
this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-
Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately
and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis
of the spectra, B(E2)’s, and E4 strength distribution in the example of *°Nd.

PACS number(s): 21.60.Fw, 21.10.—k, 23.20.—g, 27.70.+q

In order to make progress in applying the sdg interact-
ing boson model (IBM), which is demonstrated to be use-
ful [1-10] in analyzing hexadecupole (E4) properties of
nuclei, it is essential that one derives sdg Hamiltonians
with some microscopic input, so that the number of free
parameters [3 single-particle energies (SPE’s) and 32
two-body matrix elements (TBME’s)] will reduce to a
minimal number (say 4-6). Broadly speaking, two ap-
proaches to this rather complicated problem are avail-
able: (i) phenomenological, and (ii) microscopic (based on
the shell model and its relatives). The symmetry defined
Hamiltonian H,, of Devi et al. [3,4,9,11], the boson sur-
face delta interaction Hggpy of Chen et al. [12], and the
Hamiltonian H_;, based on the commutator method
given by Kuyucak et al. [5,8] belong to the first class,
while the Otsuka-Arima-Iachello (OAI) [13] mapped and
IBM-2 to IBM-1 projected Hamiltonian Hgap o PTO-
posed by Devi [3], the seniority transformed Dyson boson
mapped and IBM-2 to IBM-1 projected Hamiltonian
Hpys.proj Of Navratil and Dobes [14], and the single-j-
shell seniority mapped Hamiltonian H sy g, Of Yoshina-
ga [15] belong to the second class. Yoshinaga’s Hoapqup
Hamiltonian is not useful in analyzing real nuclei unless
it is extended to multi-j-shell cases, and also to proton-
neutron systems. These extensions render the mapping
procedure rather complicated, as there is no unique
correspondence between four-fermion and two-boson
states. This problem can be circumvented by adopting
the model where one assumes that single-boson energies
derive from identical particle (pp and nn) interactions and
proton and neutron single-particle energies, and the two-
body matrix elements for bosons derive from pn interaction
and carrying out an IBM-2 to IBM-1 projection of the re-
J
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sulting p-n sdg IBM Hamiltonian. This model [hereafter
referred to as SPE(pp +nn)-TBME(pn)-proj] was recent-
ly used by Navratil and Dobes [14], together with the
similarity transformed Dyson boson mapping in the
multi-j-shell case, to give a reasonably good description
of the spectroscopic properties (spectra, E2, and E4) of
vibrational *3Sm, nearly rotational 150N d, and v -unstable
196pt nuclei. However, it is not clear whether the agree-
ments obtained by Navratil and Dobes are due to the ela-
borate multi-j-shell mapping scheme they used or the
model SPE(pp +nn)-TBME(pn)-proj employed. In order
to conclusively establish the latter, in this report, using a
simple single-j-shell OAI mapping in the above model, an
IBM-1 Hamiltonian is derived, and the spectra, B(E2)
values, and E4 strength distribution are analyzed in the
example of °Nd.

In order to construct sdg Hamiltonians with a micro-
scopic (shell model) basis, one has to start with proton-
neutron (p-n) degrees of freedom. Then, using the simple
model SPE(pp +nn)-TBME(pn)-proj [3,14] and employ-
ing a quadrupole-quadrupole plus hexadecupole-
hexadecupole form for the p-n force, the p-n sdg IBM
Hamiltonian takes the form

Hpn sngBM: 2 (deﬁdp‘*‘i’.gpﬁgp)"'ng)Qi'Q%,
p=mv
+K0%05 . (1
In (1), iy, and A, are d and g boson number operators
for p=m for proton bosons and v for neutron bosons.
Similarly, €4, €, k%), and k¥ are free parameters. Us-
ing the OAI correspondence [13],

|(jP)2Np’ v, =2, J,=2)ng , =N, —1, ng,=1, L,=2),

. 2N
l(]p) ?, vp=2’ Jp:4>“"|ns;p:Np

-1, n,,=1, L,=4),

where 2Q, (2Q,) and N, (N,) are the shell degeneracy and boson numbers for protons (neutrons) respectively
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[j,=(2Q,—1)/2], and equating the matrix elements of multipole operators in fermion [r:;Yf;(Op, #,)] and boson (Q f; )
spaces, one obtains the effective charges e,‘ﬁ;}, that define Qﬁ; o~ They are [10] *

SO s A NN

e 0 Q@ — DA+ |

e(}‘) :e(}\) = QP-2NP 4(21+1)(21,+l) 172 l ' A J£ ] dhe24 (2)
e = €r'lp Q,—2 (2A+1) Jo Jp Jp | o a

The minus sign for e,(ﬁ‘;ju in (2) is for particle bosons [fermion number N, =Q ,, N,=N,/2] and the plus sign is for hole

bosons [fermion number N, =Q,, N,=(2Q,—N;)/2]. The factors <jp||r}‘Yf;(9p,¢p)||jp) that appear in the mapping
are not shown in (2), and they are absorbed in the free parameters K(ﬂ,}f in (1). Note that (j_,j,) take the values
(31/2,43/2) and (43/2,57/2) for rare earths and actinides respectively. Now, carrying out an IBM-2 to IBM-1 projec-
tion [16] by assuming that the low-lying levels belong to the F spin [17] F=F , =(N_+N,)/2, and using the simple
result that

(FF,le (b'h_)+e,(b15,)|FF,)=[(e,N,+e,N,)/NI(FFIb'B|FF) ,

F,=(N,—N,)/2 (IBM-1 states correspond to F =F;=N/2, N=N_,+N,), which follows from the Wigner-Eckart
theorem in F-spin space, the OAI mapped and IBM-2 to IBM-1 projected Hamiltonian Hoap.pro; 1S

HoaLproj = €afla + €Ay T12(Q 502 )i+ a 0503 )oroj 5

NN
T\, r=2,4, 3)

ea=2 apNp /N, €= &,Np /N, K, =y Kaw
P P

(0707 )proj = h A=2,4.

I3,

(3ot [ |
172

In (3), : : denotes normal ordering. Assuming g, and g, to be free parameters (instead of deriving them from pp and nn
interactions) the Hamiltonian H g, is used to study the spectroscopy of '°Nd; the boson number N =9 with N =5
and N, =4. Furthermore, based on the success of earlier calculations for Sm isotopes [9] and nuclei in the Os-Pt region
[3,4], the spherical basis defined by ng, n,, and n, with the restrictions n; >n ™" and ng <ng*, where nM"=2 and
n'**=2,3, are adopted. Although calculations with both n,°**=2 and 3 are performed (for Sm and Pt-Os isotopes, the
ng'®*=2 restriction is used [3,4,9]) for comparison with the results given in [14], where Hpys p; is used with ng =3,
only the n;"**=3 results are discussed. It should be mentioned that the n;"**=2 results are essentially the same as the
n =3 results, the latter being slightly better. With n™"=2 and n;***=3 restrictions, the matrix dimensions for
L'=0,1,2,3,4,5,and 6 are 65, 90, 203, 208, 286, 260, and 294, respectively.

In order to calculate E2 and E4 properties the consistent 02 0* formalism is adopted, which leads to the following

multipole operators (TZ%):

T=[3 el0pu] = X 7{; S Nelei), ] (b/B)h A=2,4. @
p=m,V proj L1'=0,2,4 p=mv
TABLE 1. B(E2) values for *°Nd.
B(E2; L,—L;) (10* e*fm*)
sdg IBM

L,—L; Expt.? OAI-proj® DYS-proj°
2 —of 0.563+0.002 0.537 0.560
41 —>2f 0.819+0.038 0.879 0.810
61 —47 0.980+0.09 0.934 0.883
0 —2; 0.2080.009 0.227 0.071
2,}" —47 0.095+0.028 0.037 0.033
23’ —27 0.036+0.017 0.069 0.004
2; —0f 0.0024£0.0005 0.001 0.012
2;’——»2?’ 0.034+0.007 0.001 0.073
2y+ —0; 0.015+0.0009 0.011 0.012

*Reference [18].
“Present calculation.
‘Reference [14].
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FIG. 1. Experimental and calculated energy levels for *°Nd.
Experimental data are from [18]. The results calculated using
Hoarproj (present calculations) and Hpys o [14] in sdg space
with n;"®*=3 are labeled as sdg-OAI-proj and sdg-DYS-proj, re-
spectively. It is important to note that the simple Hoar.pr; gives
results that are in closer agreement to data, compared to those
obtained with a more microscopic Hpys o, although the num-
ber of free parameters are the same in both calculations.

The effective charges el(f,‘;) are the same as the ones used

in the Hamiltonian (3), and they are defined in (2). The
e'M e are the two free parameters in T'5*,

The calculated spectrum for '°Nd is shown in Fig. 1,
and it is compared with data, as well as with the calcula-
tions of Navratil and Dobes [14]. The rms deviation
from experimental energy levels is 37 keV. The descrip-
tion of the data obtained with Hgay . is as good as, if
not somewhat better than, the Hpyg ;- The parameters
in the calculations are (in MeV) g, =0.556, g, =1.378,
K= —0.498, and k,= —0.859; the ¢, and ¢, values are
from Ref. [14]. The B(E2) values are calculated using
the E2 operator (4) with ¢! =1.95X10? e fm? and
e¥=—-504X10* efm?, and the results are given in
Table I. Once again, the agreements between data and
the present calculations are as good as those [14] in
which a more elaborate mapping procedure is used. The
nucleus '"Nd is one of the few nuclei in the
100=< 4 =200 region where E4 strength distribution
[B(E4; 0/, —4;") for 4 levels up to ~3 MeV)] is mea-
sured [1], the other two being ''>Cd [2] and '’°Gd [19].
Therefore, as a further test of the model SPE(pp +nn)-
TBME(pn)-Proj, which is used in deriving Hoar.proj, the
E4 strength distribution in °Nd is constructed using the
E4 operator (4) with e*=7.486X10* efm* and
el =—-9.94X10* e fm* and the results are compared
with the data in Fig. 2. Shown also are the results ob-
tained with Hpyg. o [14] and Hartree-Bose plus Tamn-
Dancoff approximation (HB+TDA) calculations of Wu
et al. [1]. The details of the HB+TDA -calculations
where a phenomenological Hamiltonian is employed are
given in [1]. From Fig. 2 it is seen that (i) the HOAI_prgj
calculation, although it reproduces the largest 0; .. =4
strength, underestimates the strength between 2 and 3
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FIG. 2. E4 strength distributions in **Nd as measured in ex-
periment [1] and the results of sdg IBM calculations. (i) Matrix
diagonalization calculations with Hoay,r0; denoted as sdg-OAI-
proj (present calculation); (ii) matrix diagonalization calcula-
tions with Hpyg,, denoted as sdg-DYS-proj [14]; (iii)
HB+TDA calculations denoted as sdg-HB+TDA [1]. Shown
in the figure is B(E41) strength/MeV with 0.25 MeV bin size;
B(E4T)=B(E4;O;S_—>4,-+). Note that the strength in the bin
(0.25-0.5) MeV must be multiplied by the factors 3, 3, 1.5, and 3
in experiment, sdg-OAI-proj, sdg-DYS-proj, and sdg-HB+TDA
calculations respectively.

0.0 05 1.0

MeV, (i) the Hpysp, underestimates the overall
strength by a factor of 2, and also the observed fragmen-
tation between 2 and 3 MeV is not properly described,
and (iii) the HB+TDA calculation describes the frag-
mentation of the E4 strength reasonably well, in spite of
the fact that it overestimates the strength between 1 and
2 MeV and predicts none between 2.25 and 3 MeV, al-
though experimentally there is sizeable strength in this
domain. From this comparison it is clear that the ob-
served E4 strength distribution in "°Nd is reasonably
well described by the sdg IBM, although the calculation
HB+TDA overestimates and Hoapp, Underestimates
the strength between 2 and 3 MeV. However, consider-
ing the microscopic nature of the model SPE(pp +nn)-
TBME(pn)-Proj employed in constructing Hoaypro; and
the E4 transition operator, together with the agreements
shown in Fig. 2, it can be concluded that it is a viable
model for studying E4 properties.
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The results given for spectra, B(E2) values, and E4
strength distributions for 1°°Nd clearly indicate that the
simple model SPE(pp +nn)-TBME(pn)-proj should be an
essential ingredient of any microscopic procedure for

deriving sdg IBM Hamiltonians. In order to conclusively
establish this result, it is desirable to have a more sys-
tematic set of calculations employing the above model for
a variety of nuclei.
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